Object Oriented Programming
with
First Order Logic

John S. Conery

CIS-TR-87-09
August, 1987

Abstract

This paper introduces a scheme for object-oriented programming
within the framework of the procedural interpretation of Horn clauses.
Metalogical operations, such as assert and retract, or extensions to
logical operations, such as unification with read-only variables, are
not required. The efTects of object-oriented programming are obtained
through a control strategy that interprets some negative literals as
procedure calls and others as instances of objects. A new type of logical
formula, the object clause, is introduced to describe procedures that
modify instances of objects. The paper concludes with a discussion of
aspects of object oriented programming, such as class hierarchies, and
how they can be realized in the new framework.

Department of Computer and Information Science
University of Oregon

1 Introduction

One of the advantages of programming with logic is that procedure calls in
the body of a clause have the same meaning in every context. There are
no hidden states that must be kept in mind when reading a program. A
procedure call with identical parameters returns the same results each time;
it does not use values in the state of the execution to return different results
on different calls.

This form of referential transparency is a double-edged sword. The re-
quirement that all of the data used by a procedure must be present in its
arguments can present a heavy cognitive burden in large programs. The
number of arguments for any given procedure can become quite large, and
procedures at the higher levels of a program are unnecessarily complicated
by adding parameters that serve only as place holders to pass data structures
down to the lower level procedures that will actually use them. ‘The situation
is aggravated when a program is later modified. If it is decided that a lower
level procedure needs more information, higher level procedures often have
to be changed. Either another parameter has to be added to pass the new
information, or the structure of an existing parameter modified. Both types
of changes require maintenance on parts of the program that have little to
do with the reasons for the change. In short, two respected principles of
modern programming languages, referential transparency and information
hiding, seem to be at odds in pure logic programming languages.

While global variables or other ways of representing state information are
not part of the formalism of logic programming, most high level languages
based on this formalism have such facilities. Programmers often use these
mechanisms to “set down” a value so it doesn’t have to be “carried around”
on each procedure call, and the only procedures that need to be concerned
with the structure and content of the data are the procedures that create
and use it. The simplest schemes use built-in predicates to manipulate an
internal database; an example is the evaluable predicate record from DEC-
10 Prolog [11]. This technique allows Prolog systems to be examples of
applicative state transition systems described by Backus: the more math-
ematical formal language can be used to define state transitions, but the
actual maintenance of the state is accomplished through a call to a mech-
anism outside the formalism [1}. A similar scheme is to use assert and
retract predicates that modify the program as it is executing. This leads
to a type of nonmonotonic reasoning, as the axioms used to make inferences
change as the reasoning progresses.

Another approach to information hiding is to merge concepts from the
paradigm of object oriented programming with logic programming. Most
such systems are based on Concurrent Prolog or other committed choice
AND-parallel languages [3,12,13]. In this approach, a perpetual process is
viewed as an object. One input parameter of the process is a stream of
messages to the object. A process is suspended until the first element in the
stream is instantiated to a term representing a message. The process then
executes, up to the point where it makes a recursive call to itself, where it
again blocks until the next message arrives. Other parameters to the process
represent the current state of the object.

Two logic languages with more explicit notions of classes, objects, slot
variables, and other concepts from object oriented programming are ESP [2]
and Vulcan [9]). The former uses evaluable predicates to manipulate object
instances, while the latter is a higher level language that compiles inte Con-
current Prolog.

What the above mentioned techniques all have in common is that they
implement information hiding as part of the higher level language that is
built on top of the logic programming foundation. In some cases, such as
adding assert and retract, the extensions are simple, and easy to imple-
ment, but they obscure the semantics of programs. In other cases, complex
control strategies are used to decide when a unification can take place, and
to postpone operations depending on the binding status of certain variables,
As a result of merging control decisions with unification, the languages are
harder to implement, and again have a significantly different semantics than
pure logic programs.

In this paper, we introduce a technique for object oriented programming
with pure first order logic. The goal is to incorporate notions of object ori-
ented programming at the level of the formal foundations. If successful, the
semantics of objects and procedures that manipulate them could be given
the same, or similar, treatment as regular procedures. The techniques de-
scribed here obtain the effects of mutable objects, or data structures that
change over time as the program executes, without modifying the unification
and resolution operations that are the logical foundations of logic program-
ming languages, and without introducing metalogical operations to create
and manipulate the objects. The control strategy is a simple sequential oper-
ation, not much more complicated than Prolog’s depth-first control. It also
allows for exploratory nondeterminism, of the variety usually implemented
in Prolog through backtracking,

What is presented in this paper is a framework for object oriented pro-

gramming with logic. Issues usually addressed by object oriented program-
ming, such as inheritance hierarchies, are dealt with very briefly. A Prolog
meta-interpreter that handles objects has been written, and used to imple-
ment the example programs presented here. Some of these other issues of
object oriented programming are discussed in more detail in the paper that
describes the meta-interpreter and its language [4].

