Automatic Derivation
of Systolic Arrays
for LU Decomposition

Sanjay V. Rajopadhye

C1S-TR-87-12
November 6, 1987

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Automatic Derivation of Systolic Arrays

for LU Decomposition

Sanjay V. Rajopadhye
Computer Science Deptartment
University of Oregon
Eugene, Or 97403

Abstract

We present a number of systolic arrays for decomposing a matrix into its lower and upper
triangular factors (LU-decomposition). These architectures have been formally derived using
techniques for synthesizing systolic arrays from affine recurrence equations, and the entire design
process can be automated. The derivation highlights two important aspects of our synthesis
methodology. Firstly, the initial specification is a high level one similar to a nested loop program.
We illustrate the use a technique called ezplicit pipelining to automatically localize the data
dependencies. Secondly, the architectures that we present have interesting features such as
control signals, and specialized behavior of certain processors (such as boundary processors).
We describe how these characteristics (and also processor initialization signals) can be derived
automatically.

1 Introduction

Over the last decade there have been tremendous advances in computational power due to the
advent of VLSI technology. However, the price for this power is the increased complexity of the
devices. In order to combat the complexity it is essential to use a disciplined approach during
the design process. One such discipline is the systolic array, a parallel architecture that consists
of regular interconnections of a large number of very simple processors. The term systolic array
was first proposed by Kung and Leiserson [8,9,10], and they also addressed the issues of efficient
layout of such circuits [11]. Initially, a large number of papers described architectures for specific
problems such as matrix multiplication, L-U decomposition of matrices, solving a set of equations,
convolution, dynamic programming, etc. (see {7,8,9] for an extensive bibliography). Subsequently,
a number of researchers addressed the problem of automatically deriving systolic arrays, notably
Fortes, Moldovan et. al. [4,5,6,12], Quinton [13), Delosme and Ipsen [1,2,3], (and many others,
see [14] for an detailed survey).

In this paper we present a number of architectures for LU-decomposition of a matrix. Each of
these has been rigorously derived by using techniques that we have developed elsewhere [14,15,16].
While similar synthesis methods have been proposed by other researchers, our method has two
main advantages which are illustrated by the designs presented here. Firstly, the initial specifi-
cations for our design are more general than those used in earlier approaches because they have
affine, rather than uniform dependencies. We then use a special technique called ezplicit pipelining
that enables us to automatically localize the dependencies. Secondly and more importantly, the
architectures derived here have a number of interesting features viz specialized computation by cer-
tain processors (such as boundary processors), non-uniform data-flow governed by control signals,
specialized computation governed by control signals, etc. We are able to formally derive each of
these computational aspects, as well as processor initialization.

The rest of this paper is organized as follows. In the next section (Section 2 we briefly describe
the synthesis methodology. Then, in Section 3 we define the initial specification for the LU-
decomposition problem (as an Affine Recurrence Equation). Section 4 deals first with pipelining
the dependencies of the recurrence, and then determining a timing function (the optimal one) for it.
In each of the subsequent sections we derive different systolic implementations for the recurrence
by choosing appropriate allocation functions. Each choice of allocation function also affects the
different “control planes” and hence generates the special features of the final array. Finally we
conclude by comparing these architectures in terms of processor utilization, I/O complexity, etc.
and indicate a few directions for further work.

2 Overview of the Synthesis Methodology

In a typical scenario for synthesizing systolic arrays one starts with an initial algorithm defined
by the computation of a function at all points in an indez-space (viz the integer lattice points in
a subset of Euclidean space). An example of such an algorithm is a simple (loop) program. The
range of values over which the loop indices are permitted to vary define exactly the index-space
(which is n-dimensional if there are n nested loops); the body of the loop represents the function
which is computed at all the points in this domain, and thus serves to define the granularity of the
processor. The synthesis problem then reduces to mapping the original index-space to a space-time
domain (i.e., assigning to each point in the original domain a place and a time). The two parts
of the mapping function are referred to as the allocation function (for the space component) and
timing function (time component) respectively. Such a mapping must satisfy certain constraints as
described below.

* The mapping must be bijective i.e., two distinct points in the index-space should be mapped
to two distinct points in the space-time domain. If it were not 50, the computations from two
distinct points in the problem domain would be scheduled on the same processor at the same
time.

