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Abstract

HOOPS is an object-oriented Prolog. Procedures that manipulate objects are
implemented by object clatses, which have two heads: one to match the pattern of a
procedure call, and one to match the pattern of an object. HOOPS has a primitive
abstraction facility that allows object definitions to be grouped into classes, but
inheritance and other interactions among classes must be explicitly programmed.

This manual describes the syntax of class declarations and other HOOPS lan-

guage constructs. It includes many example programs, and instructions for loading
and executing programs.
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1 Introduction

HOOPS is a logic programming language with facilities for object oriented programming,.
Objects are modeled by object literals, and transformed by calls to object clauses, as
described in {3]. HOOPS introduces the class concept to Prolog, allowing object clauses
to be grouped together so that only procedures inside the class can directly access and
modify objects of the class.

This paper is a programmer’s manual, with instructions for writing and then exe-
cuting programs. There is a complete description of the syntax and semantics of class
definitions, a discussion of the implementation technique and the restrictions it intro-
duces, and there are many example programs.

The main goal for the HOOPS implementation presented here is to allow exper-
imentation with the object clause technique for modeling mutable objects in a logic
programming language. This goal lead to the following decisions about the structure of
the language and implementation:

¢ HOOPS is a proper superset of Prolog, implemented on top of SICStus Prolog [1].
Prolog programs can be consulted or compiled and then executed normally, with
no overhead.

e Any new syntax is consistent with the Edinburgh Prolog style. Keywords are
actually functors of terms, declared to be prefix operators so parentheses around
subsequent arguments are optional.

o Objects are stored in the “internal database,” using the built-in record procedure.
This decision means there are some restrictions on the shape of objects and the
level of nondeterminism in methods. The internal database route was taken be-

cause it is reasonably efficient, and was easiest for implementing this prototypical
version of HOOPS.

These decisions lead to some awkward tradeoffs and inconsistencies in language design,
but they are not too hard to live with. This implementation of HOOPS is a prototype,
and the goal is to gain experience with this style of object-oriented programming before
moving on to the next implementation. Most of the inconsistencies can be worked
around without too much effort.

The next section of the manual is a review of object literals and object clauses,
and defines the terms object, method, and class for this language. Section 3 is where
the HOOPS language is introduced, with its syntax for class definitions and rules for
object manipulation. This section also has a discussion of programming issues and the
restrictions on objects based on the chosen implementation. Section 4 has instructions
for loading and executing HOOPS programs. Six example programs are listed and



described in section 5. Finally, details of how HOOPS is translated into Prolog are
given in section 6.

First time readers can get a sense of the language by reading all but sections 4 and 6.
Before writing a program, however, it is important to read both of those sections.

It is assumed that readers are competent Prolog programmers, but not necessarily
familiar with SICStus Prolog. SICStus is very similar to Quintus Prolog, and uses the
familiar Edinburgh syntax. Except for some of the sections on implementation, readers
do not have to be familiar with constructs that are unique to SICStus; knowledge of
Prolog in general is sufficient.

This manual describes a few things that have not yet been implemented. For the
most part, these are grouped into sections which have titles that are marked with the
symbol 7 (does not exist).

2 Object clauses

Prolog programs consist of a collection of Horn clauses, of the form

Head :- Goal, ... Goaly,.

where Goal, ... Goal, is the body of the clause. The body may be empty, in which
case the clause is written without the implication symbol:

Head.

The head and each goal in the body of the clause are literals, which have a functor
followed optionally by a set of arguments enclosed in parentheses:

foo(X,Y,a).

In Prolog, each literal in the body corresponds to a procedure call. The functor
of the literal is the name of the procedure, and the arguments of the literal are the
arguments passed to the procedure. The head of a clause is the entry point into a
procedure. At runtime, in order to carry out a procedure call, the system finds a clause
with a head that matches the call, and then executes the operations in the body of the
selected clause.

In HOOPS, we will use literals to represent objects as well as procedures. Certain
literals in the body of a clause will mean “create an object of the form foo(1,2)” instead
of “make the procedure call foo(1,2)." The arguments of such a literal will represent the
state of the object. Also, some literals in the head of a clause will describe the pattern of
an object that must exist before the clause can be invoked in a procedure call. Literals
that represent object states are called object literals, and those that represent procedure
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There are several interesting things to note about these clauses:

o If there are no other clauses in the procedure for pop, a call could fail for one of
two reasons: either there is no stack, or there is a stack but it is empty. In the
latter case, the existing stack object would be represented by a literal stack([] ),
and the empty list parameter of this literal does not match the list parameter in
the head of the clause. When a call fails, the existing stack is not modified.

¢ In the clause for top, the new object is the same as the old object. One might be
tempted to omit the object literal in the body of this clause, since the new state
is the same as the old state, but leaving out the new state in an object clause
means something altogether different: if there is no new state, the procedure call
destroys the object.

* In keeping with the logic programming paradigm, values are returned from proce-
dure calls through unification. In both pop and top, if the parameter of the call is
an unbound variable, the result of the procedure call is to unify that variable with
the current top of the stack, in addition to creating the next stack state. Some
implications of using unification to transmit information to and from objects will
be discussed in greater detail later.

In Prolog, a procedure is a collection of clauses where the head literals all have the
same functor (name) and the same number of arguments. A similar definition applies to
a collection of object clauses. A set of clauses in which the object literals in the heads
all have the same functor and arity is called a class. In the next section, the definition
of a class will be extended a bit, to allow local procedures and other operations. The
idea is to implement “abstraction barriers” in HOOPS, so that the only way to create
and modify objects is by calling a procedure of the class that defines the object,

Within a class, the clauses that have procedure literals with the same name and
arity are a method. A method is a procedure that is used to access and possibly modify
an object. We will sometimes use terminology of object oriented programming, and say
“send message Mto object O” instead of “method M is called with object O0.”

A class can also be used as a template that describes the common features of a set
of objects. Each element of such a set is an instance of the class. What this means
is that there may be a number of different object literals with the same functor, but
presumably each instance will have different arguments. For example, we may want
to write a program that uses two or more stacks. The class for stacks would contain
methods that describe how to push and pop items from stacks in general. At runtime,
there will be different instances of object literals to represent the different instances of
stacks that exist as the program executes. Any instance can be used in a method call, as
long as it matches the form of the object literal in the head of the method. Techniques
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for differentiating among instances of the same class (so that a call pops an element
from the correct stack, for example) will be discussed further, in section 3.2.

3 HOOPS

3.1 Class definitions
A class in HOOPS has the following basic structure.

class <name>.
<options>*
new
<procedure>
methods
<mathod>*
private
<method>*
<procedured>*
end <name>.

Items marked with an asterisk are optional. If there are no lines in either the methods
section or private section, then the corresponding keyword can be omitted.

<name> is an atom, and tells the system that literals constructed with this name will
be object literals. Abstraction barriers are enforced in HOOPS by requiring that every
method that accesses and/or modifies an object with this name be found somewhere
within this class (i.e. before the end <name> line).

<options> are a set of assertions that describe attributes of the class, such as the
number of instances that will be created, and so on; the available optiorn declarations
are listed in section 3.3.

Following the keyword new is a Prolog procedure that users will call in order to
create instances of this class. A recommended convention is to name this procedure
new_<name>, for example new_stack. In order to actually create the object instance,
the bodies of the clauses in this procedure should have an object literal with the desired
initial state. So, if new stacks should be empty, the new procedure in a class for stacks
would have the single clause:

new_satack :- stack([]).