2 Definitions

An object will be described by an atomic formula, or literal. The set of pred-
icate symbols used as object names are disjoint from the predicate symbols
used for procedure names. To distinguish the two, literals formed from ob-
Jject names will be called object literals, and literals with procedure names
as predicate symbols will be called procedure literals. The arguments of
an object literal are the “slot variables” of the object, and determine the
current state of an instance of the object.

A clause is a collection of literals. If all of the literals are procedure
literals, the clause has the usual declarative and procedural interpretations.
We need to give new interpretations to a clause that contains an object
literal, either as a positive literal in the head of the clause, or as a negative
literal in the body.

In the declarative reading, a positive object literal s(a; ... a,) is taken to
be a declaration that s(ay ...q,) is an object. A negative object literal is a
denial that the literal represents a valid object, or, equivalently, a request to
prove that it is an object. Table 1 summarizes the declarative interpretations
of several clauses containing object literals. In these examples, p, ¢, and r
are procedure literals, and s is an object literal. As the examples show,
object literals and procedure literals can be freely mixed in clauses.

A proof that a literal represents an object is accomplished the same way
the truth of a procedure literal is established, through derivation of the
empty clause via a series of resolution inferences. A negative object literal
can be unified with an object literal in the head of a clause, and a new goal
statement derived from the remaining literals in the goal plus the literals in
the body of the clause.

The procedural interpretation of object literals is described in terms
of the states of an object. A negative object literal in a goal statement
is interpreted as an instance of the object. The procedural reading of a
negative object literal s in the body of a clause is “create an object with

Clause Declarative Reading

P p is true.

s. s is an object.

p—gAr. pistrueif ¢ and r are true.

8; — 85. s; is an object if s, is an object.

p—qAs. pistrueif qis true and s is an object.
8 — qA S, 3;is an object if ¢ is true and s, is an object.

Table 1: Declarative Interpretation of Object Literals

state s," since, when the clause is invoked, the literals in the body are added
to the remaining parent goals to make the new goal statement. A positive
object literal in the head of a clause is a precondition for execution of the
goals in the body of the clause. In other words, in order to invoke the goals
in the body of the clause, there must exist an object in the current goal
statement with a state that matches the head of the clause. A rule with one
object literal in the head and another object literal with the same name in
the body can thus be interpreted as a rule for transforming the state of an
object. The procedural interpretation of clauses containing object literals is
summarized in Table 2.

As an example, the following clauses could be used to define of a stack
of integers, The object literal stack(L) means the list L is a stack. Also,
we use the Prolog syntax [XIL] to mean the list with head X and tail L.

stack([]). the empty list is a stack
stack([XIL]) [XIL] is a stack if
integer(X) A X is an integer
stack(L). and L is a stack
push(¥) the goal push(X) is solvable if
stack([XIL]). [XIL] is a stack
stack(L) « the stack L can be transformed into
stack([X[L]). a new stack [XIL] (by pushing X)

The declarative readings of the last two clauses are: “push(X) is true if
there exists an L such that [X|L] is a stack” and “L is a stack if there exists
an X such that [XIL] is a stack.” The procedural readings are “to solve a

Clause Procedural Reading

P procedure p is solved.

s. s is the current state of the object.
— p. call procedure p; show p is solvable.
- 8. create an object with state s.

p+—gAr. tosolve p, solve subgoals g and r.

8; +— S,. given an object with state s;, make an object
with state s,; transform s; into s,.

p—qAs. tosolve p, solve ¢ and create object s.

8;i +— G A s,. s; can be transformed to s, if ¢ is solvable.

Table 2: Procedural Interpretation of Object Literals

goal push(X), create a stack with X as top element and any stack L for the
remaining elements” and “if there exists a stack L, it is possible to create a
new stack of the form [X[L].”

This interpretation of object literals is not very useful. As the above
examples show, binary resolution will allow us to call a procedure, such as
push, to create a new object that has X on its top and an arbitrary tail, or
it will allow us to transform a stack by pushing an arbitrary integer.

For the interpretation of objects to be practical, we want to combine
the effects of procedure call and object transformation. In other words,
we want to define a procedure that operates on an instance of an object
to create a new instance of the object. We can do this by combining two
Horn clauses, one with a head that is an object literal, and the other with a
head that is a procedure literal, into a single logical formula. The “head” of
this formula will be the conjunction of the procedure literal and the object
literal. The new formula is no longer in clause form, since the “head” will
be a conjunction and not a single literal. However, we will call this formula
a clause, since, as will be shown below, it can be regarded as shorthand
notation for two Horn clauses, and operations with this formula are shortcuts
for successive operations with the corresponding Horn clauses.

o

Definition An object clause is a well-formed formula that is a disjunction
of component wifs, where one component is a conjunction of a pesitive pro-
cedure literal and a positive object literal, and the other components are
negative literals. The conjunction is called the head of the object clause
and the (zero or more) negative literals form the body of the clause. i

H

It is easy to show, by converting the implication into disjunction and
distributing the conjunction over the body of the clause, that the object
clause

PAS; — qAs, (1)
is equivalent to the two Horn clauses

P — qAS,

8 — gAs,

Note that the bodies of the two Horn clauses are identical.

