EXODOS

Oregon Experimental
Distributed Operating System

Jeff Eaton
Virginia Lo
Bill Nitzberg
George Rankin
Mark VandeWettering
CIS-TR-88-07
June 11, 1988

exodos@cs.uoregon.edu

Abstract

EXODOS is a distributed operating system we are developing at the
University of Oregon. Our goal is to implement a portable, easily mod-
ifiable testbed for research in distributed operating systems. The EXO-
DOS kernel provides mechanisms to support basic functionality with-
out mandating policies, for it is these policies that we wish to study.
The EXODOS kernel is replicated on every node and supports local
interprocess communication, primitive memory management, and ba-
sic process management. Higher level operating systems functions are
provided by server processes which interact with the EXQDOS kernel
through a unified message-passing interface. By elevating these func-
tions to the server level, EXODOS provides a convenient testbed for
the study of policy-level algorithms for scheduling, process migration,
and virtual shared memory.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF QOREGON

1 Introduction

EXODOS is a distributed operating system being developed at the Univer-
sity of Oregon to support research in the design of policy-level algorithms
for scheduling, process migration, and virtual shared memory. Most research
in the areas of scheduling, load balancing, and process migration, have been
conducted through simulation and performance analysis on a uniprocessor
machine. For the most part, these studies have focused entirely on policy is-
sues and have consciously ignored implementation concerns. EXODOS arose
from the desire to augment this work through the design and testing of
policy-level algorithms on a functioning distributed operating system. Ex-
perimentation through implementation will yield an understanding of imple-
mentation factors that affect policy decisions and the complex interactions
that exists between policy and mechanism. EXODOS will also enable us to
empirically test scheduling and load balancing algorithms that have previ-
ously been validated in the sheltered environment of simulation.

EXODOS consists of a simple, minimal kernel, replicated on each node,
and a number of server processes distributed among the nodes of the mul-
ticomputer network. The kernel supports local message-passing, physical
memory management, and basic process management. Other operating sys-
tem functions are carried out by servers: non-local message passing, virtual
memory, scheduling, process migration, device drivers, file management, and
protection. EXODOS utilizes message-passing as the fundamental mecha-
nism for user and server processes to request kernel services, for kernel-
to-kernel and kernel-to-server communication, and for general interprocess
communication. Another fundamental mechanism used in EXODOS is excep-
tion handling: specific conditions give rise to faults which are detected by
the kernel and directed to the appropriate exception handler which in most
cases is a server process. EXODOS faults include communication faults and
scheduling faults as well as traditional page faults. The design of EXODOS
was guided strongly by the principles of simplicity, uniformity, orthogonal-
ity, and modularity.

In this section, we discuss EXODOS research goals, design goals, and
the history and current status of EXODOS. Sections 2 through 4 describe
EXODOS interprocess communication, memory management, and process
management in detail. This technical report will evolve dynamically along
with EXODOS.

1.1 EXODOS Research Goals

EXODOS was designed to support a number of research projects in the area
of distributed operating system design. A distributed system provides relia-
bility, resource sharing, and parallelism in a convenient, transparent environ-
ment. While existing distributed systems have achieved much of their capac-
ity for information sharing through distributed file systems and performance-
efficient message-passing, the use of distributed systems for sharing of pro-
cessing power is still an open area of research. Our research focuses on means
to achieve the full power of compute sharing in distributed systems through
load sharing and load balancing and through the use of distributed systems
for (large-grained) parallel processing. More specifically, we are interested
in policy-level algorithms to guide and provide dynamic process migration
and virtual shared memory in distributed systems. EXODOS was designed to
serve as an experimental laboratory for the testing of algorithms in these do-
mains. Projects that are currently planned for experimentation on EXODOS
are described briefly below:

* Process Migration One mechanism for achieving improved perfor-
mance in distributed computing systems is dynamic process migration,
the movement of processes from one node to another in response to
dynamic changes in system loads or due to the dynamic behavior of
distributed computations. We are engaged in an empirical study of
existing distributed computations to determine what kinds of process
traits are important for migration decisions, the difficulty and cost of
ascertaining these traits, and the relation between static predictions of
process behavior and the actual dynamic characteristics exhibited at
execution time. Knowledge about these process traits will be used in
the design of migration algorithms to decide which process to migrate
and to guide migration based on both static and dynamic interprocess
communication patterns.