The keyword methods starts a new section of the class. Following this line is where
the methods ~ the procedures that access and transform objects — should be placed. It is
also possible to have regular Prolog procedures in this section; not all the clauses have to



class stack.
new

new_stack :- stack([]).
methods

push(X) & stack(S)

stack([X|5]).

pop(X) & stack([XIS]) :- stack(s).
top(X) & stack([XIS]) :- stack([XIS]).
empty & stack([]) - stack([d).

end stack.

Figure 1: One-of-a-kind Stack Object

be object clauses. One of the classes in section 5.3 has regular Prolog procedures in the
methods section; the goal here is to export to users a collection of related procedures.
This example is just using the class concept to implement a module package, with some
procedures available to the outside world and others hidden in the private section.

After the last method, it is possible to have an optional section that begins with the
keyword private. In this section the programmer can place any number of procedure
and method definitions. As the section heading implies, these will be local to the class,
and not callable from outside the class (how this is enforced by the HOOPS compiler is
discussed in section 6.1).

Finally, the end of the class is marked with the line end <name>. A complete class
definition for a stack is shown in Figure 1.

3.2 Instances of objects

When a class is a template for one or more instances of ob jects, users will presumably
need to distinguish one instance from another. HOOPS does not provide any built-in
assistance for this, in the form of attaching unique IDs to each instance. Instead, users
must provide their own IDs for each object, and make sure there is an argument position
for this ID in each object instance. Figure 2 shows another way to define a stack which
is suitable for creating multiple instances of stacks. When the client program calls
new_stack it provides an atom that will be used for the ID of the new instance, and
this ID should also be passed in calls to push and pop and other methods to make sure
the proper instance is updated.

At first this may seem like an unnecessary overhead and burden on the programmer,
but there are several positive aspects. First, everything that defines an object - its
ID, the value of its state variables, and the name of its class - is directly accessible to



class stack.

new
new_stack(ID) :- stack(ID,[]).

methods
push(X,ID) & stack(ID,S) :- stack(ID, [XIs]).
pop(X,ID) & stack(ID,[X|S]) :- stack(ID,S).
top{X,ID) & stack(ID,[XI|S]) :- stack(ID,[X|S]).
empty(ID) & stack(ID,[]) - stack(ID,[1).

end stack.

Figure 2: Template for Multiple Stacks

programmers as they write methods and local procedures. All of these things are “first
class citizens” that can be accessed and/or modified.

Second, not all calls to methods need to have the ID argument intantiated to an
atomic term. If the ID is unbound, the call means “select an object from this class,
unify its ID with this variable, and apply the transformation.” This leads to a new
and interesting type of nondeterminism in HOOPS programs, where messages can be
sent out so that any instance of the class can respond. Suppose the following goal is
executed in a context where there are a number of different stack objects:

:= top(Y,X), Y > 10, write(X), nl, fail.

To solve this goal statement, the system will select a stack and bind X to its ID and Y
to the top of that stack. If Y is greater than 10 we will see the ID of that stack printed.
I{ Y is not greater than 10, the call to top backtracks, the system selects another stack,
and resumes forward execution with the ID and top of the new stack.? The net effect
is that we will see on the terminal the names of each stack with a top element greater
than 10.

Third, when the ID is a instance variable of the object, it allows us to implement a
pattern-directed message system. In other words, a calling program can send a message,
and the first object that matches the pattern of the parameters of the message is the
one to respond. As the previous example showed, the ID field is not special in any way,
and an object instance can be selected based on values of any fields the programmer

*Because of the way objects are stored in the system, it is not always possible to backtrack to a
different object. It is possible to call a method with an unbound ID, but the first object that handles
the message is usually the only object that will handle it. Why this irregularity occurs, and ways to
work around it, are described in sections 4.5 and 6.2,



specifies. IDs do not have to be atomic, but can be any valid logical term, which gives
another avenue for flexibility,

3.3 7 Class options

In the current implementation, the HOOPS translator ignores any class option declara-
tions. It skips all clauses between the class header line and the first clause of the new
section.

Options planned for the next implementation, which will compile object clauses
directly to the instruction set of a slightly modified Prolog virtual machine, are pragmas
that will tell the compiler how the objects will be created and accessed. The assertion
static(N) where N is an integer will tell the system that exactly N instances of the class
will be created. dynamic(N) will mean the objects will be created (and deallocated)
dynamically, up to a maximum of N instances at any one time. Other options will

have the system generate unique object IDs automatically, or use certain fields of the
instances as keys for faster access,

3.4 Object transformations

An important deviation from the formal specification of inferences based on object
clauses has to do with the times at which objects are produced and consumed by calls
to methods. From the perspective of the formal inference rule, as soon as the call is
made, all literals in the body of the clause are added to the system goal statement.
According to the interpretation that object literals represent object states, the new
objects denoted by object literals in the body are created as soon as the unification
succeeds, at the time the body literals are added to the system goal statement.
However, in HOOPS, objects are consumed and produced at different times in the
execution of an object clause, and programmers must be aware of the rules the system
uses to create new objects. Instances of objects are consumed when they are used to
match an object literal in the head of a method, but new ob jects are not created until
the literal is “executed” as a goal. There is a period between the invocation of a method
and the time the object literal is encountered in the body when no object exists [2).

The rules for consuming and producing instances are illustrated by the following
clause from a method for bar:

foo(X) & bar(X,s) :- p(X,S5,T), bar(X,T), q(X,T).

Object instances are consumed by a call to 2 method. When there is a procedure call,
for example foo(a), the system will look for an object that matches the object literal
in the head of the method; say this object is bar(a,10). The call consumes the existing



object. After the pattern matching operations are complete, bar(a, 10) no longer exists
as an object literal.

This is where the abstract model and the HOOPS language diverge. In the model,
the three literals on the right side are all added to the system goal statement, meaning
there is now a new object with state bar(a,T). In HOOPS, the new ob ject will not be
created until after the call to p(a,10,T), when the system encounters bar(a,T) as the
next literal in the goal statement. Since this literal js an object and not a procedure,
the system creates the new object state instead of making the procedure call,

To summarize, the rules for producing and consuming objects in HOOPS are:

® When a method is called, the system tries to find an existing object to match
against the object literal in the head; if the match succeeds, the ob ject is consumed.

¢ Literals in the bodies of methods and procedures are processed sequentially, from
left to right. If a literal is a procedure literal, the system calls the corresponding
procedure, as in Prolog. If the Literal is an object literal, the system creates a new
instance of the object.

In most cases, programmers do not have to be aware of the differences between
the abstract model and the HOOPS language with respect to how ob jects are created.
However, there are two cases where it is important. One case is when execution of a
method is recursive or leads to calls to other methods for this same object. In terms
of the above example, if the call to P in the body of foo leads to a call to another
method that requires an object of the form bar(a,.), there will be no existing object
state for that method to match on, since the “call” to bar(a,T) in the body has not
happened yet. If the solution of P assumes the new object instance has been created,
the call to bar should be to the left of the call to p in the body of the ob ject clause. The
N Queens example in section 5.4 and the class methods in section 5.6 show situations
where programmers must know when new objects are created. In the latter example,
this “feature” is actually used to good advantage.