The procedural interpretation of the object clause in equation (1) is: “to
solve p, given object s;, solve ¢ and create a new object in state s,.” An
object clause for a procedure that pushes an item X onto a stack with current
state L is:

push(X) A stack(L) «~ stack([X|L]).

Combining the two Horn clauses into a single object clause means the
two clauses now have a common set of variables, which is just what we want.
Intuitively, by combining the two heads into a single term, we are implying
that one is not reducible without the other. We do not want to call a
procedure that modifies an object’s state without having a clear statement
of what that state is, and we do not want to spontaneously change the state
of an object without parameters from a procedure call to define the values
of the new state.

The following definitions expand the definition of a procedure in a Horn
clause program to include our new notions of objects and the procedures
that manipulate them.

Definition An occurrence of an object literal in a goal statement is an
instance of an object. il

Definition A method is a collection of object clauses, where each proce-
dure literal has the same predicate symbol and arity, and all object literals
(in either a head or a body) have the same predicate symbol and arity. i

Descriptions of valid stacks

stack(ID, [J).
stack(ID,[XIL]) « integer(X) A stack(L).

A procedure to create a stack
new_stack(ID) « stack(ID,[]).

Methods for the class stack:

empty(ID) A stack(ID,[]) « stack(ID,[]).

push(X,ID) A stack(ID,S) « integer(X) A stack([X[S]).
pop(X,ID) A stack(ID,[X|S]) — stack(ID,S).

top(X,ID) A stack(ID,[XIS]) — stack(ID,[X]|S]).

Figure 1: A Class for a Stack of Integers

Definition A class has three components:

1. A set of object definitions, Horn clauses where the head is an object
literal, to define the structure of objects of the class.

2. A set of creation procedures, Horn clause procedures that contain ab-
ject literals in the body, used to create instances of objects.

3. A set of methods, used to transform instances of objects. il

An example of a class that defines a stack of integers is shown in Figure 1.
Besides being defined by object clauses instead of Horn clauses, the new
definition of a stack includes an extra parameter. The first parameter will
be used as the ID of the stack object, and the second as its current state.
More will be said about the ID parameter in later sections.

The three components of a class are used at different times in the com-
putation. In general, the initial goal statement will contain the user’s top
level goal. Some of these goals will lead to calls to the object creation pro-
cedures, so that the set of goals for the system to solve will contain some
object instances. Next, method calls will delete these instances, and add
new instances, as the computation proceeds. Finally, after all procedure

calls have been satisfied (the time at which a Prolog computation is fin-
ished, since all user goals have been reduced), the current goal statement
will contain nothing but object instances. At this time, the system can use
the object definition procedures to reduce the object states, until the current
goal statement is the empty clause.

In principle, the object definition procedures could be applied at any
time, and any valid object instance removed from the current goal state-
ment. However, this would make any method calls in the goal statement
unsatisfiable. The control strategy employed in HOOPS is to postpone so-
lution of object literals until no procedure calls are left. Whenever an object
literal is encountered in the current goal, it is set aside for later use; it is

recalled when the user program makes a call to a method for the object’s
class.

3 An Inference Rule for Object Clauses

In this section we introduce a new inference rule to handle method calls.
The rule allows us to pair up a procedure call with the current state of an
object, and derive a new goal statement that consists of remaining goals
from the input goal list and the body of the called object clause.

The proof of the soundness of the new inference rule relies on some stan-
dard definitions of substitutions and composition of substitutions, plus some
existing inference rules. For further discussion of these, see references [10]
and [14).

In this section, we will describe clauses as sets of literals, where it is
implied that the elements of the set are items in a disjunction of literals.
The implication P « Q A R will be written {P,@,R}. A literal such as P
is a negative literal, and a literal without the overbar is a positive literal.
Two literals have the same sign if both are positive or both are negative,
and two literals are complementary if one is positive and one is negative.

A substitution is a set of assignments of the form v = ¢, where v is a
variable and ¢ is a term. The application of a substitution & to a clause C,
written C#, is an instance of C where every variable of C that occurs on the
left hand side of an assignment in @ is replaced by the corresponding right
hand side. T4, the application of # to a term T, is defined similarly. The
composition of two substitutions # and o, written fo, is a new substitution
obtained by applying o to the terms on the right hand sides of the assign-
ments of #, and adding the assignments of ¢ that do not name the variables

on the left hand sides of 8. A variable pure substitution is one where the
terms on the right hand sides are all variables; such a substitution simply
renames the variables of a clause it is applied to. Composition is associative,
and (C)e = C(80).