» Distributed Virtual Shared Memory! Experience with distributed
computations indicates that the paradigm of shared memory is some-
times more appropriate than that of message-passing. It has been
demonstrated by researchers in this area that such a system can be im-
plemented efficiently and that parallel programs run on such a system

! Distributed virtual shared memory provides the abstraction of physical shared memory
on locsely coupled processors.

yield linear and sometimes super-linear speedup [Li86]! We are inves-
tigating extensions to this work in the areas of prepaging algorithms
and memory coherence algorithms for virtual shared memory systems,
and policies and mechanisms for process migration in a virtual shared
memory system.

s Scheduling Process migration can be subsumed into the more general
notion of process scheduling by considering the dimension of space as
well as that of time in the scheduling model. Thus, a scheduling server
has access to scheduling queues which may be located on many of the
nodes in the distributed system. We are interested in the integration of
process migration and process scheduling and in determining whether
an integrated approach offers benefits over the traditional treatment
of scheduling and migration as disjoint operations.

While EXODOS was designed to support the research projects outlined
above, we recognize that its development will yield insights in other areas,
particularly in the design and implementation of distributed operating sys-
tems. In particular, we note that EXODOQS is unique in assigning the func-
tions of nonlocal interprocess communication and process scheduling and
migration to the server level. We will be investigating the performance im-
plications of this design decision and some interesting innovations that result
from this arrangement. For example, several different memory management
servers can co-exist, each providing its unique memory mapping scheme.
Furthermore, a single process can utilize more than one type of memory
server for distinct portions of its address space. This flexibility also occurs
in EXODOS interprocess communication and scheduling, and is discussed in
more detail in sections 2-4.

1.2 EXODOS Design Goals

The underlying goal behind EXODOS is to create a distributed operating
system for a multi-computer network to serve as a testbed for research in
the areas of scheduling, process migration, and virtual shared memory. This
goal has focused EXODOS’ development on the areas of interprocess com-
munication, memory management, and process management. Other areas of
distributed operating system management such as fault tolerance, the file
system, and security have either been ignored or minimally addressed. In
addition, the underlying goal to build an experimental testbed has led us
to a structure for EXODOS which is strongly guided by design principles

which promote testing of many policy-level algorithms with a minimum of
software development overhead. In this section, we describe the design prin-
ciples which guided EXODOS development: simplicity, minimality, regularity,
orthogonality, and modularity, In addition, we discuss areas we deliberately
chose not to emphasize for EXODOS.

e Minimality The EXODOS kernel should be simple and minimal. The
kernel supports local message-passing, physical memory management,
and basic process management. These functions represent the minimal
support needed for experimentation with a variety of policies in the
areas of our research interests. Specific policies are implemented at the
server level, decreasing the amount of time needed to develop, alter,
and test portions of the operating system.

¢ Regularity EXODOS is regular and consistent. EXODOS supports
message passing as the lingua franca for process-to-kernel commu-
nication, kernel-to-kernel, kernel-to-server, and for process-to-process
communication. Exceptional conditions cause a fault to occur and the
appropriate action is taken by the kernel and/or servers. For exam-
ple, because the kernel supports only local interprocess communica-
tion, messages sent to a remote process result in a communication
Jaull, causing the kernel to send a message to the sending process’
IPC server.

e Orthogonality The basic objects in EXODOS are processes, pages,
and messages. The fundamental operations are creation, termination,
transfer (process migration, paging across the network, and sending
messages) and access or use (process scheduling, mapping of pages,
and message receipt). In a virtual shared memory system, this orthog-
onality enables use to provide process migration and transfer of large
messages through the page fault handling mechanism.

