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Abstract

The problem of loading (unloading) data into (from) a systolic array is addressed, in the
same context as the synthesis problem. The primary constraint is that all I/O must occur
at boundary processors. It is shown that a simple linear condition imposed on the allocation
function is necessary and sufficient to satisfy this constraint. This may involve augmenting the
domain and introducing new dependencies into the algorithm. We describe how the original
specification is to be augmented, how the new recurrence is to be analyzed, and finally how the
target architecture and the control signals that govern the I/O are to be derived within a single
unified framework.

1 Introduction

Systolic and wavefront arrays [7,8,9,11] are an important class of parallel architectures that
have shown great promise for exploiting the advances in VLSI technology. They consist of regular
interconnections of a large number of very simple processors, and are typically used as back-end pro-
cessors for computation-intensive processing. A number of researchers have studied the problem of
automatically deriving systolic implementations for a given algorithm. The results due to Moldovan,

*To apperar in “VLSI Signal Processing,” 1988
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Figure 1: Naive Systolic Sorter

Fortes, Quinton and others [2,3,12,13,10] (see [15] for an extensive survey) are now well known and
a systematic methodology for systolic array synthesis has emerged. The technique consists of ana-
lyzing the dependencies of an algorithm and mapping the problem domain to a space-time domain,
based on the results of the analysis. Much of the earlier work was applicable to algorithms that
had what is called a uniform dependency structure (such algorithms have been characterized by
Uniform Recurrence Equations, UREs). Recently, we have shown how such architectures can be
synthesized when the initial specification is 2 more general class of algorithms (as defined by Affine
Recurrence Equations, AREs) [15,17). We have also described how to automatically derive control
signals and boundary-processor functionality in the array [14,16].

While all these results have been encouraging, the effort so far has concentrated on the problem
of mapping the initial specification to a regular and local target architecture. If systolic arrays are to
be a viable option in the parallel computing milieu, it is also important to be able to systematically
derive how they should be loaded and unloaded efficiently. As an illustration, consider the linear
systolic array shown in Figure 1. It consists of a cascade of simple processors, each one having
a single input and output, and an internal accumulator (initialized to the smallest possible value,
—oo). At each clock tick, the processor receives an input value, compares it with the contents of the
accumulator, and sends the smaller of the two on its output lines, while storing the larger one in
the accumulator. Thus, by the time n numbers have streamed past the processor, it has identified
the largest number and the output stream contains » — 1 numbers. As a result, an array of n
such processors is capable of sorting n numbers. If the inputs are available at leftmost processor
at ¢ = 0, they are completely scanned by the first processor at ¢ = n. At this time instant, the
second processor has scanned only n — 2 numbers.* The second processor thus takes one more
clock tick to finish its computation (i.e., at ¢ = n + 1), and similarly the k-th processor completes

its computation at t = n + k£ — 1. The input is sorted when the n-th processor finishes, i.e., at
t=2n-1.

"Note that while the first processor begins its computation at ¢ = 0, the second processor sees —co on its input at
t=1, and only at ¢ = 2 does it see its first “meaningful” input.
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Figure 2: Sorting Architecture with Control Signals

Given such an architecture, how should the input data be loaded into the array and how should
the results be unloaded? A naive approach would be to simply “pad” the input with n copies of the
largest possible value, co. As a result, the numbers will be “pushed out” in exactly the sorted order.
Since there are now 2n input values, the k-th processor finishes its computation at t = 2n + k — 1
and thus the n-th processor completes its computation at t = 3n — 1. At this time instant, all
the accumulators contain oo and the sorted numbers have emerged from the rightmost processor.
Thus the total computation time of the architecture is 3n — 1. If the architecture is to be reused
for sorting another set of data, the accumulators must now be initialized to —oo, presumably by
a global control signal that is broadcast to all the processors. Because of this, a new computation
cannot be started before t = 3n.

On the other hand, consider the architecture shown in Figure 2 which is identical to the earlier
one, except that the processors now have a control signal that is propagated through the array. The
control signal indicates to the processor that the current input is the first element of a new set of
data. At every time instant the processor reads the control value and, if it is one it unconditionally
sends the accumulator contents on its output and loads the accumulator from the input value.
Otherwise, the processor performs the normal computation described earlier. In either case, the
control value is delayed by one time unit (by storing it in alocal buffer and making it available at the
output only at the next clock tick). As a result, the array needs no initialization. A straightforward
analysis reveals that while the total computation time is still 3n (actually 3n — 2), a new set of
data can be input into the processor at time ¢ = n. As a result we are able to overlap a number of
“process-level” computations, thus improving the overall performance of the architecture.