Factoring is an operation that can be applied to a clause, under certain
conditions, to reduce the number of literals in the clause. The factoring rule
states that the clause

{PhPZ’QvR:"'}
can be reduced to
{P,Q,R,..}8

if literals P, and P, have the same sign, and there is a substitution 8 that
unifies P, and P,

Binary resolution is an inference rule that can be applied to two clauses
C and D, to yield a new clause R (called the resolvent) provided there is a
literal L in C, a complementary literal M in D, and L and M are unifiable
with substitution §. The resolvent is formed by taking the union of C and
D, minus the unified literals, and applying 6:

R={{C}-L v {D}- M}4

In a logic program, resolution is used in a proof by contradiction. The
program is a set of clauses. To execute the program, the user supplies a
conjunction of literals to be proved. The system negates the conjunction
to get an initial goal statement, which is a clause with all negative literals.
It then tries to derive a contradiction, in the form of the empty clause g,
through a series of resolutions. When all the clauses are Horn clauses (at
most one positive literal), binary resolution is complete, i.e. if the goal
statement leads to a contradiction, binary resolution is the only inference
rule that needs to be applied in order to derive the empty clause.

The new inference rule, which we will use to derive a new goal statement
when the invoked procedure is defined by an object clause, is called object
clause resolution, or OC-resolution for short. This rule states that from a
parent goal statement and an object clause, it is possible to derive a new
goal statement. If the parent goal statement G contains a negative procedure
literal P; and a negative object literal 5, and the object clause has a head
P; A S, and body B, we can infer a new poal statement R that contains
the remaining literals from G plus the literals of B, provided there is a
substitution 4 that simultaneously unifies P, with P, and §; with Ss:

R = {{G} -PA-5U {B}}B
if P18 = P;# and 5,0 = S0

The soundness of OC-resolution is the subject of the following theorem:

Theorem 1 (Soundness of OC-Resolution) IfS is an unsatisfiable set
of well-formed formulae, where each formula in S is either a Horn clause or
an object clause, then there is a deduction of o in which each step of the
deduction is either binary resolution or OC-resolution.

Proof. If S contains only Horn clauses, then, since binary resolution is
refutation complete for Horn clauses, the theorem holds. We must prove that
when we use OC-resolution in an inference step, the derived goal statement
logically follows from the object clause and the parent goal statement. The
proof is based on showing that an OC-resolvent is an instance of a clause
derived via two binary resolutions plus factoring.

Assume the parent goal statement is

{P,Q,F...G} (2)
Assuming the object clause is
PAQ~R...S (3)
the desired resolvent is L
{R...S,F...G}¢ (4)

As described previously, the object clause is equivalent to the two Horn
clauses

-5} ()
{@,R...5} (6)

which have identical bodies R...S.
From (2) and (5), derive, with binary resolution, the clause

(R...5,3,F...Gp 7)

{R...5,R...5,F...G}po (8)

where p and o are the unifiers used in the two steps.

Each literal from the body of the object clause occurs twice in (8). Since
these are identical literals (before p or & is applied), each pair can be reduced
to a single goal by factoring. The factored resolvent can be written as

(B ...56a, ... Co}po (©)

where ¢ is the composition of the substitutions ¢ ... ¢, used in the factoring
steps. The two resolvents in equations (4) and (9) have the same literals,
and can be regarded as the same clause C, in the sense that if any instance
of C can be used to derive the empty clause, the original goal statement is
unsatisfiable. il

A few words are in order concerning the substitutions in equations (4)
and (9). Since the literals used in the factoring steps were identical copies
of one another, the substitutions ¢; are variable pure. The ¢; rename the
variables of (9), with the effect that the bodies of (5) and (6) have variables
in common, and an assignment to one of these variables occuring in 8 will
have an equivalent assignment in po.

If a variable occurs in both heads of the object clause, but does not occur
in any body literal, @ is more restrictive than pe. In other words, there
can be more instances of the resolvent under substitutions derived through
binary resolution and factoring than there are through OC-resolution. This
does not affect the soundness of OC-resolution; by Herbrand’s theorem,
the original goal is unsatisfiable if we derive the empty clause through any
consistent instantiation of the resolvent. In terms of the substitutions ¢, a
variable occuring in the head but not the body is not constrained by the
factoring step to have the same assignment in both p and o. The requirement
that the two heads of the object clause be simultaneously unifiable restricts
the possible assignments to this kind of variable, so that in general there are
fewer OC-resolvents,

In terms of the intended uses of OC-resolution, for object oriented pro-
gramming, the restriction is exactly what we want. In practice, variables
that occur in both heads are used to identify different instances of the same
class of object. An example is in the class for a stack given in Figure 1,
where the variable named ID is a parameter in both heads of the method
clauses. A program could use two stacks, by making two calls to the proce-
dure new_stack, using a different term for the ID in each call. By requiring
ID to have the same value in both heads, we ensure that a call to a method
is matched with the proper instance of the object.

11

In the stack example, and in most methods, the common variable also
occurs in the body, in the declaration of the new state of the object. In
this case, resolvents (4) and (9) will be the same, since the factoring steps
make sure the substitutions for ID are consistent. But consider a method
such as the following, that could be used to destroy an instance of a stack:

abolish(ID) A stack(ID,S) «.