» Modularity Assignment of most operating system functions to the
server level allows easy removal and replacement of modules. EXODOS
provides a “software backplane” for experimentation with a variety of
servers within each domain of interest. For example, load balancing
servers using a sender-initiated protocol could be replaced by servers
using a receiver-initiated protocol without rebooting the system! In
addition, more than one protocol could be active simultaneously by
having one subset of nodes utilize the servers providing sender-initiated

load balancing, and a different subset of nodes using servers providing
receiver-initiated protocol.

It is also important to discuss what EXODOS is not. While it is im-
perative that EXODOS provide efficient local IPC because of the use of
message-passing for kernel access, we are willing to trade some degree of
efficiency for non-local IPC in return for the flexibility of handling it at the
server level. We have also accepted performance tradeoffs because EXODOS
is not intended to be a production level system. Finally, we have deliber-
ately de-emphasized protection, the file system, and naming because they
have been shown to be conveniently handled at the server level in other
systems.

1.3 History

Our decision to design a new distributed operating system resulted from
our study of a number of well-known existing distributed operating systems
including V [Che88], Mach [TR87)], Amoeba [TM86], Charlotte [FSK*86],
Sprite [NWO88], Eden [ABLN85], Accent [RR81], and Locus [PW85]. We
considered modifying an existing system for our research as the most time-
effective way to build our desired testbed environment. However, the follow-
ing factors led us to design and build EXODOS:

» Most of the above distributed operating systems are too big and com-
plex for us to conveniently modify. These systems are in active use
for normal computing as well as for research. CMU’s Mach, for exam-
ple, includes much of the Berkeley UNIX 4.3 kernel and contains over
100,000 lines of code., The size and complexity of a full-blown kernel
implies a major investment of time and resources. Because we did not
wish to provide a “complete” operating system, we were willing to ig-
nore or de-emphasize functions such as fault tolerance and protection
and we were willing to trade off much of the flexibility and conve-
nience offered by these complex operating systems in order to better
understand the operating system as a whole.

® The design of these existing operating systems is not well-suited for our
specific research goals. Most of the above systems do not treat process
management, interprocess communication, and memory management
orthogonally, a design decision we found to be necessary for a clear
study of the issues of process migration and virtual shared memory.

For example, in V only processes that are members of the same team
can share memory and they must migrate as a group.

EXODOS is written in C for Tektronix 4404 graphics workstations and
will be ported to Sun 3/60 workstations.

2 Interprocess communication

Interprocess communication is the cornerstone of EXODOS. By virtue of its
client/server design, all services in EXODOS are provided via the message
passing mechanism. This gives EXODOS a strong unifying design element
that is absent in other systems, but also poses some special challenges. IPC
must be efficient because every service is based upon it. EXODOS builds a
simple and efficient basic IPC mechanism with the ability to use servers for
more powerful abstractions.

2.1 Goals

In addition to the overall EXODOS goals, the IPC primitives are expected to
be transparent, locally efficient, reasonably efficient for remote traffic, and
network-independent.

¢ Transparency Sending a message to a remote process should appear
to be the same as sending to a local process. This is essential because
EXODOS supports migration: there is no guarantee that any two pro-
cesses will continue to reside on the same node,

o Efficient Local Messages All services are implemented with mes-
sage passing. The overhead of local message-passing should not signif-
icantly lengthen the response time of system services, when compared
to procedure call.

¢ Reasonable Costs for Remote Messages Process migration and
distributed problem solving are important EXODOS goals, so the cost
of remote IPC shouldn’t be prohibitive. The efficiency of remote IPC
is secondary, however, to local IPC efficiency.

s Network Independence Reliable network transmission is a difficult
task that should be implemented by server processes, which are easier
to build and debug than kernels. Allowing multiple servers should allow
support for multiple inter-machine protocols.

2.2 Kernel Primitives for IPC

The EXODOS kernel provides primitives for the transfer of fixed-sized, un-
typed messages between local processes. Messages are unbuffered and block-
ing; the sender blocks until it receives a reply. This mechanism is similar to
remote procedure call [BN84]. Additional functions, such as typed, non-
local, or variable-length messages, will be provided at a higher level by IPC
Servers.