A second case where programmers must be careful of creating objects at the right
time is a side effect of the way object instances are stored in Prolog’s internal database.
This is discussed in more detail in section 4.5,

3.5 7 Commit

When new object instances are created, the old instances have to be trailed in case
the system backtracks to a choice point that occurs before the new object was created.
For some applications, this will result in a huge amount of space being used for old
object states, and in many cases the application will never backtrack to a point where
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it needs those states. For example, it’s hard to imagine a window manager that needs
to remember the size and location of every window, recording every change since the
system was started.

A commit operation, similar to cut in Prolog, can be used to tell the system that
old object states are not needed.* In these cases, old objects are overwritten with the
new object states, Commit is a goal with one argument; the syntax of the call to this
goal is to use an exclamation mark as the functor, and the name of the class as the
single argument. It must occur in the body of a method somewhere to the left of the
object literal that creates the new state of the object. So, for example, we might have
the following in a method for a window manager:

move(W,X,Y) & window(W,Loc,Size,Contents) :-
new_loc(Loc,X,Y,NewLoc), !{(window),
window(W,NewLoc,Size,Contentsg).

move(W,X,Y) & window(W,Loc,Size,Contents) :-
message([’Can’’t move’,W]),
window(W,Loc,Size,Contents).

In the first clause, the commit operator tells the system to throw away the old window
object before creating the new one.

It is obvious that commit implies a cut. If the system ever backtracks to the place
where the new object was created, it could retract that ob ject, as usual. However, it
cannot continue the normal backtracking sequence and restore the old object, since the
old object was thrown away by the commit. In this example, the system cannot continue
backtracking into the next clause for move, since the state of the old window object is
not around any more, and therefore cannot be used to invoke any other clauses in this
method. The user will not see the message, since the second clause in this method can
only be invoked if a window with ID equal to W exists, and that object was thrown away
by the commit operator. Users will see the message only if new_loc fails, since in this
case the commit operator is never executed.

What is not so obvious is that the commit operator does an ancestor cut, throwing
away choice points deep in the execution stack.” When an object is overwritten instead
of being saved in a place where it can be restored, every choice point that would resume
a computation that occurs after the old object was created must also be cut. Logically,
it would be incorrect to fail back to one of these choice points, since they correspond to
inferences that depend on the existence of the old object.

4 Alas, this operation is not yet implemented in the current version of HOOPS. The system prints a
warning when the user program tries to do 2 commit.

*The syntax of commit in HOOPS is identical to the syntax of ancestor cut in some Prologs [4].
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To continue the window manager example, suppose the context of the call to move
is:

:- foo, new_window(wi), bar(wl), move(w1,100,200), baz.

After the window with ID w1 is created, there is a call to a nondeterministic procedure
named bar. Next, the window is moved, and the system calls baz, but baz fails. If there
is a commit operator in move, it throws away all the choice points since the window
was created, so after the failure of baz we cannot backtrack to one of the alternatives
in bar. Instead, we have to go back to a choice point in either new_window or foo. It
would be impractical, if not incorrect, to resume execution of bar(w1) for two reasons:
one, bar might contain a call to a method of w1, and the old state of w1 no longer exists;
and, two, even if the system could get through bar without referring to the old state of
w1, it would need that state in order to make the call to move when it moves forward
again. Thus, when the commit operator throws away the old version of the object, it is
effectively doing an ancestor cut, and removing all choice points built since the previous
state of the object was created.

3.6 WMeta-classes

At times it is desirable to have objects that do not lose their state on backtracking.
For example, suppose we want to have a counter to keep track of the number of times
the system backtracks into a method named foo. It is a simple matter to define the
counter, and put a call to a method that increments it at the start of each clause of foo
after the first, When the system backtracks to the second clause for foo, the counter
will be incremented, and so on for each additional clause in foo. The problem is, as foo
is backtracked, the calls to increment are also backtracked, and the counter reverts to
the value it had before the clause was tried.

A meta-class is used in HOOPS to describe an object that does not return to its
previous state on backtracking. If the counter is declared to be a meta-object, then we
will get the behavior we are looking for, and at the end of the program it will tell us
how many times the alternate clauses for foo were selected.

Defining a meta-class is simply a matter of putting the keyword meta at the front of
the first line of the class definition. Figure 3 is a definition of a simple counter; instances
of this class do not revert to their previous values when the procedures or methods that
use them backtrack. Counters are used in the N Queens example in section 5.4.

3.7 Object Oriented Programming

HOOPS is not an object oriented programming language, in the strictest definition of
that term. Our definition of “object” is consistent with other systems’ use of the term
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meta class counter.

new
new_counter(ID) :- counter(ID,0).

methods
inc(ID) & counter(ID,N) :- N2 is N+1, counter(ID,N2).
dec(ID) & counter(ID,N) :- N2 is N-1, counter(ID,N2).
set(ID,N) & counter(ID,_) :- counter(ID,N).
val(ID,N) & counter(ID,N) :- counter(ID,N).
zap(ID) & counter(ID,N).

end counter,

Figure 3: Example of a meta-class

— HOOPS objects are self-contained structures, they have states, the state can change
over time, and the only way to change a state is to let the object do it itself. It is
the word “oriented” that is questionable. HOOPS, like C++ and Ada, is probably more
correctly identified as a procedure oriented language that supports objects.

A common example that illustrates the difference between procedure oriented and
object oriented languages is to consider a program that wants to transform each object
in a list by sending them the message, such as insert(X). In Smalltalk, an object is
pulled from the list, and a message is generated and sent to it. Only when the object
receives the message does the system figure out which procedure to apply. Each object
has a list of methods, and the procedure that is applied is determined according to this
list. Depending on the type of the object, different pieces of code are invoked. If the
list is heterogeneous, different pieces of code are invoked, since queues, symbol tables,
and text strings insert elements in different ways. By contrast, in a procedure oriented
language, the procedure for insert is called, it determines what type of object it has as
a parameter, and applies the correct piece of code within its body. In some languages,
the decision about which code to invoke can be made at compile time.

It is possible to overload method names in HOOPS, and implement this same kind of
program. It is possible to use the same method name in different classes; the symbol ta-
ble and queue examples in section 5 both have methods named insert. Like Smalltalk,
each method can be written separately, without concern that any other method may
have the same name.® When a HOOPS program executes the procedure call insert(X)

®There is one concern, however: if the classes come from diflerent files, programs will have to use
the SICStus Prolog miltifile declaration to let the system load clauses from the same procedure from
more than one file,
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the system tries the clauses for insert in order. If the clauses are object clauses, the
system tries to find object literals to match with the other head of each clause. If X is
the ID of a queue object, and no other object has ID X, then only the clauses for insert
in the class queue can be applied. Note that it is the programmer’s responsibilty to
ensure that no two objects of different types have the same ID. If they do, and if they
are instances of classes that have methods with the same name and arity, it is not clear
which method will be applied, and which object will be transformed.

Another important aspect of object oriented programming is class inheritance. A
class § can be defined to be a subclass of class T. Whenever a new instance of an S is
created, it automatically has instance variables defined in the superclass T, along with
the corresponding methods. The HOOPS class syntax does not provide any inheritance
mechanism, but programmers can define such class hierarchies explicitly as part of
their programs. An example of programmed inheritance is the double-ended queue in
section 5.3. The top of the hierarchy is a vector. The next level is a set of procedures
that increment and decrement indices into the vectors, wrapping around at either end.
The bottom level has double and single ended queues built out of operations from the
higher two levels.