Since ID does not occur in the body, it will not occur in any substitution ¢,
and the factoring steps applied after binary resolution of the equivalent pair
of Horn clauses do not guarantee the substitutions for ID are consistent. If
there are a number of instances of stacks in the parent goal statement, this
is a case where there are more resolvents than OC-resolvents, and any of
the instances could be abolished by a call to this method. OC-resolution,
by requiring that the substitution for ID be the same in each head, is more
restrictive, but still correct.

4 Semantics

The operational semantics of a logic programming language is defined by
the proof procedure used in the derivation steps. For Horn clause programs,
the meaning of an n-ary predicate p is:

D(p) = {(t1,..-tn) : A F p(tq,...1,)}

(van Emden and Kowalski [6]). D(p), the denotation of predicate p, is the set
of n-tuples of terms ¢;...1, such that p(ty...%,) is provable from program
A. In a computation based on resolution, the meaning of A F P is that
there is a derivation of g from A A {P}.

The semantics of predicates used to define object clauses can be defined
similarly, The meaning of a procedure predicate m in a method for a class
5 should reflect its role as a procedure that transforms instances of objects
into new instances. D(m) should include the states of the objects that m
is applied to, and not just the tuples of terms that make instances of m
provable. One way to do this is to define D(m) as the set of all tuples of
terms #y,...1; and ti41,...t, such that m(¢y,...1;) is provable with respect
to objects with states s(t;41,...t5):

D(m) = {(t1,..-tn) : A F m(t1,...8;) A s(tig1,...10)}

12

In this definition, A F PAQ means there is a derivation of o from AA{P,Q}
using resolution and OC-resolution.

This definition does not quite capture the notion of a method as a pro-
cedure that transforms objects. The denotation of a predicate in a Horn
clause program is complete, in some sense, since inputs and outputs of func-
tions are contained within a tuple. For example, given suitable definitions of
integers and arithmetic operations, the denotation of a predicate sum would
be a set of 3-tuples < #,7,k > such that & = i 4 j; the two input values
and the corresponding output are all represented within a tuple. For object
clauses, the denotation relates the arguments of a method call and the input
states of the objects that the method can be applied to, but it does not tell
us explicitly what the corresponding output states of the object are. The
output states are defined, but they are hidden in the answer substitution
developed during the proof, and not explicitly part of the denotation.

We can make output states part of the denotation of a method through
the following transformation. Replace the vector of arguments z;...%; in
the procedure literal of the method with a single structure A = f(z;...2;).
Similarly, combine the arguments of object literals in the head and body
of an object clause into single arguments S; and S,, respectively. Finally,
replace every occurrence of m(A4) in the program with m(A,S;,5,). Then
the meaning of a method is a 3-tuple < A4,S5;,5, > defined as follows,
depending on whether there are object literals in the head, body, or both:

D(m) = < A,5,5 > formAs—bAs
= <AS5,1L> formAs«—©b
= <AL,5 > forme—bAs

In the first case, the meaning of m is a 3-tuple relating the vector of argu-
ments of m, the input states of the object s that m is applied to, and the
resulting output state. The second case is for object clauses that do not have
an object literal in the body; this corresponds to a method that consumes
an object instance, but does not create a new instance, effectively destroying
the object. In this case, the output state of the object is undefined. In the
third case, we have an alternative semantics for a Horn clause that creates
objects. In this view, the procedure defines a tuple that maps no objects
into a new object S,.

The semantics of an object literal can be defined in two ways. One is to
use the semantics of the Horn clauses in the class that define the structure
of the instances of the class. Recall that every class has a set of Horn
clauses where the head is an object literal. The usual semantics of these

13

clauses define the meaning of the object predicate. In the stack example, the
denotation of the predicate stack is the set of all lists of integers, including
the empty list.

A more restricted set of tuples of terms might be derived if we define
the tuples in the denotation as the union of all objects that can be created
by the methods of the class. Informally, initialize the set with the instances
in the bodies of the procedures of the class that create instances of objects.
Then add any instances that can be created through method calls, where
input states are members of the denotation.

5 Examples

This section contains some example programs written in pure logic with
object clanses. The examples illustrate the power of combining logic pro-
gramming, with its clear programs based on pattern matching and nondeter-
ministic search of a problem space, and the object oriented style, where data
structures and operations on them are encapsulated into a single coherent
structure.

5.1 Expression Evaluator

The first program is a simple expression evaluator, as an illustration of how
to use the class stack defined previously. The program, shown in Figure 2,
consists of a procedure that takes in a postfix expression represented by a
list of symbols, evaluates it, and prints the result. Since there is only one
stack, this program uses a definition of stack that does not have the variable
named ID in either the object states or the method calls.

The program is started when the user gives an initial call to evaluate,
such as evaluate([2,3,+,4,*]). The procedure for evaluate creates an
initially empty stack object, and then calls eval to carry out the arithmetic
operations. Note that after the last procedure call has been solved, the final
goal statement will not be the empty clause, but will have a negative object
literal representing the final state of the stack. To terminate the execution,
the system uses the object definition procedures in class stack to show that
the final stack is in fact a valid stack, and reduce the goal statement to the
empty clause.