Only the message-passing primitives themselves are implemented as sys-
tem calls to a local kernel; all others are implemented as messages to any
kernel, either local or remote.

SEND Sends a fixed-length message to the specified process-id. The sending
process blocks until some process replies to the message (see FORWARD).
The sender may not be migrated while it is awaiting a reply.

RECEIVE The process executing the RECEIVE blocks until a message is ready
for it. The receiver must either REPLY to the message or FORWARD it
before it can execute another RECEIVE. Processes may be migrated
while blocked for a RECEIVE.

REPLY Unblocks the sending process and gives it the fixed-length reply mes-
sage. If the sender has been killed while awaiting a reply (nothing else
may happen to it), the reply will fail.

ERROR_REPLY Allows the receiver to force the sender’s SEND to return an
error code.

FORWARD This call allows a process to transparently forward messages to
other processes. Neither the original sender or the new receiver know
that the message has been forwarded. This call does not block.

2.3 IPC servers

When the destination of a message is not a local process, the kernel gener-
ates a send faull. This causes the message to be forwarded to the process’
designated IPC server.? llow the message is delivered, and who it is really
delivered to, is a decision left to the server. This allows multicast and group

2If a process’ IPC server is not local, the message is passed to the kernel’s IPC server—
which must be local.

messages to be implemented: the server may interpret the process ID as a
group identifier and then send the message to each group member.

We now present an example of how non-local IPC may be implemented.
This example is very simplified: the server blocks until it gets a reply from
the remote process. In actual practice, the IPC servers would invoke child
processes to do their message-passing, and would communicate with pro-
cesses that control the network hardware. Such a real design would rely on
an inexpensive process creation mechanism, which is discussed in section
four.

2.4 An Example: Non-local Communication

(3)

(7)
Send B
Reply ol N
IPC IPC
Server Seirver
Process A ‘Ef) . 8 \
Reply Reply IPC B
r \ [v (5)
(1) Send B
Send B Send B \ Process
N (4) B
\ (2)
Fault
\
)
\
C Kernel A)
Node A Node B

1. Process A sends a message to process B. Process B is not local, so an
IPC fault happens.

2. The kernel doesn’t know process B, so it forwards the message to A’s
IPC server.

3. The IPC server determines B’s location, and sends the message across
the network to IPC server B.

4. IPC server B sends the message to process B.
5. Process B replies. The reply is locally delivered to IPC server B.
6. The reply is sent back across the network to A’s IPC server.

7. A’s server replies to process A, and A continues.
9

Figure 1: Non-local Communication

2.5 TIPC design decisions

Unlike other distributed systems, the EXODOS kernel supports only small,
fixed-length messages. Not only does this simplify the kernel design, but it
allows policy decisions to be made at a higher level. We noticed that the im-
plementation of arbitrarily large message transfers fit a more general shared
memory design, especially when efficient copy-on-write implementations are
considered. Since it is easy to see how distributed shared memory (or multi-
ple SENDs) can be used to implement this type of IPC, EXODOS leaves the
problem to the higher-level servers.

We decided to leave the questions of security and reliability to the IPC
servers. The kernel only ensures reliable communication between two pro-
cesses on the same node; it is up to the client processes to select an IPC
server that provides the correct level of inter-network reliability for their
needs. Security is handled in the same manner. EXODOS does not provide
a from field for message authentication because the mechanism would not
work when two processes were remote. Instead, security must be provided
at a higher level with IPC servers. Whether or not this is possible may prove
to be an interesting research question.

3 Memory Management

The main goal of EXODOS memory management is to provide support for
many diverse memory abstractions. It must be possible to design, test, and
utilize new memory management ideas with relative ease. In particular, EX-
ODOS needs to be powerful enough to implement and study the effects of
distributed virtual shared memory.

Memory management in EXODOS is supported by servers and the un-
derlying memory management functions of the EXODOS kernel. The kernel
provides access to two basic resources: a client’s virtual address space and
the physical memory of the kernel. The kernel handles page faults by notify-
ing the memory server in charge of the fault address. The server will repair
the fault, and then the client will continue.