Why does the naive approach of padding the input stream with co’s cause the data to be
output correctly? Why does the introduction of control signals into the naive architecture provide
such a dramatic improvement? Is there a general principle governing such behavior? And most
importantly, can such a principle be unified into the techniques for automatic synthesis, in such a
manner that the architectures that are synthesized will have optimal input-output performance?
These are the questions that we address in this paper. Our main thesis is as follows.



We know that the standard synthesis technique consists of mapping a problem domain to a
target (processor-time) domain by using affine transformations. We also know that this mapping
must have an inverse and thus, if the processor and the time instant is known, the index point
in the original domain can be uniquely determined. Given this basic paradigm, we impose the
constraint that all input and output must occur only at the boundary processors.” As a result,
we must investigate the behavior of the boundary processors as a function of time, i.e., a set of
points in the processor-time domain. These points lie in a straight line (a plane for two-dimensional
arrays) and are the image (under the affine transformation) of another line (or plane) in the problem
domain. If this line is not a subset of the problem domain we must augment the domain to include
these points. This may entail a re-analysis of the whole problem, which may now no longer have
uniform dependencies. In the remainder of this paper, we describe how the augmented problem
specification is obtained, how the new (non-uniform) dependencies are pipelined, and finally how
the target architecture is generated (including automatic derivation of the control).

Some early work on the I/O problem has been reported by Engstrom and Cappello [1] where they
describe how to “extend” the data dependencies in a space-time diagram. Hawever, the primary
focus of the work reported there is on specifying systolic designs, and they do not give a formal
treatment of how the dependencies are to be extended. Jagadish et. al. [5] have independently
developed a process called ezpansion of the index-space that is similar to our approach in that,
they also extend the index space in a direction that is parallel to the direction of the iteration space
(analogous to our allocation function). Their approach is applicable to their Regular Iterative
Algorithms, which have a uniform dependency structure and there has been no attempt to indicate
how this process may be automated, what is to be done in the case of a choice of possible directions
along which the expansion may be prformed, etc. The remainder of this paper is organized as
follows. We first describe the overall synthesis methodology and illustrate it by describing how the
architecture of Figure 1 may be derived. In Section 3 we show that if the I/0 is to be performed
only by the boundary processors, then it should be computed on parallel boundaries of the initial
specification. We also give a set of conditions under which the I1/0 is performed by the boundary
processors. These results are illustrated for the sorting array in Section 4.

*In a linear array, we consider only the two end processors as the boundaries. In a planar array the boundary
processors are the edges of the array.



2 Outline of the Methodology

Typically, the initial algorithm is defined by the computation of a function at all points in an
indez-space (viz the integer lattice points in a subset of Euclidean space). An example of such an
algorithm is a simple (loop) program. The range of values over which the loop indices are permitted
to vary define exactly the index-space (which is n-dimensional if there are n nested loops); the body
of the loop represents the function which is computed at all the points in this domain, and thus
serves to define the granularity of the processor. The synthesis problem then reduces to mapping
the original index-space to a space-time domain (i.e., assigning to each point in the original domain
a place and a time). The two parts of the mapping function are referred to as the allocation function
(for the space component) and timing function (time component) respectively. Such a mapping
must satisfy the following constraints.

o The mapping must be bijective i.e., two distinct points in the index-space should be mapped
to two distinct points in the space-time domain. If it were not so, the computations from two
distinct points in the problem domain would be scheduled on the same processor at the same
time, giving rise to a conflict.

e The data dependencies of the original algorithm must be rendered spatially and temporally
local since systolic arrays have nearest neighbor interconnections (spatial locality) and a finite
memory in each processor.*

o These transformed dependencies must be uniform over the whole space-time domain, since
the processors in a systolic array are identical and have similar interconnections indepen-

dent of their physical location in the array. The importance of this requirement has been
demonstrated elsewhere [15].

® The time component must preserve the dependencies of the original index-space, i.e., in order
to schedule the computation at any point, all its arguments must first be evaluated.