* The data dependencies of the original algorithm must be rendered spatially and temporally
local since systolic arrays have nearest neighbor interconnections (spatial locality) and a
finite memory in each processor (which mandates temporal locality since the value used by
any processor must have been produced by its neighbor only a finite number of “clock-ticks”
ago).

¢ These transformed dependencies must be uniform over the whole space-time domain, since
the processors in a systolic array are identical and have similar interconnections indepen-
dent of their physical location in the array. The importance of this requirement has been
demonstrated elsewhere [14].

Under this basic framework it is mathematically advantageous to view the initial algorithm as
a recurrence equation i.e., an equation defined as

f(®) = 9(f(@m), f(g2), - - -, fax))

where g represents the loop body and p and q1 ...qk are n-dimensional points. The domain is defined
separately and is usually a convex hull. In much of the earlier work, the recurrence was restrited to
be a Uniform Recurrence Equation (URE). In UREs the difference P— g; between a point p and any

other point g¢; on which it depends, was required to be a constant vector independent of p.! It is easy
to show that if affine transformations are applied to such an index-space, the transformation yields
another index-space that also has uniform dependencies. This means that the third constraint
mentioned above can be easily satisfied by appropriate affine timing and allocation functions.
Hence, by choosing appropriate affine timing and allocation functions, it can be guaranteed that
the processors will have identical interconnections. A number of earlier researchers have developed
necessary and sufficient conditions for the existence of such timing and allocation functions . They
also showed that the problem of determining such functions reduces to a constraint optimization
problem with a constant number of constraints,

We have argued elsewhere [16] that requiring the dependencies to be uniform at the initial
specification level is unduly restrictive and proposed a more generalized class of recurrences called
Affine Recurrence Equations (AREs). In AREs each of the ¢;'s are affine functions of p, i.e.,
g: = A;p + b; where A; is an n X n matrix and b; is an n X 1 vector.? In synthesizing systolic arrays
from AREs [14,16] we focussed our attention on affine timing and allocation functions. We have
shown that under such transformations the dependencies themselves remained affine (and hence
did not represent a systolic array). It was therefore necessary to ezplicitly pipeline the dependencies
to render them uniform. A similar idea was discussed by Fortes and Moldovan [6].

The basic idea behind pipelining is as follows. In an ARE, the computation of f at any point p
requires the value of f(g) as one of its arguments (where ¢ = Ap + b). Clearly the difference p — ¢
is not a constant vector, but depends on p. To render the dependency uniform let us first try to
find another point p' that also requires the value of f(g). We want p’ to be “close to” p in the sense
that p’ — p is a constant vector independent of p (say p). If such a point exists, and somehow it
can be correctly scheduled (i.e., all its arguments can be made available at p’) then we may also
schedule p as follows. Instead of getting its argument f(g) from the point ¢ it gets it from p’ (which
is just a constant vector away and which has just used the value in its own computation). To do
this we introduce an additional pipelining function f'(p) at all points in the domain. This function
merely passes its arguments on unchanged. Then the value of f(g) is available at point p from ¢/,
i.e., p+ p (which in turn gets it from p + 2p and so on). Carrying this argument to its inductive
conclusion, the pipelining function has the following form.

ey | F(P) ifrp=260
i) = { fi(p+p) otherwise

"This means that if one has say, a three dimensional index-space [{, j, k], then all assignment statements in the
loop body must have the form uli,j, k] := g{.. uli+a,j+b,k+c] ..) where a, b and c are integer constants.

2This means that our loop body can contain statements such as uli,j,x] := g(.. uli’,j’.k’]1 ..) where each
of i’ j’ and k' are affine functions of i, j and k.

&

The-expression 7p = 8 is a “termination condition” to test if the point p is on a domain
boundary (the basis case for the inductive argument above), and the new (uniform) dependency
that has been introduced is p. It has been shown that p corresponds to the null space of the matrix
A. The pipelining function f’ does not impose any additional “computational” requirements on the
processor since at the domain boundary its value is simply the same as f, and at internal points it
is the same as f’ at a neighboring point. Once the dependencies have been made uniform we may
use the earlier techniques for determining appropriate timing and allocation functions. As we shall
see later, the control signals and the specialized processor behavior are determined precisely by
the linear conditions like 7p = @ that are introduced during the pipelining (and to any conditional
expressions present in the original specification).