A suggested technique for programming inheritance is that if § is to be a subclass
of T, the object creation procedure of § should call the object creation procedure of
T'. Note that this is a case where we probably do want different object literals to have
the same ID. When the object creation procedure in the class for a queue is called and
asked to make a queue with ID X, it does so, and also calls on its superclasses to make
objects with ID X. It makes sense to use the same ID in this case, since the set of object
literals together implement pieces of the same abstract object.

A benefit of this way of building inheritance hierarchies is that programmers can
build any form of inheritance structure, including multiple inheritance, and not simply
a tree. On the other hand, it will take a bit of planning to arrange the order of classes
within a program to make sure the right methods are applied. For example, suppose
the superclass T has a method named foo, but we want instances of S to handle calls
to foo in a special way. H the clauses in § are defined before the clauses in T, the
underlying Prolog system will try them first whenever foo is called. If the clauses for
foo in § fail, the clauses in T will be invoked via backtracking; this is the HOOPS way
of passing a message up to the superclass.

4 Using HOOPS

The HOOPS runtime environment is an extension to the SICStus Prolog environment.
HOOPS programs are executed by translating them into Prolog programs which are
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then compiled or consulted and run as usual. The HOOPS runtime system also has a
few new built-in predicates that can be called from user programs.

4.1 Starting the system

The HOOPS system has been implemented in two different Prolog files: a runtime
system (hrts.pl) and the translator (hcomp.pl). There is an executable binary file
named hoops that was created by starting Prolog, compiling and loading hrts and
hcomp, and then saving the Prolog state. Thus all one has to de to start HOOPS is
type the name hoops in a Unix shell.

When the system comes up, it displays the SICStus Prolog banner plus a line that
shows the current version of the HOOPS runtime and translator. Also, the prompt is
changed to HOOPS> to remind users that the HOOPS runtime is installed and working.

From this point on, interaction with HOOPS is almost identical to interaction with
Prolog. Users type goal statements terminated by periods, and the system executes the
goals. If the statement succeeds, the values of variables are printed and the system waits
for user interaction. If the user type a semicolon, it will try to find another solution; if
the user just types a carriage return, the system quits the current goal and returns to
the top-level prompt.

In the current version, no object states are carried along from one top level goal to
the next. Each user query must call procedures that create the initial objects, and all
objects are removed before the next query starts. An extra option is available when the
system prints out the values of variables in top level queries. When the system is waiting
for a semicolon or carriage return, users can type the letter 'o’ followed by a return,
and the system will print out the current state of every object, using the procedure
print_objacts (see section 4.3).

All of the procedures that are “private” to hrts and hcomp, j.e. the Prolog pro-
cedures used to implement the runtime and translator, have names that begin with a
dollar sign. As long as HOOPS programs do not have procedures and methods with

names that begin with a dollar sign, there will be no conflict between user clauses and
system clauses.

4.2 Loading Programs

Whenever the user issues a top-level goal that asks the system to consult or compile a
file, the HOOPS-to-Prolog translator is invoked automatically if the specified file is a
HOOPS source file. The system invokes the translator, which creates a Prolog file as
output, and then consults or compiles the Prolog file. If the input file is a Prolog file,
it is consulted or compiled directly, without passing through the HOOPS translator.
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Just as the Prolog system tries to be friendly, and let users type a simple name like
“foo” when they want to read in the clauses in the file “foo.pl”, the HOOPS runtime
system tries to find a HOOPS file (a file with a name that ends in “00p”) when it sees
a simple file name. Unfortunately, this leads to complicated rules for deciding whether
or not the user means a HOOPS file or Prolog file, i.e. whether “foo” means “foo.0op”
or “foo.pl”. The system uses the following rules to look up a file and decide, based on
its name, whether the user wants a HOOPS file or Prolog file:

1. A file is 2 HOOPS file only if the name ends in “.00p”.

9. When the user asks for a file with name F, first see ifit is a HOOPS file: if F ends
in “.cop”, look for it; if F does not end with “« oop”, append “ oop” and look for
that. If the file is found, invoke the translator, and load the translated program.

3. If the previous steps fail, F is not the name of 2 HOOPS file. Look for the file
named F, and if it does not exist append “.pl” and look again. If the file is found
in this step, it is assumed to be a Prolog file, and loaded without passing through
the HOOPS translator.

‘When an input fileis a HOOPS file, with aname of the form “foo.cop”, the translated
program is written to a file with the name “foo.pl” in addition to being loaded into the
system.

4.3 HOOPS Evaluable Predicates

Three new evaluable predicates have been added to support HOOPS operations. These
can be called from within a program of at the top level. They are:

print_objects Print out the entire internal database; this will print the current state

+

of each object known to the system, plus any terms the user program stores there
on its own.

print_objects(K) Same as print_objects, but restricted to terms with functor K. Ex-

ample: print_object(stack) will print all object literals with principal functor
stack,

zap.objects Delete all terms from the internal database.

4.4 Using the Debugger

1t is possible to use the regular SICStus Prolog debugger to debug HOOPS programs,
but things get a little awkward at times. One must be aware of how the HOOPS
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In spite of the problems listed above, logical variables can still be quite useful. The
symbol table in section 5.5 is an example of an object that makes effective use of logical
variables in object states.

Another way the internal database affects programs is the cost of storing and re-
trieving object states. Every time an object is stored, the system has to make a copy of
it, and every time an object is Tetrieved, the system makes a new instance on its internal
heap. To cut down on the amount of copying, the HOOPS translator tries to figure out
when an object is not updated in a call to a method. If an object does not change, then
there is no need to generate a call to recorda to write an identical copy back to the
database, and no need to post a goal to retract this copy in case of backtracking to the
method.

The compiler determines that a method does not change an object in those cases
where there is just one object literal in the body, and it is identical to the object literal
in the head. The method for top in the stack is a good example. Unfortunately, there
are two loopholes that allow programs to change objects even though the head literal
and body literal are identical. If the object retrieved from the database has an unbound
variable, a goal within the method can bind that variable, and the object literal in the
body describes a different state than the object literal in the head. The symbol table
in section 5.5 has an example. Second, SICStus Prolog has a goal named setarg that
modifies a term. In either case, since the compiler did not generate code that stores the
new object state, the new state will be lost, since the object will not be updated in the
database. In order to deal with this situation, programmers need to fool the compiler.
A simple way to do this is illustrated in the following clause:

p(X) & s(X,Y) :- q(¥), Y = Y2, 8(X,Y2).

Suppose Y is unbound in the object before the call to the method. If q(¥) binds Y,
we want to update the object. The goal Y = Y2 makes a new variable and gives it the
same value as Y (this is roughly as expensive as copying a pointer). Since the object
literal in the body is not the same as the literal in the head, the translator generates
code that stores the new term in the database.

There is one positive aspect to using different code to retrieve objects the translator
thinks will not change. In these cases, the code that looks up an object is backtrackable,
and can be used to retrieve any or all objects that match the pattern of the object literal
in the head of the clause. So, the example used previously, of a goal that finds all stacks
with top element greater than 10, works as advertised:

;- top(X,Y), Y > 10, write(X), nl, fail.