A Prolog version of the expression evaluator with roughly the same struc-
ture as the object oriented program is also shown in the figure. There are
two things to notice about the object oriented version, when comparing it

14

Object oriented version:
evaluate(Str) «— new_stack A eval(Str).

eval([]) « top(X) A write(X).
eval([X1|Xn]) « integer(X1) A push(X1) A eval(Xn).
eval([X11Xn]) « operator(X1} A apply(X1) A eval(Xn).

apply(+) «— pop(Ni) A pop(N2) A N is N1 + N2 A push(N).
apply(-) + pop(N1} A pop(N2) A N is N2 - N1 A push(N).
etc.

Prolog version:
evaluate(Str) :- eval(Str,[{1).

eval({],[N]) :- write(N), nl.
eval([X1|Xn],S) :- integer(Xi), eval(Xn,[X1]S]).
eval([X1[Xn],Si) :- operator(X1i), apply(X1,5i,So), eval(Xn,So).

apply(+, [N1,¥2|Rem],[N|Rem]) :- N is N1+N2.
apply(-, [N2,N1|Rem], (N|Rem]) :- N is Ni-N2.
etc.

Tigure 2: Expression Evaluator, Version 1

to the Prolog program. One is that the stack is not passed as a parameter
on calls to eval and apply, but rather exists as a separate literal in the goal
statement. In a Prolog version, extra parameters are required, to hold the
current state of the stack.

The second point is that the object oriented version is sensitive to the
order in which methods are called. The two calls to pop in the body of eval
return different numbers, and, in the case of noncommutative operations like
subtraction, it is important which number is popped first from the stack. In
the Prolog version, the numbers are named by their location in the stack, and
it is apparent from the structure of the argument in the head of the clause
which is which. Perhaps a better way to define this class, when the order of
operations is important, is to write a method called pop2 that returns the
top two elements on the stack.

A second evaluator, defined for infix expressions and using two stacks, is
given in Figure 3. This example shows how a program can make two object

15

evaluate(Str) «
new_stack{ops) A new_stack(vals) A
push(@,ops) A eval(Str).

eval(l{]) « check(®@) A top(X,vals) A write(X).
eval([X1|Xn]) « integer(X1) A push(X1i,vals) A eval(Xn).
eval([X1|Xn]) « operator(X1) A check(X1) A eval(Xn).

check(0p) « top(X,ops) A maybe_apply(0p,X).

maybe_apply(0p,X) «
gtr_precedence(0p,X} A push(Op,ops).
maybe_apply(0p,X) «
leq_precedence(0p,X) A pop(X,ops) A
apply(X) A check(Op).

apply(+) «— pop(N1i,vals) A pop(N2,vals) A
N is N2 + N1 A push(N,vals).
apply(-) « pop(Ni,vals) A pop(N2,vals) A
N is N2 - N1 A push(N,vals).

etc.

Figure 3: Expression Evaluator, Version 2

instances from one class definition, and uses the version of the class stack
that was given in Figure 1.

5.2 N Queens

The second example is a solution to the N Queens problem. The solution
presented here is derived from a constraint based program described by
van Hentenryck and Dincbas [7]. In this approach, the basic idea is to
assign each of n queens to different columns at the start of the program. Van
Hentenryck and Dincbas use the notion of a finite domain to represent the
possible rows a queen can be placed in. The domain of each queen is initially
the set 1..n. When a queen is assigned to a specific row, that row must be in
the queen’s domain, or the assignment fails. When a queen is assigned a row,

16

the domains of other queens can be reduced; for example, when queen i is
assigned to row j, j can be removed from the domain of every other queen,
since no two queens can occupy the same row. A similar restriction can
reduce the domains of the other queens so they will not occupy a square on
the diagonal from (%,7). What makes this solution interesting is that if the
placement of a queen reduces the domain for another queen to a single row,
the other queen can immediately be assigned to that row, and the constraints
implied by this placement can be propagated. In the 5 queens problem, only
two nondeterministic choices are required; constraint propagation leads to a
deterministic placement of the remaining three queens, and the problem is
solved without backtracking.

In our object oriented solution, we will use a class named queen to
describe each object (Figure 4). The state variables of a queen will be the
ID of the queen (which is the same as the column the queen is assigned to)
and the queen’s current domain. If the domain is a list of integers, the list
represents the possible rows for the queen. If the domain is a single integer
t, it means the queen has been assigned to row i.

The methods of the class are choose and restrict. The call choose(Q)
directs queen ¢ to nondeterministically choose a row from among the pos-
sibilities remaining in the domain. The call restrict(Q,R) tells queen g
to stay out of row r. If g has already been placed in », the call will fail.
Whenever a queen is placed in a row (either directly, via a call to select,
or indirectly, when restrict leaves it with only one place to go), it then
calls restrict for the other queens. In the parlance of object oriented pro-
gramming, it sends a message to the other queens, telling them to stay out
of certain rows.