3 Initial Specification of LU Decomposition

LU-Decomposition of a square matrix A js the problem of determining two matrices L and U such
that A=L-Uand L is lower-triangular (with diagonal elements equal to 1) and U is upper-
triangular. This corresponds to solving n2 equations (one for each element in the A matrix) for n?
unknowns, and by simple algebraic manipulation (omited here for brevity) the computation can be
defined by the following recurrence.

ki = f(,45,j)fori>j

uij = f(i,j,i-1)fori<j
where f(¢,7,0) is a;; and
f(4,5,k=1) ifi=k
f(iij‘lk)= f(f,j,k—l)/f(k,j,k—l) ifj:k (1)

fG,d k= 1) = f(i,k,k) * f(k,7,k— 1) otherwise

The domain for this recurrence (see Figure 1) is a pyramid with (1,1,1], [1,n,1], [0,1,1] and
[n,n, 1] as its base (ABCD) and [n,n,n] as its vertex, E. The input values a; ; enter the computation
at the base ABCD and the outputs are available at the two diagonal faces ABE (corresponding
to the plane i = k& where the u;,; values are computed) and ADE (except for points on the line
AE) corresponding to the j = plane where /; ; are computed. Note that /; (viz. the value of
f(i,4,k) when j = k) is computed by using a division operation (the second line in Eqn 1) while
the computation at all other points in the domain involve a simple multiply-subtract operation.

{13] Quinton, P. The Systematic Design of Systolic Arrays. Tech. Rep. 216, Institut National de
Recherche en Informatique et en Automatique INRIA, July 1983.

[14] Rajopadhye, S.V. Synthesis, Otimization and Verification of Systolic Architectures. PhD
thesis, University of Utah, Salt Lake City, Utah 84112, December 1986.

[15] Rajopadhye, S.V. and Fujimoto, R.M. Systolic array synthesis by static analysis of program
dependencies. In Proceedings, Parallel Architectures and Languages, Europe, Springer Verlag
LNCS No 258, Eindhoven, the Netherlands, June 1987.

[16] Rajopadhye, S.V., Purushothaman, S., and Fujimoto, R.M. On synthesizing systolic arrays
from recurrence equations with linear dependencies. In Proceedings, Sixth Conference on Foun-
dations of Software Technology and Theoretical Computer Science, Springer Verlag, LNCS No
241, New Delhi, India, December 1986.

11

Ftrtriage

Left Half Processors

if C2=1 then
begin
acc := acc / D-3
D2-out := acc
end
elsa begin
acc = acc - D2 = B3
D2-out := p2
and
D3-gut := D3
C2-out := €2
O-out := @

\c5
N
al4
- a2 —
- — att -] <3 p3
w2 - o - 224 0
a32 = 223 o »
— a22 -—
"3 - a34
433 2
— Dt
- 02
x4 D1 : malrin olements
02 : 1 drpondency
03 : j1
€1 :eonivel slgnal (inithalig astion)
C2 : eenirel stgnal (f=4)
C3 : sonlrod sigaal (imk)
® : somirel signal {usipul)
o0 : sovwnwinber o vhore B 00] k1) volue
Central Processors Right Half Processors
if C2=1 then i1 C3=i then
bagin D3-out := acc
D3-out := acc elae begin
D2-out 3= 1 acc := acc - D2 « D3
and D3-out := D3
else begin end
acc := acc - D2 = D3 D2-out := D?
D3-out := D3 C3-out := C3
D2-out := D2 O-out := 0
and
O-out :=

Figure 3: Architecture 2: a(i, 7, k) = [i, j]

12

k4
) 4

v
4

it
M2~
a3,

ald,-

a3t —_
832,- a41,1
433~ "2,
234 ,- 3,-
" -

Diagonal Processors

horiz-out := vert-in
vart-out := vert-in

Interior Processors

if c=1 then

begin
acc := vert-in / horiz-in
bhoriz-out := horiz-in
vert-out := acc

and

alse begin
vert-out := vert~in -

horiz-in » acc

horir-out :« horiz-in

end

Figure 4: Architecture 3: a(i, j, k) = [i,]

13