Logically, one should expect to be able to write a similar goal that pops the top of every
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stack and prints the names of those stacks that had top elements greater than 10, but
pop is a method that changes the stack, and cannot be backtracked.

To experiment with broadcast messages, where a method call should be handled by
any member of the class, add a method named is.a to each class that returns the ID {or
some other attribute) of an instance currently in the database, and use it to generate
IDs before the call to other methods. For example, the following method will return the
ID of every stack through backtracking:

is_a_stack(ID) & stack(ID,S) :- stack(ID,S).

Now this goal can be used to send a pop message to every stack and then call foo, which
presumably will do something with the new stack:

1= is_a_stack(X), pop(X,.), foo(X).

Of course, the items are not permanently deleted from the stack unless stack is a meta-
class, since backtracking over the call to pop restores the old top item. The explanation

for why methods like top and is_a-stack can be backtracked, while pop cannot, is
given in section 6.

4.6 Restrictions

Several of the language features described in this manual are not implemented yet. Also,

as a result of the way objects are implemented, some things will not work the way they
should. The problem areas are:

7 Commit is not implemented.

3 Object level nondeterminism is not fully implemented in methods that change an
object. If the method simply accesses the object, it will backtrack properly (see
section 4.5). If a method changes an object, it is possible to backtrack within the
method, but then the program cannot backtrack to another object literal. This
means the first object to handle a call to a method is the only object that will

ever handle it; the system will not backtrack to let another object try the message,
even though such objects exist.

# Tt is possible fo have an unbound logical variable in an object state, but it may
not behave the way it should. Don’t expect to put a variable in an object, and
then bind that variable without calling a method of the class.

o If you turn on file error reporting (with the Prolog goal fileerrors) you will see
more error messages than you want when the HOOPS runtime tries to look up a
file that doesn’t exist. It is best to leave this off.
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o If you change the default handling of unknown predicates, so Prolog simply fails
instead of trapping to the debugger, objects will not be stored and retreived prop-
erly (this is the result of a probable bug in SICStus Prolog).

5 Examples

5.1 Stacks and Expression Evaluator

The program at the end of this section evaluates infix expressions using two stacks from
the stack class that was described previously. The program logic is fairly straightfor-
ward. The expression is represented by a list of tokens, where the atoms 1p and rp
represent left and right parentheses, respectively. The main loop of the evaluator makes
one pass over the list. If it finds a number, it pushes it on the value stack. If it finds
an operator, it checks the top of the operator stack. If the input symbol has a lower or
equal precedence, the top of stack is applied to the values on the value stack, otherwise
the new operator is pushed on the stack.

This program relies on negation as failure to determine whether an input symbol
has a lower precedence than the top of the operator stack. Instead of representing a
complete precedence table, we use a relation leq(S1,52) that holds when symbol S1
has lower or equal precedence than S2. If a call 1eq(S1,52) fails, we assume S1 has
a higher precedence. When the input symbol has a higher precedence, it is pushed on
the stack. A shortcut based on this relation can be seen in the third clause for eval:
if the input symbol has a lower precedence than the top of stack, and the top of stack
is a left parenthesis, then the input symbol must be a right parenthesis, since the only
symbol § for which 1eq(S,1p) succeeds is rp. This simplifies the program structure,
since there are only four cases to consider in a call to eval. A right parenthesis in
the input stream is handled like any other operator: it has lower precedence than any
other operator, so it forces all operators on the stack to be applied, until there is a
balancing left parenthesis. The left parenthesis is “applied” by throwing it and the
right parenthesis away, and continuing with the next input symbol.

A final note concerns how the stack is used. Again looking at the third clause in
eval, note that the first goal pops the top operator, on the assumption that it will be
applied - either it is a left parenthesis which is now being discarded, or it is a normal
operator that will be applied to the top two operands. If the precedence test fails, the
call to pop is backtracked. Since there is no other way to pop a symbol from the ops
stack, the method fails, and the stack is restored to its previous state before the fourth
clause for eval is tried.

class stack.
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new
new_stack(ID) :- stack(ID,[]).

methods
push(ID,X) & stack(ID,S) .- gtack(ID,[215]).
pop{ID,X) & stack(ID,[X|5]) :- stack(ID,S).
top(ID,X) & stack(ID, [X|S]) :- stack(ID,[Xis]}.
empty(ID) & stack(ID,[]) :- stack(ID,[1).

end stack.

% Two-stack infix expression evaluator:

evaluate(Str,X) :-

start_up(Str,S), ¥ make stacks; S is Str with parens added
eval(S), % reduce S
clean_up(X). % make sure stacks clean; return top of val
start_up(si, [1plsel) :- % use atom ‘lp’ for left paren,
new_stack(val), % 'rp’ for right paren
new_stack(ops),
append(Si, [xpl,So).
clean_up(X) :-
pop(val,X),
empty{val),
empty(ops), !.

clean_up(err).

Y Main loop (see text for comments):

eval([l).
eval([S1I5n]) :-

number (S}, !, % numbers just go on value stack

push(val,S1),

sval(Sn).

eval([S1isn]) :- Y% see if input operator lower than TOS
pop(ops,.X),

leq(s1,X), 1!,

(XxX=1p > % input lower than TOS and TOS = lp means
eval(Sn) % input is rp; continue with next symbol
apply_op(X}, % TOS is regular operator; apply it
eval([S1{snl) % may have to apply again (e.g. 4-2%1-1)
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eval([S1i5nl) :- % input not lower than TOS; push it
push(ops,S51),
eval(Sn).

% Apply the top operator to top two values, push the result.

apply_op(F) :-
pop(val,v2), pop(val, Vi), apply(F,V1,V2,X), push(val,X).

npply(+,x,Y.Z) = Z is % + Y.
apply(-.x.Y,Z) -Zis X - Y.
apply(*,l.?,z) =2 is X = Y.
apply(/,X,Y,2) :- Z is X / Y.

% Precedence relations; leq(51,52) means Si is lower or equal precedence than
Y% S2, When called, S1 is input, S2 on stack; if this succeeds, 52 is applied:

leq(+,+). leq(-,+). leg(* %), leq(/,*).
leq(+,-). leq(-,-). legq(*,/). leq(/,/).
leq(+,*). leq(-,*).

leq(+,/). leq(-,/). leq(zp,.).

5.2 Vectors

The next example shows one way to represent a vector as an object. A fixed length
vector of N elements can be represented in Prolog as an N-ary complex term. The built-
in procedure arg(N,T,A) unifies A with the Nth argument of term T, giving constant-time
access to any element in the vector.

The state variables of the vector are the term that represents the vector itself, and
an integer used to adjust indices. arg counts the first argument as 1, so if the indices
of the vector should be zero-based (as they are in the next example, section 5.3) then
the access methods should adjust each request by adding 1.

This particular implementation uses the SICStus builtin setarg(N,T,A) to change
the Nth argument of T to A in the method for vset. This is an efficient way to change one
location, but unfortunately HOOPS cannot take advantage of it yet. Since the internal
database is used to store objects, the entire new object is copied to the database, and
the time to update the array is proportional to the size of the array. Future versions of
HOOPS will be smarter, and update only fields that change.

Identifying fields that change brings up another subject. Logically, it would be
correct to use vector(ID,V,X) for the object literal in the body of vaet, since setarg
has modified V. But the HOOPS compiler doesn’t know about setarg, and can’t tell
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wrapping around when it reaches either end of the vector. The other class describes
double ended queues {dequeues), which can insert and remove items from either end.