A version of this program was implemented in HOOPS, a Prolog meta-
interpreter that can handle object states and method calls [4]. The top
level structure of the program (not shown in the figure) is a simple tail-
recursive loop that makes the » queens with calls to new_queen, and then
calls choose for each of the queens. In the first few iterations, choose suc-
ceeds by nondeterministically choosing a row. Later calls will find the queens
already placed, via restrictions propagated by placement of earlier queens.
The program performed comparably to the program of van Hentenryck and
Dincbas, in terms of the number of nondeterministic choices that later had
to be backtracked.

17

queen([R1|Rn]).
queen(R) « integer(R).

new_queen(N) « init_domain(D) A queen(N,D).

Method for choose(Q): if queen Q is already in a row, ignore call; otherwise
select a row from the domain and broadcast constraints to others.
choose(Q) A queen(Q,N) «
integer(N) A queen(q,N).
choose(Q) A queen(Q,D) ~
1ist(D) A member{Row,D) A
" propagate(Q,Row) A queen(Q,Row).

Method for restrict(Q,R): if Q is already in row R, fail; if Q is in another
row, ignore the call; otherwise remove R from domain. If removing R leaves
Q with only one place to go, take that place and broadcast constraints.

restrict(Q,R)} A queen(Q,X) «—

integer(X) A neq(X,R) A queen(Q,X).
restrict(Q,R) A queen(Q,D) «

list(D) A select(R,D,Dr) A

next_domain(Q,Dr,D2) A queen(q,D2).
restrict(Q,R) A queen(q,D) —

list(D) A nonmember(R,D) A queen(q,D).

Local procedures

next_domain(Q, [R],R) «~ propagate(Q,R).
next_domain{Q, [R1,R2|Rn], [R1,R2|Rn]).

propagate(Q,R) «
check(Q,R,1,~-1) A check(Q,R,1,0) A check(Q,R,1,1) A
check(Q,R,-1,1) A check(,R,-1,0) A check(Q,R,-1,-1).

check(1,_,-1,_).

check(_,1,_,-1).

check(N,_,1,_) « nq(N).

check(_,N,_,1) — ng(N).

check(q,R,H,V) —
sum(Q,H,Q2) A sum(R,V,R2) A
restrict(Q2,R2) A chack(Q2,R2,H,V).

Figure 4: Class queen for N-Queens Problem

18

6 Discussion

The approach to object oriented programming presented in this paper is
based on a new procedural reading of a goal statement, which is a set of
negative literals. In the standard reading, all literals are interpreted as
procedure calls. In the new reading, some literals are taken to be instances
of objects. A method is a procedure that can only be called when it can be
paired up with an instance of an object. In a call to a method, two negative
literals, one for the procedure call and the other for the current state of the
object, are removed from the current goal statement, and the body of the
selected object clause is added to the remaining goals to make the new goal
statement. When one of the body goals is an object literal, we interpret this
as the new state of the object.

The notion that an object is consumed by the method call, and a new
object created by successful execution of the body, is similar to view of com-
plex structures in dataflow languages. Conceptually, a structure is carried
as the value of a token. Each time a function is applied, it consumes its in-
put tokens, and generates new tokens for the results. This view may lead to
some awkward situations when we want the method to make a recursive call
to itself, or when we want it to call another method for the same object. If
the object is consumed by the call to a method, and the new instance created
when the method succeeds, how do we handle recursive calls or messages to
“self”?

From the logical point of view, the new instance of the object is created
as soon as the unification with the heads of the object clause is complete.
The new instance is defined by a negative literal in the body of the method,
and this literal is immediately part of the inferred goal statement. Thus
there is an instance of the object available for recursive calls. All that is
required is that we be careful to balance the number of method calls with
the number of new object creations. In practice, however, the body of the
method is expected to operate on existing values of state variables in order to
create the values of the new instance. What is found in the new instance are
the names of the new values, which are unbound variables until procedure
calls in the body bind them. What we have to be careful for is that recursive
calls do not consume objects that are not yet “filled in” with values to be
computed by other calls. The HOOPS language used to implement the
examples in this paper has rules for defining the relative order in which
objects are created and procedures in the body are called.

One of the aspects of using this scheme for objects is that object states

19

created during execution of nondeterministic methods are erased on back-
tracking, and alternative states are created in their place. For example, if a
call to choose in the eight queens example results in a queen being placed
in a row that cannot lead to a solution, the instance of the object that shows
the queen in the wrong row is destroyed on backtracking, and the instance
created by the new choice takes its place. There are times when it would be
useful to have objects keep their values through backtracking. For example,
suppose we wish to instrument the N queens program, and count the number
of times a queen has to be moved. If we simply add a counter object to the
program, and call a method to increment it every time we place a queen, the
calls that increment the counter would be backtracked whenever the queen
backtracks., What is needed is a metalogical object, outside of the proof that
there exists a configuration of queens that satisfies the constraints, that is
not affected by operations in the proof. From the programmer’s standpoint,
we either need to have a notation that tells the system not to backtrack
certain objects, or a metacall facility that allows us to create metaobjects
such as the counter, and then call parts of the proof of eight queens as a
subroutine.