3.1 Memory Servers

The real work of EXODOS memory management is done outside the kernel
by servers. Memory management is accomplished through the combined ac-
tivities of one or more memory servers and the kernel on which the client

10

process resides. When a page fault occurs, the kernel sends a message to
the server assigned to manage the missing page. The server will then use
its particular memory abstraction to load the page onto the client’s node.
Specifically, the server can invoke kernel primitives to transfer responsibil-
ity for a process’s virtual address space (SETVIRTUALRANGE), get a node’s
physical memory (GETPAGE and FREEPAGE), and to map the virtual pages to
physical pages (HAPPAGE and UNMAPPAGE.)

Under EXODOS, a user application process (the client) utilizes the ser-
vices of memory servers that implement the desired memory abstraction.
In a demand paged memory management scheme, for example, the memory
server might load pages from a fileserver. For virtual shared memory, the
missing page might be loaded from the physical memory of another node.
There is no restriction on the location of the server which manages a given
virtual page.

The EXODOS kernel enables processes to share memory conveniently and
efficiently. One server obtains ownership of 2 set of physical pages through
the GETPAGE primitive. The page map of each of the processes sharing these
pages all point to this server. If a process resides on the node whose physical
memory contains the shared pages, the corresponding page map entries will
indicate the correct mapping. If a process resides on a different node, the
page map entry will be invalid and a page fault will occur when the missing
page is referenced. As a result, the appropriate server will be contacted to
get the page.

EXODOS memory management also provides primitives to facilitate mi-
gration of processes. Memory can be transferred between nodes at any time
by memory servers talking to network servers. In a virtual shared mem-
ory system, the copying could be initiated explicitly through pre-paging or
implicitly (dynamically) as the page faults occur on the new node. After
a process migrates, it is usually more efficient to use a server residing on
the destination node. SETVIRTUALRANGE transfers control over of the client’s
virtual pages from the calling server to the target server.

3.2 Kernel Primitives for Memory Management

SETVIRTUALRANGE Transfers control over the virtual pages of a client process
to another server process.

GETVIRTUALRANGE Returns a list of virtual pages that server processes have
control over for the client process.

11

GETPAGE Gives a server exclusive mapping control over a physical page of
memory.

FREEPAGE Releases exclusive mapping control over a physical page.

MAPPAGE Maps a virtual page of a client to a physical page of a server, with
or without access restrictions.

UNMAPPAGE Removes the mapping of a virtual page of a client process.

SETPAGEOWNER Transfers mapping control of a physical page to another
§erver process.

GETPAGEINFO Returns information about a physical page.

12

3.3 An Example: Distributed Virtual Shared Memory

Server M

Tranlation Table

pgd location ;
0 | Node A:1000 .()
1| Node A:1000 P\ Continue
2 | Node B: 2000 Eault (2)

UnMapPage \

Fault (1)
Copy & Mappage
#(3) Py ppag
Kernel A Kernel B
P1 Translation Table P2 Translation Table
pg#I location pg#I location
0| 1000 0| Server M
1| 1001 1| Server M
2| Server M 2| 2000
Node A Node B

1. Process P2 on Node B tries to access page 0 of its address space. This
causes a page fault.

2. Kernel B translates the page fault into an exception message and sends
it to Memory Server M.

3. The server invalidates the shared page in process P1’s translation ta-
ble.

4. It then copies the physical page onto Node B, and maps it into P2’s
address space.

5. Server M resumes process P2.

Figure 2: Distributed Virtual Shared Memory
13

4 Process Management

Process management is the creation, termination, and scheduling of pro-
cesses in the operating system. EXODOS is unique because it introduces the
idea of scheduling at the server level, by means of the exception mechanism.

4.1 Goals

The main goals of EXODOS process management are to support light-weight
processes, diverse scheduling policies, and preemptive process migration.

o Light-weight Processes The distinction made in other operating
systems between processes and threads is unnatural, and only made
for efficiency. An EXODQS light-weight process is a combination of a
traditional “heavy-weight” process with the potential efficiency of a
thread.?