The class hierarchy in this example has qv as a subclass of vector, and dequeue as
a subclass of qv. In other words, each new dequeue object will inherit the state variables
and methods of its superclasses. A dequeue will be a vector, with methods for accessing
and changing items determined by that class, and it will also inherit the operations
defined in qv. Note that the definitions in qv work equally well for single ended queues,
and that a class queue for single ended queues could also be a subclass of qv. The
inheritance is programmed explicitly: the object creation procedure for dequeue calls
the object creation procedure for qv, which in turn calls the object creation procedure
for vector.

Note that all three objects have the same ID. If a user program wants to find out
the size of the queue with ID g1, it can call size(ql ,N), and the call is handled directly
by the vector superclass. This ID scheme is also used in the methods for insert and
remove in the queue. insert calls the superclass method named vset, passing the same
ID that was passed to it, and the routines in qv call the size method for vectors.

class qv.
new
new_qv(ID,N) :-
N1 is H-1, % make vector to hold items,
new_vector(ID,0,N1). ¥  indexed 0..H-1
mathods
qinc(ID,X,Y) :- % move pointer to right by 1
gize(ID,N),

Y is (X+1) mod N.

qdec(ID,X,Y) :- % move pointer to left by 1
size(ID,N),
Y is (X+K-1) mod N.

% if R »= L, number of free slots is R-L+1; instead of testing it R > L,
% just add N to R first and then take the result mod N (two arithmetic
% operations are faster than evaluating a conditional and branching)
qfree(ID,L,R,X} :- % calculate # free slots,

size(ID,N), % given pointers L and R

X is (R+H-L+1) mod N.

qused(ID,L,R,X) :- % calculate # occupied slots
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gize(ID,N),
X is B - ((R+N-L+1) mod N) - 1.

qempty(ID,L,R) :- % queue empty if R next to L
size(ID,N),
1 is (L+NH-R) mod N.

qfull(ID,L,R) :- % queue full if R two slots away from L
gize(ID,N),

2 is (L+N-R) mod N.

end qv.

% Double-ended quene (dequeuna). The object literal that describes the
% current state of a queue is dequeue(ID,L,R}, where L is the index of the
% left item, and R is the index of the right item. The data structure

% that holds the items in the queue iz a vector, accessed by its methods
% veset and vref,

class dequsue.

new
new_dequeue(ID,Size) :-
Size > 1 =
new_qv(ID,Size),
dequeua(ID,1,0)

format(’dequeue "w not made; size “w too small™n’,[ID,Sizel).

methods
empty{(ID) & dequeus(ID,L,R) :-
qenpty(ID,L,R),
dequeue(ID,L,R).

full(ID) & dequene(ID,L,R) :-
qful1(ID,L,R),
dequeue(ID,L,R).

insert(_,ID,_) & dequena(ID,L,R) :-

qfull(ID,L,R}, !,

format ('Dequeue “w full; insert failed. n’,[ID]), fail.
insert(left,ID,Val) & dequeus(ID,L,R) :-

gqdec(ID,L,L2),

veet (ID,L2,Val),
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dequeue (ID,L2,R}.
insert(right,ID,Val) & dequeue(ID,L,R) :-

qinc(ID,R,R2),

vset (ID,R2,Val),

dequeue(ID,L,R2}.

remove(_,ID,_) & dequeue(ID,L,R) :-
qempty(ID,L,R), !,
format ('Dequeue ~w empty; remove failed."n’,[ID]), fail.
remove(left,ID,Val) & dequeue(ID,L,R) :-
vref(ID,L,Val),
gine(ID,L,L2),
dequeue(ID,L2,R).
remove(right,ID,Val) & dequeue(ID,L,R) :-
vref(ID,R,Val),
qdec(ID,R,R2},
dequeue{ID,L,R2).

end dequene.
% test out the queue

test(N) :-
new_dequeune(dq,H),
cycle.

cycle :-
write(’DEQ Test: ’),
read(T),
(T = exit ; exec(T), !, cycle).

exec(in{D,V)) :- insert(D,dq,V), format(’'~w inserted at the “w“n’,[V,D]}.
exec(out(D,V)) :- remove(D,dq,V), format(’"w removed from the “w™n’,[V,D]).
exec(empty) 1= empty(dq) ->

format(’dq empty“n’,[1) ; format(’dq not empty“n’,[l).

exec{full) 1= full(dq) ->

format(’dq full™n’,[]) ; format(’dq not full™a’,[]).
exec(print) := print_cbjects, statistics.
exec(_ ).

5.4 N Queens

The next example is the N Queens problem. This programs shows how methods can be
nondeterministic — if one way to handle a message leads to a later failure, the system
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o If Q is already in row R, the method should fail.

¢ If Q has already taken a different row, or if R has already been removed {rom
domain, the message is ignored.

¢ IfRisin the domain of Q, it is removed. Now there are two more cases to consider:

— There is one row left in the domain; Q should select this row for herself, and

broadcast this information to all the other queens by sending them restrict
messages.

— There are two or more rows left; no further action is required.

This class is an example of a class that has local procedures. The only “exported”
procedures here are restrict and choose; everything else is hidden inside the class. ¥
you ask for a listing at runtime, you will see that the local procedures all have names
of the form queen:, for example queen:assigning.

The places where we have to be careful to put back a queen object before calling
other procedures from the body of a method are in the second clause for choose, and
the third clause of restrict. In both cases, the queen has just taken a row for herself,
and is about to send restrict messages to all the other queens via the call to the local
procedure propagate. It is possible that the other queens will have to send a message
back to this queen, so we have to make sure there is a queen object around to handle
the message. The reason we might get messages coming back is that in telling another
queen to stay out of our row, we may leave her with just one location, in which case she
will take it and broadcast to all other queens that she has taken that location.

The main loop of this program simply sends a choose message to each queen. The
program also uses a meta counter to count the number of times a queen has to be re-

moved on backtracking (see the local procedure named assigning that is called when-
ever a queen is placed).

class queen.

new
nev_queen(Q,N) :-
init_domain(K,D),
queen(Q,D).

methods
choose(Q) & queen(Q,N) :-

integer(N}, !, % gqueen may already be placed, due to
queen(Q,¥). % restrictions propagated by another
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choose() & queen(q,D) :-
member (Row,D,_), %
asgigning(Q,Row), %
queen(Q,Row), %
propagate(Q,Row). %

% This method is the heart of

get a candidate row

collect stats about assignment
new object state has this row
apply constraints to other queens

the "forward checking" style of

% solution. Remove row R from the domain of gueen (; if Q has

% already been assigned to R,

we have to backtrack; if, after

% removing R, there is only one place left for Q, assign this
% position (and, by extension, propagate the new comstraints)

restrict(Q,R) & queen(Q,R) :-

!, fail. %

restrict{Q,R) & queen(Q,X) :-
intager{X), !, %
queen(Q,X).

restrict(Q,R) & queen{q,D) :-
member {(R,D, [D2IDr]), !,

(pr=0 -> %4
queen(Q,D2), %
assigning(Q,D2),
propagate(Q,D2)
queen(q, (D2IDr]) %

).

reatrict(Q,R) & queen(Q,D) :-
queen(Q,D). %

show(Q) & queen(Q,D) :-

@ is already in row R -- fail

Q assigned already -- do nothing

empty Dr means D2 is last row;
grab it and propagate constraints

otherwise just continue

R already out of D -- do nothing

format(’Queen “w is in row ~wn’,[Q,D]),

queen(Q,D).

private

% init_domain(N¥,D) -- make the initial domain (complete list from
% (1..H]), given N rows and columns on chessboard

init_domain(0,0d) :- t.

init_domain(N,[N|Rem]) ;-
N2 is N-1,
init_domain(¥2,Rem).