Under this framework it is now common to view the initial algorithm as a recurrence equation
i.e., an equation defined as

f(p) = g(flqr), f(@2), .., far))

*Note that the finite memory mandates temporal locality, since the value used by any processor must have been
produced by its neighbor only a finite number of “clock-ticks” ago.

o



where g represents the loop body and pand ¢; ... g; are n-dimensional points. The domain is defined
separately and is usually a convex hull. In much of the earlier work, the recurrence was restricted to
be a Uniform Recurrence Equation (URE). In UREs the difference p— ¢; between a point p and any
other point ¢; on which it depends, was required to be a constant vector independent of p. It is easy
to show that if affine transformations are applied to such an index-space, the transformation yields
another index-space that also has uniform dependencies. This means that the third constraint
mentioned above can be easily satisfied by appropriate affine timing and allocation functions.
Hence, by choosing appropriate affine timing and allocation functions, it can be guaranteed that
the processors will have identical interconnections. A number of earlier researchers have developed
necessary and sufficient conditions for the existence of such timing and allocation functions . They
also showed that the problem of determining such functions reduces to a constraint optimization
problem with a constant number of constraints.

We have argued elsewhere {17] that requiring the dependencies to be uniform at the initial
specification level is unduly restrictive and proposed a more generalized class of recurrences called
Affine Recurrence Equations (AREs). In AREs each of the ¢;%s are affine functions of p, i.e.,
gi = Ajp+ b; where A; is an » X n matrix and b; is an » X 1 vector. We have shown that under
affine transformations the dependencies of AREs remained affine (and hence did not represent a
systolic array). It was therefore necessary to ezplicitly pipeline the dependencies to render them
uniform. A similar idea was discussed by Fortes and Moldovan [3].

The basic idea behind pipelining is as follows. In an ARE, the computation of S at any point p
requires the value of f(g) as one of its arguments (where g = Ap+b). Clearly, the difference p—qis
not a constant vector, but depends on p. To render the dependency uniform let us first try to find
another point p’ that also requires the value of f(g). We want p' to be “close to” p in the sense that
P’ — p is a constant vector independent of p (say p). If such a point exists, and somehow it can be
correctly scheduled (i.e., all its arguments can be made available at p’) then we may also schedule
p as follows. While computing f(p), instead of obtaining the argument f(g) from the point g we
obtain it from p’ (which is just a constant vector away and which has just used the value in its
own computation). To do this we introduce an additional pipelining function f' (p) at all points in
the domain. This function merely passes its arguments on unchanged. Then the value of f(q) is
available at point p from p/, i.e., p+ p (which in turn gets it from p+ 2p and so on). Carrying this
argument to its inductive conclusion, the pipelining function has the following form.



vy _ | f(p+p) iin'p=9
fe) = { fl(p+p) otherwise

The expression 1er = # is a “termination condition” to test if the point p is on a domain bound-
ary (the basis case for the inductive argument above), and the new (uniform) dependency that has
been introduced is p. The pipelining function f' does not impose any additional “computational”
requirements on the processor since at the domain boundary its value is simply the same as f, and
at internal points it is the same as f’ at a neighboring point. It is thus possible to transform the
dependencies of an ARE into uniform ones. The conditions under which such a source-to source
transformation can be performed are discussed elsewhere [17] and a constructive method for ob-
taining the new dependencies is also given. In particular, it has been shown that pipelining may be
performed if the original affine dependency [A,b] satisfies certain properties (which can be verified
by straightforward linear algebra}, and p corresponds to the null space of the matrix A. Once the
dependencies have been made uniform, we may use existing techniques of determining appropriate
timing and allocation functions to derive the target array.

2.1 Derivation of the Sorting Architecture

We shall now briefly illustrate the basic approach by describing how the architecture of Tigure 1
may be systematically derived. The initial initial specification (Figure 3a) corresponds to Knuth’s
network for the bubble sort algorithm [6]. This recurrence is already in the form of a URE, where
the computation performed at each point [i,3] in the triangular domain consists of evaluating two
functions f and f; of two arguments that are obtained from points [i — 1, jland [4,7 —1]. Tt is
described by the recurrence in Equation 1. The input values are required by the points [¢,1], i.e.,
at the horizontal boundary, AB, of the domain, and the output is computed at points [n, ], the
vertical boundary, BC.