* Diverse Policies As a research oriented operating system, EXODOS
must support the development and testing of new scheduling policies.
It must be relatively easy to develop a new scheduler, and install and
test it. In addition, as EXODOS is a distributed operating system,
support for remote scheduling is necessary.

¢ Preemptive Migration One important motivation for EXODOS was
to provide a base for investigating process migration. Process mi-
gration has been an area of recent interest (Amoeba [TM86], Emer-
ald [JLHB88], Charlotte [ACF86], and V [Che88].) EXODQS provides
primitives for implementing both user-directed and high-level, system-
directed process migration.

4.2 Process Scheduling

The kernel provides two independent process management mechanisms: one
for process scheduling, and one for process creation and termination (also
used for migration). The kernel provides a rudimentary priority queue based
scheduling mechanism. Every process has three scheduling parameters: pri-
ority, CPU allocation, and quantum. The priority determines which process
will run; the CPU allocation is the total amount of CPU time a process will

3 A separate mechanism is used to determine when light-weight processes share their
address space. When this is the case, the kernel will be able to context switch between
them with very little overhead.

14

get; and the quantum is the time slice for a process. The kernel scheduler
executes the following loop:

Let P be the head of the process queue
Run P for at most guantum time units
Decrement the CPU allocation by the execution time
Put P back into the process queue,
behind processes with the same priority

If a process blocks or runs out of CPU allocation, it is removed from the
process quene until it is unblocked or given more CPU allocation. Notice that
the kernel scheduler does not recompute priorities, but will run processes
with the same priority in a round robin fashion.

High level scheduling is handled through the exception mechanism in
EXODOS. Just as a process can have a memory fault or an IPC fault, it can
also have a scheduling fault. Scheduling faults are generated when a process
is: installed, terminated, blocked sending, blocked receiving, unblocked, and
out of CPU allocation. For efficiency, each of these faults can be indepen-
dently disabled.

Every process has an associated scheduling fault handler. This scheduling
server is notified (via standard exception messages) whenever the state of a
client process changes.

The scheduling server can change priorities, migrate processes, or give
more CPU allocation to processes, implementing any policy desired. Using
the exception mechanism for high level scheduling allows an EXODOS system
to have multiple schedulers per node, remote schedulers, centralized sched-
ulers, and fully distributed schedulers. In addition, as the scheduling server
is determined on a per process basis, new servers can be easily installed and
debugged on-the-fly.

In addition to the fault messages, scheduling servers can use schedul-
ing assistants to obtain information. An example of a scheduling assistant
is a process that sends a message to the scheduler every time it is run.
By installing this process with priority PRI, the scheduler will be notified
whenever all processes with priority greater than PRI are inactive.

The kernel scheduling mechanism is one place where minimality and sim-
plicity were overshadowed by the need for efficiency. The minimal approach
would be to have the process queue only exist in the scheduling server, not
in the kernel. The only kernel scheduling primitive would be to execute a
process for a particular amount of time (a quantum). A typical server would
perform the scheduling loop above, however,

15

Run P for at mest quantum time units

would be a kernel call. This method would have been too inefficient, and suf-
fered from a serious drawback: there was no way of scheduling the scheduling
server. To avoid these problems, EXODOS provides rudimentary support for
scheduling in the kernel.

4.3 Process Packages

An EXCDOS process is defined by a process package. A process package con-
tains a snapshot of the kernel process control structure. It includes a globally
unique process ID, user ID, a list of fault handler IDs, and a few miscella-
neous parameters including a machine dependent process control block. Pro-
cesses are created using the INSTALL kernel call, passing a process package as
a parameter, and destroyed using the TERMINATE call. Process packages can
be created with appropriate parameters, or by using the PACKAGE kernel call
on an existing process. Migration is accomplished by PACKAGEing a process,
SENDing it to a remote node, INSTALLing the package on the remote node,
and TERMINATEing the process locally.