% local procedure shared by ’choose’ and ’restrict’ -- for debugging
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% and counting purposes, print assignment (and removal, on backtracking)

assigning(Q,R) :-
format{’Queen “w placed in row “w°n’,[Q,R]).
assigning(Q,R) :-
format(’Queen “w removed from row “w°n‘,[Q,R]),
inc(backtracks),
fail.

% propagate(Q,R): queen Q has just been placed in row R; restrict
7 other queens from being in squares in diagonal from square {Q,R)
% or in same row before or after Q (6 of the 8 possible directions).
% We can assume no other gqueen is in the same column,

propagate{Q,R) :-

check(Q,R,1,-1), % upper right diagonal
check(Q,R,1,0), % same row, right
check(Q,R,1,1), % lower right diagonal
check(Q,R,-1,1), % lower left diagonal
check(Q,R,-1,0), % sama row, left
check(Q,R,-1,-1), % upper left diagonal
Io
check(1,_,-1,_) := 1. % boundary conditions:
check(_,1,_,-1) := 1!, % stop when row or column hits edge of

check(¥,_,1,_) :- val(ng,N), !. % board; rows and columns are labeled
check(_,N,_,1) :- val(nq,N), !. % 1 thru ¥
check(Q,R,H,V) :-

Q2 is Q + H, % compute coordinates (Q2,R2) of
R2 is R + V, % next sgquare to check
restrict(Q2,R2), % restrict Q2 from being in row R2
check(Q2,R2,H,V), % continue propagation

% member{E,L,Lr) -- succeeds if E is an item in list L, and Lr is
% the list of all other items except E in L

menber (E, [EIL],L).
member(E,[X|L],[XIL2]) :- member(E,L,L2).

end queen.

[*
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run(¥) :-
init_counters(N},
do(1,¥,new_queen(K)),
do(1,¥,choose),
print_resulta(N).

do(First,Last,_) :- First > Last, !.
do(First,Last,P) :-

P =.. [GlArgsl,
Goal =.. [G,FirstlArgs]l,
call{Goal),

Next is First + 1,
do{Next,Last,P).

init_counters(N) :-

new_counter{backtracks), % meta counters
new_counter(ng),
set(nqg,N).

print_results(¥) :-
format(’All queens placed:~n’,[1),
do(1,N,show),
val(backtracks,B),
format('Number of backtracks = “w-n',[B]).

5.5 Symbol Table

The next example is a symbol table object. This table is derived from the classic symbol
table described by Warren, in his paper on writing compilers in Prolog [5].
The table itself is a list of associations, terminated by an unbound variable, for

example [foo=10,bar=3|_]. Warren uses the usual definition of member/2 both to
look up a symbol and to insert a new symbol:

member (X, [X1_1).
member{X,[_IL]) :- member(X,L).

The call member (foo=X,ST) succeeds for one of two reasons: foo=val is an element
of the list ST and X is unified with its value; or, foo=K is not currently in ST, but the
base case in the definition of member succeeds, unifying the unbound variable at the end
of the list to [foo=K|L]. In the latter case, the table is extended, and now has an entry
for foo plus a new unbound variable to terminate the list.
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The nice thing about this data structure is that it is not necessary to copy the list
when new entries are added. Simply binding the variable at the end extends the original
list; this is one of the classic uses of the logical variable. Another nice feature is that
forward reference pointers come for free. If we call member(foo=X,ST) when we first
encounter the symbol foo in an expression, but foo is not in the table yet, it is inserted,
but not given a value yet (since X is unbound). Later, when we encounter the definition
of foo, and know it has a value of 10, for example, the call member (foo=10,ST) binds
the variable in the table to 10.

However, there are two awkward situations. If we want to use member to scan the list
to return all symbols and their values via backtracking, e.g. the call is member (S=X,L),
the call to member at the end of the list succeeds instead of fails, and it adds a new entry
to the table, with both the symbol part and value part unbound. Another problem is
that if we just call member each time we find a new symbol definition, we don’t know if
we have a redefined symbol. member will just add the new definition at the end of the
list.

The class shown below remedies these two situations, while keeping the same overall
structure of the table. The table is a list of associations terminated with an unbound
variable. The method named insert(S,V) is used to add a new definition; it will fail if
8 is already in the table with a different value. assoc(S,V) can be used either to look
up a symbol/value pair, or generate all associations through backtracking. It fails if S
is not in the table. As an extra feature, the class keeps track of the number of symbols
in the table.

What this example demonstrates is that unbound variables can be used profitably
in instance variables of objects. However, as discussed in sections 3.4 and 4.6, users
have to be careful with unbound variables in the current implementation. This example
works because the term that represents the current state of the table is fetched from
the internal database, modified by binding one of the variables in the table, and then
returned to the database. Note that the new table literal in the clause for insert is
different that the head literal (it has N2 instead of N) so the compiler forces the runtime
system to store the new value. In future versions, the system will correctly handle this
term, and not have to copy the table to and from the internal database.

class symbol_table.
new
new_symbol _table :-
symbol_table(_,0).

methods
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Y% insert(+Sym,?Val) ~- Unify Sym=Val with entries in the table;
Y% the difference between this and ’member’ is that ’insert’ fails if
% Sym is in the table with a different value, and Sym must be bound

insert{Sym,Val) & symbol_table(Tbl,N) :-
nonvar (Sym},
find(Sym=Val,Tbl,Res),
{ Res = found ->
N2 = X

3,
symbol_table(Tbl,N2).

B2 is H+1

% assoc{?Sym,?Val) -- Look up Sym in the table; can bs used to traverse
% the table if Sym is unbound, without adding new table entry at end.

assoc(Sym,Val) & symbol_table(Tbl,H) :-
symbol_table(Tbl,N),
member (Sym=Val,Tbl).

% size(7H) —— there are N symbols currently in the table

gsize(N) & symbol_table(Tbl,N) :-
symbol_table(Tbl,H).

private

% $ipd(X,L,R) —— assumes X is of the form S=V; acts like member/2,
% but fails (doesn’t scan rest of L) if S=V2 is in the list and

% ¥ =\= V2. Unify Res with ’new_sym’' if S=V added to the list, or
% 'found’ if S is already in the list.

find(X,L,new_sym) :-
var(L), L = [XI_].

£ind{S=v,[S=V2|L],found) :-
1, (V=v2 ; fail),.

£ind(X,[_|L] ,Res) :-
find(X,L,Res).

% local version of member, used to traverse list without adding new entries

member(X,Y) :— var(Y), !, fail. % var table entry ends search
member{X,[XI_]).
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member(X,[_IL]) :- member (X,L).

end symbol_table.

5.6 Class Methods

Some object oriented languages allow programmers to write class methods, or procedures
that operate on class instead of any one abject that is an instance of the class. It is
easy to write this kind of method in HOOPS, as the following example shows.