A major aspect of object oriented programming that has not been dealt
with in this paper is the notion of class hierarchies, where a class can be
declared to be a subclass of another class, All objects that are instances
of the subclass automatically inherit the slot variables and methods of the
superclass. For example, a queen might be declared to be a subclass of the
class of chesspieces; if there is a method for moving or placing a chesspiece,
we would not have to explicitly write such a method for the queen; all we
have to do is write the rules that are specific for the queen and distinguish
it from other chesspieces.

The formalism presented here does not make provisions for this type of
inheritance, but neither does it rule it out. Inheritance can be programmed,
such that when an instance of a subclass is created, new instances of each of
its superclasses are also created. To continue the example, the procedure to
make a queen would be written in such a way that it would place an instance
of a queen literal in the inferred goal statement, and also call the procedure
to make a chesspiece. The slot variables of the queen would consist of the
arguments of the queen literal, plus the arguments of the new chesspiece
literal. If we can keep the object IDs separate, so that no two objects of
any class have the same IDs, calls to superclass methods can be handled as
efficiently as any method calls. A call such as move(Q,R,C), where § is the
ID of the queen, will immediately be matched with the literal that defines

20

the queen as a chesspiece. As is the case for other object oriented languages,
rules will have to be developed for deciding which method, or combination
of methods, to apply when there are name conflicts.

Finally, the opportunities for parallelism in this scheme are, in the ab-
stract, the same as for Horn clause programs without objects [5]. OR paral-
lelism is parallelism in exploring alternative paths in the sequence of resolu-
tions. In this model, it would lead to “parallel universes” of objects, where
objects in one universe would not interact with objects in another universe.
When the system reaches a choice point, either in a procedure call or within
a nondeterministic method, each new alternative path would have its own
independent copy of all objects that exist at the time.

AND parallelism is obtained when multiple goals along a single path are
reduced simultaneously. It is this form of parallelism that would correspond
to the usual notion of parallelism in an object oriented model (for example,
in the Actors model [8]). Objects are viewed as independent threads of
computation, and there is no reason why messages being sent to different
objects cannot be processed simultaneously by the objects. One of the
difficulties in implementing AND parallelism in logic programs is deciding
which goals can be solved in parallel, and which have interactions that force
some to be solved before others. An interesting research project would be
to see if the coordination implied by method calls could be the basis for
scheduling AND-parallel tasks.

References

[1] Backus, J. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Commun. ACM 21, 8
(Aug. 1978), 613-641,

[2] Chikayama, T. ESP - Extended Self-contained Prolog - as a prelim-
inary kernel language of fifth generation computers. New Generation
Computing 1, (1983), 11-24.

[3] Clark, K.L. and Gregory, S. Notes on system programming in Parlog.
In Proceedings of the International Conference on Fifth Generation
Computer Systems, (Tokyo, Japan, Nov. 6-9), 1984, pp. 299-306.

[4] Conery, 1.S. HOOPS: An Object Oriented Prolog. Tech. Rep., Univ.
of Oregon, 1987. In preparation.

21

[5] Conery, J.S. and Kibler, D.F. Parallel interpretation of logic programs.
In Proceedings of the Conference on Functional Programming Lan-
guages and Computer Architecture, (Wentworth-by-the-Sea, NH, Oct.
18-22), ACM, 1981, pp. 163-170.

[6] van Emden, M.H. and Kowalski, R.A. The semantics of predicate logic
as a programming language. J. ACM 23, 4 (Oct. 1976), 773-742.

(7] van Hentenryck, P. and Dincbas, M. Forward checking in logic program-
ming. In Proceedings of the Fourth International Conference on Logic
Programming, (Melbourne, Australia, May 25-29), 1987, pp. 229-256.

[8] Hewitt, C.E., Attardi, G., and Lieberman, H. Specifying and proving
properties of guardians for distributed systems. In Kahn, G., editor, Se-
mantics of Concurrent Computation, Springer-Verlag, New York, NY,
1979, pp. 316-336.

[9] Kahn, K., Tribble, E.D., Miller, M.S., and Bobrow, ID.G. Objects in
cancurrent logic programming languages. In OOPSLA ’86 Proceedings,
(Portland, OR, Sep.), 1986, pp. 242-256.

[10] Lloyd, J.W. Foundations of Logic Programming. Springer-Verlag,
Berlin, 1984,

[11] Pereira, L.M., Pereira, F.C.N., and Warren, D.H.D. Users Guide to
DECsystem-10 Prolog. Tech. Rep., Dept. of Artificial Intelligence,
Univ. of Edinburgh, Sep. 1978.

[12] Shapiro, E. and Takeuchi, A. Object oriented programming in Concur-
rent Prolog. New Generation Computing 1, (1983), 25-48.

[13] Ueda, K. Guarded Horn Clauses. Tech. Rep. TR-103, Institute for New
Generation Computer Technology, Tokyo, Japan, June 1985.

[14] Wos, L., Overbeek, R., Lusk, E., and Boyle, J. Automated Reasoning.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.

22