Migration is not the only use of the package facility. Checkpointing can
be accomplished by obtaining the process package of a running process and
saving it to secondary storage. A fork system call can be simulated by pack-
aging a process and installing it with a new process ID. Packages also have
uses in debugging, as they contain, among other things, the program counter,
stack pointer, and other state information of the process.

4.4 Kernel Primitives for Process Management

INSTALL Creates a new process by installing a process package. The new
process is created in the SUSPENDed state, and must be RESUMEd before
it will start executing,.

TERMINATE Kills a process.

PACKAGE Returns the process package of a process. The process must be
SUSPENDed before it can be PACKAGEd.

SUSPEND Stops a process from executing. A process cannot be SUSPENDed
if it is awaiting a REPLY message. This prevents a process from being
PACKAGEd, which would make it unable to receive the reply message.

RESUME Allows a SUSPENDed process to continue executing.

16

SET.PRIORITY Changes the priority of a process. There is also a GET.PRIORITY
call.

SET_CPUALLOC Changes the amount of CPU time allocated to a process.
After a process executes for its CPU allocation, it is automatically
SUSPENDed. There is also a GET-CPUALLOC which returns the amount
of allocation remaining for a process.

SET.QUANTUM Changes the size of a process’s time slice. There is also a
GET_QUANTUM call.

17

4.5 An Example: Migration

CPU Alloc = 0

Scheduling
Servar
(2) (5)

Package Big Resume Big

{4)

Terminate Big
Install Big

Node A Node B

1. Process BIG runs out of CPU allocation, and a fault message is sent
to BIG's scheduling server.

2. The scheduling server determines that BIG is a good candidate for
migration, and locates a suitable remote node. It then PACKAGEs BIG.

3. The server INSTALLs BIG on the remote node. (Now there are two
BIG processes, one on each node.)

4. The server TERMINATEs the local BIG.

5. Finally, the server RESUMEs the remote copy of BIG, and the migration
is complete.

Figure 3: Migration Example

18

5 Summary

_§0 EXODOS;

References

[ABLN85] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe. The

[ACFs6]

[BN84]

[Che88]

[FSK*86)

[JLHBSS]

[Li86)

Eden system: a technical review. JEEE Transactions on Software
FEngineering, SE-11(1):43-58, January 1985.

Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel. Pro-
cesses Migrate in Charlotte. Technical Report 655, University of
Wisconsin Dept. of Computer Science, August 1986.

A. Birrel and B. Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39-59, February
1984,

D. Cheriton. The V distributed system. CACM, 31(3):314-333,
March 1988.

R. A. Finkel, M. L. Scott, W. K. Kalsow, Yeshayahu Artsy, Hung-
Yang Chang, Prasun Dewan, Aaron J. Gordon, Bryan Rosen-
burg, Marvin H. Solomon, and Cui-Qing Yang. Erperience with
Charlotte: Simplicity versus Function in a Distributed Operating
System. Technical Report 653, University of Wisconsin Dept. of
Computer Science, July 1986.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mo-
bility in the Emerald system. ACM Transactions on Computer
Systems, 6(1):109-133, February 1988.

K. Li. Shared Virtual Memory on Loosely Coupled Multiproces-
sors. PhD thesis, Yale University Dept. of Computer Science,
September 1986.

19

[NWO088] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the

[PW85]

[RRS1

[TM86]

[TR87]

Sprite Network File System. ACM Transactions on Computer
Systems, 6(1):134-154, February 1988.

G. J. Popek and B. J. Walker. The LOCUS Distributed System
Architecture. MIT Press, 1985.

R. F. Rashid and G. G. Robertson. Accent: a communication
oriented network operating system kernel. In Proceedings 8th
Symposium on Operating System Principles, pages 64-75, De-
cember 1981.

A. S. Tanenbaum and S. J. Mullender. An overview of the
Amoeba Distributed Operating System. Parallel Computers and
Computation, 1986.

A. Tevanian and R. F. Rashid. MACH: A Basis for Future
UNIX Development. Technical Report, Carnegie Mellon Uni-
versity Dept. of Computer Science, June 1987.

20