A5 = dont care ifi=7
TZ N min(fali-1,), fi(ij—1)) otherwise
oL . (1)
Ay = LI b=
Ina‘x(fZ(3 - l,j),fl(i,j - 1)) otherwise

*Note that the arrows in the figure represent dependencies and are therefore opposite to direction of the data flow.
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Figure 3: Dependencies of the Bubble Sort Algorithm

To derive a systolic architecture from this specification, we must determine affine functions (i, 7)
and a(t, j) (the timing and allocation functions), and it can be easitly shown that (i, )=i+5-1
and a(i,j) = j respectively satisfy the constraints of causality and locality described above. Thus,
t(1,5) is a family of straight lines with a 45-degree slope (as shown in Figure 3a) and a(i,7) is
simply a projection of the domain on the j-axis. This affine transformation is thus described by
the following equation.

z i 01 i 0
=A|l  |4+a= | |+
[t] [J] [1 1] [J] [_1]

Under this mapping, the image of the domain ABC is the triangle A’B/C’ as shown in Figure 3b,
and the mapping completely defines the sorting architecture of Figure 1. For example, since a(i,j) =
a(i—1,7) = j, we know that the j-th processor gets its f, value from the J-th processor itself (i.e.,
from an internal accumulator), and its f; value from the neighboring processor (since a(i,j — 1) =

7 —1). Moreover, for any point [z,1] in the processor-time domain, the corresponding problem
domain point [, 7] can be easily determined by the inverse mapping.
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3 I/0O Constraints and their Relation to Synthesis

As mentioned above, the initial algorithm is an ARE, and an associated (n-dimensional) domain
D. We assume that the domain is a convex hull specified in terms of its bounding hyperplanes.
Moreover, the ARE implicitly defines where the inputs (outputs) are required (computed), usually
in the form of boundary conditions. Let the hyperplanes at which I/0 is required be given by
mp =61, mp=02,...Tp = 0. Let i(p) = ATp+ o be a valid timing function for the ARE. As
has been shown by a number of researchers (see [13], for example), any vector £ may serve as the
direction of projection for the allocation function, if it is not parallel to A”. We have the following
theorem describing the conditions governing the behavior of the array.

Theorem 3.1 The computation of the bounding plane 7 ==0is performed on a set of boundary
processors iff {-‘T cx=0

Due to space constraints we simply provide an outline of the proof. It is clear that since fT ar =0,
all the computations performed on the 1er = @ plane are performed on a hyperplane of dimension
n—2 in the processor domain. Moreover, since convex hulls are closed under affine transformations,
the image of 1er = @ in the space-time domain must be a bounding hyperplane, and hence a
boundary processor. Conversely, given an n — 1 dimensional processor array, the set of processors
on the boundary are defined by an n — 2 dimensional hyperplane. The computations performed
by these processors over time are described by an n — 1 dimensional hyperplane, which must be
a bounding hyperplane of the array’s execution trace (i.e., its space-time behavior). Moreover,
since the transformations induced by the timing and allocation functions must admit an inverse
(otherwise there will be a conflict), and convex hulls are closed under affine transformations, this

hyperplane in the space-time domain must be the image of a bounding hyperplane of the initial
ARE.

Hence, if all I/O is to be performed at boundary processors, then §T cwi=0fori=1...m,

which is a constraint that the allocation function must satisfy. It is clear that any arbitrary domain



(particularly infinite domains.*) will not satisfy this constraint. In such a case, for each boundary
r;-r p = 0; that does not satisfy ET -7; = 0, we determine the vector ] that is perpendicular to £
and is in the plane defined by ¢ and 7;.! We augment the domain of the ARE so that the new
boundary is given by 1r§Tp = 0!, where #! is the smallest integer such that ¥z € D, 7r;fT$ -8 >0
It is easy to show that 1r§T p = 8! is a simple rotation of 7r;~r p = 8;, and hence any point on ‘,'r;r p=20;
may be mapped to Wfrp = @} by an affine transformation. This affine transformation is the new
affine dependency of the augmented domain. We are thus able to augment the original recurrence
to obtain one whose I/Q will occur at the boundaries of the processor array.

4 Loading and Unloading the Sort Array

Let us now return to the sort example. The derivation described in Section 2 does not include
a description of how the input (output) is to be fed in (extracted from) the array. Moreover,
there is no direct way to determine when the processor is to perform the specialized computation
corresponding to the BC boundary. Because A’B’, the image of the input boundary is parallel to
the time axis and passes through z = 1 (the first processor), the inputs are fortuitously consumed
at a single boundary processor. However, the output boundary BC is mapped to B'C’, which means
that the final results are computed in different processors at different times. We also see that the
first output value is computed at point C which is mapped to the point C' = [7,2n — 1] in the z-2
domain.

Because of our requirement that all output should occur at this processor, we must consider the
set of points S = {[n,?] | £ = 2n...3n — 1} which define a straight line parallel to the time axis and
passing through the n-th processor. These are the points at which the n-th processor must (by our
thesis) output the results of the entire array. Thus, at { = 2n + k, the n-th processor must ontput
the result of the (n — k — 1)-th processor. We now determine the inverse image of S, i.e., the points

R=A"(S—a)={ln+kn]|k=0...n—1}

This corresponds to the line of points, CD, as shown in Figure 4a. The new recurrence (Equa-

*In such domains, the only permissible value of ¢ that yields a finite processor array is parallel to the ray of the
domain.

tFor most three dimensional, and all two dimensional domains, this vector is unique, up to scalar multiple, We
choose its sign such that it points out from the domain.
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Figure 4: Augmented and Pipelined Domains for the Bubble Sort Algorithm

tion 2) for the algorithm now involves the computation of f(n +4 - 1,n) for i = 1...7n as follows.

f(i, ) = fa(n,2n — i) (2)

where f; (and fi) are as defined in Equation 1.

Analyzing the above recurrence presents a number of interesting problems. First of all, the
problem domain is not a convez hull, and most of the earlier synthesis techniques are applicable
only to such domains. This can be overcome by forming a convex closure of all the points, i.e.,
the parallelogram ABDC, and introducing still more points in the domain.* This is the complete
domain that we shall analyze. Secondly, we see that the new dependencies are not uniform, since
the point [i,j] depends on [n,2n — i]. The new dependency that has beeen introduced is an affine
dependency (not to be confused with the mapping from the problem to the target domain, which
is also an affine mapping). We have elsewhere studied the synthesis of systolic arrays from affine
recurrences [15,17], and have shown that a systolic array may be synthesized if the dependencies
can be localized by a technique called ezplicit pipelining. When the affine dependency of the sort
specification is pipelined we get a new uniform dependency [-1,-1] as shown in Figure 4b. The
recurrence for the pipelined problem definition is as follows.

*It might that we are making the domain unnecessarily large, but we shall see that these additional points are
exactly those required for the next step.
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Figure 5: Target Domain for the Pipelined Algorithm

fG-1,7-1) ifi>j
[fl(iaj)$ f2(i33)] otherwise

where as before f; and f, are defined as in Equation 1.

The third interesting problem with the (now uniform) sort recurrence is that the domain of
computation now consists of two subdomains, each one a convex hull having different dependency
structure. In addition, the computations performed in the two subdomains are completely different.
In the region ABC, it consists of the old min-max function, while in the region BDC, the computa-
tion consists of simply the identity function since f(4,7) is equal to f(i—=1,7—1). Such composite
recurrences are still under investigation by this author and others [4] and a general technique for
determining appropriate timing and allocation functions for them has not yet been determined.
However, for the sort example, we see that the old timing and allocation functions Wi, j)=1+7—-1
and a(i,j) = j are still valid, and this yields the processor-time behavior as shown in Figure 5.

However, merely determining the timing and allocation functions is not enough. We see from
the processor-time image of the computation that each processor operates in three distinct phases.
As long as the time value does not “cross” the B’C’ line, the processor must compute f; and f;
(the third line of Equation 3); at the (subdomain) boundary B/C' it computes the second line of
Equation 3 and afterwards it must compute the first line. Of these three phases, only the first and
the third are significant, since the second one is merely a transition between the other two and

12
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lasts for exactly one time instant. Secondly, as we have mentioned earlier, the processor must be
somehow “informed” when to perform the computations on each of the domain boundaries A'C’
and B'D’. We have shown elsewhere {16] that for the case when we have a single homogeneous
domain of computation this can be achieved by means of control signals, provided the boundaries
where the transition occurs is a plane (a straight line in two dimensions). In the full paper we prove
that these results can be extended to the case of a composite domain provided each subdomain is
also a convex hull. This results in the architecture of Figure 6.

5 Conclusions

We have addressed the problem of loading and unloading data into/from a systolic array. It
is important that the problem has been addressed in the context of synthesizing such arrays from
algorithmic specifications. As a result, all the architectures that are derived will satisfly an important
performance criterion, namely that all I/O will occur only at boundary processors. We have
presented conditions that must be satisfied by the transformations that are used to derive the
architectures. These conditions are simple linear properties of the boundary equations with respect
to the mapping (allocation) function. However, they may not always hold, and in such cases we have
given a systematic procedure for augmenting the problem specification. An architecture derived
from this augmented domain will have all I/O at boundary processors. Hence, when selecting
a target implementation using optimality criteria, these arrays will reflect the increased cost of

“initializing” the processors. We are currently in the process of incorporating these results in a
design automation system.
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