The class is named foo. Instances of the class are like counters, handling messages
that increment, decrement, and set the value of the counter. The class methods are
bag, unbag, mgu, count, and sum. bag is a meta-level predicate, turning objects into
terms; it collects all the instances of foo that exist at the time of the call and returns
the corresponding terms in a list. Note that no instances exist after this call - a call to
inc or any other instance method will fail. unbag does the opposite, making foo ojects
for each item in the input list. As a simple security check, it makes sure each item has
the proper shape. count returns the number of foo instances. sum and mgu replace all
current instances with a single new instance, and return the ID of the new instance.
The new ID is chosen at random from the IDs of the earlier instance. In sum, the new
instance is a counter with a value that is the sum of all the previous instances. mgu
creates a new instance that is the most general instance of all the previous objects.

class foo.

new
new_Too{X) :— fo0(X,0).

methods

¥ instance methods -- methods that operate on objects of the class —-— are
% 1inc’ (add 1 to state of the object), ’dec’ (substract 1), and ‘get’:

inc(X) & too(X,Y) :- Z is Y+1, too(X,Z).

dec(X) & too(X,Y) :- Z is ¥-1, foo(X,Z).

set(X,Y) & fool(X, ) :- foo(X,Y).

Y% the interesting stuff -- the following are class methods:

bag(L) :- collect([1,L). % call local method, with initial list
unbag(l).

unbag([F1|Fnl) :-
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F1 = foo(X,Y) -> % verify form of new object

foo(X,Y),
unbag (Fn) .
mgu(X) :-
bag(L), % collect all foo'’s
unity(L,foo(X,Y}), % boil down to single element
fool(X.Y). Y assert it; return its ID to caller

count(N) :-
bas (L) '
length(L,H),
unbag(L).

sum(X,Y} :-
bag(L),
#oosum(L,0,f00(X,Y}),
fo0(X,Y).

private

Y collect all foo’s into a list; in this case, return a term that looks
Y% exactly like the object, but in general we might want to hide some stuff

collect{Li,Lo) & foo(X,Y) :-
collect([ioo(x,Y)lLi],Lo).
collect(L,L). Y base case; invoked when no foo's

Y reduce list of foo’s to most general comion instance

wnify(0,.).

unify([X1¥1,0) :-
Xx=20,
unify(Y,U).

% sum values in all foo’s in 1list, return new foo with sum
toosum([too(x,Y)],H,too(x,Z)) i= Y id of new foo is id of last
1, Z is H+Y,
toosum([too(x,Y)IRem].H,F) -
Z is N+Y,
foosum(Rem,2,F).

end foo.
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Y% test out some stuff:

make_foos([1).
make_foos([F1|Fnl) :- new_too(F1), make_foos{Fn).

set_toos([1).
set_foos([F=V|Rem]) :- set(F,V), set_foos(Rem).

utest(F) :-
make_foos{[a,a,a,al), % all have to have same ID...
set_foos([a=10,a=A,a=B.a=C]),
mgu(F).

sumtest(X,Y) -
make_foos{[a,b,c,dl),
set_foos([a=5,b=3,c=1 ,d=101),
sum(X,¥Y).

bagtest(L2) :-
make_foos([a,b,c,dl),
set_toos([a=5,b=3,c=1,d=10]),
bag(L1),
inc_foos(L1,L2),
unbag(L2).

inc_foos([1,01).
inc,toos([too(x,Y)ILil,[foo(x,z)lL2]) .= 2 is Y+1, inc_foos(L1,L2).

6 Implementation

6.1 The HOOPS Translator

The transformation from object clause to Horn clause is simple. For an object clause
with head p & s create a Horn clause with head p. The body of the Horn clause will
have the same body as the object clause, with the addition of a new goal $get(s) at
the front. Every object literal s in the body is replaced it with the goal $put(s).
$get and $put are HOOPS runtime system goals that manage objects in the internal
database; they are described in the next section. As their names imply, these goals insert
and remove object instances. These actions are undone on backtracking. If an object is
defined by a meta class, the translator compiles code that accesses the database directly,
without calling $get or $put, since changes made by meta classes are not undone when
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the method fails.

As an optimization, if the transiator determines that the input object and output
object in a method are identical (via the goal In == Dut), then $get is replaced by
$state, and there is no call to $put.

The translator enforces the scope rules of class names by refusing to make a goal
of the form $put(s) or $get(s) outside the class for object s. Private methods and
procedures are implemented by giving them names that depend on the current class
name. If there is a definition of a method or procedure named foo in the private section
of a class 8, the translator makes a new name of the form s:name.”

6.2 $get and $put

Instances of objects are stored in Prolog’s internal database, using the principle functor
of the object literal as the database key. The Prolog procedure recorda(K,T,R} is used
to record a term T using key K.

When a new object instance is created, HOOPS stores it in the database. When the
system backtracks to this point, the item has to be erased from the database. Similarly,
when a method is called, the system erases from the database an object that matches
the object literal in the head, and if the method fails, the system has to put that object
back in the database. The procedure in the HOOPS runtime system that records a new
object, and then erases it on backtracking, is named $put. The procedure that erases
an existing object on entry into a method, and puts it back on backtracking, is called
$got.

¢ It is not a trivial matter to code $get and $put in Prolog. At first glance, one would
think the following structure would work:

'$get’ (Obj,State) :- recorded(0bj,State,Ret), erase(Ref).
1$get’ (Obj,State) :- recorda(Dbj,State), fail.

'$put’ (Obj,State) :- recorda(0bj,State).
'$put’ (Obj,State) :- recorded(0Obj,State,Ref), erase(Ret), fail.

This definition for $get works when there is an object with the correct form in the
database, but has a serious problem if there is no matching object. In a peculiar form
of wishful thinking, it creates an object instance that does match the call. If the user
program makes a call such as top(a,5) to see if it is true that the top of stack a is 5,
and 5 is not currently on the stack, the system will create a new stack with ID a, put
5 on the top, and install it as an extra instance of stack a.

This problem can be solved with a bit of convoluted coding, but a more serious
problem remains. What if there is a cut in the body of the method? The second clause

"The name is an atom, it just has a funny symbol stuck in the middle.
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for $get is cut along with the alternatives for the method itself, and if the method fails
the object is never put back in the database. This problem, which also applies to $put,
is solved by using undo to post goals to undo the effects of forward execution. undo (@
is a NOP when encountered as a goal, but the system puts G on the trail. Later, when
the trail is unwound during backtracking, and the system finds G on the trail, it is
executed. Since the trail has to be used even when alternatives have been cut, the goals
that remove or reassert objects are safe.
Here is the actual code for $get, $put, and $state:

1$get’ (Obj,State) :-

recorded(0bj,State,R), Y is there a matching object?
instance(R,Pattern), % yes; get the recorded version
erase(R), Y% zap it

', % get only one object per call

undo(recorda({Obj,Pattern,_ )). % put object back on backtracking

s¢put’ (Obj,State) :-
recorda(0bj,State,R),
undo((racorded(obj,State.R2),erase(ﬂ2))), [

*¢state’ (Obj,State) :— recorded(Obj,State,_ ).

The cut in the body of $get is what prevents it from finding multiple object instances
that match the state of the object described in the head of the method. It is tempting
to leave this out, so that the choice point in recorded would find the next object that
matches. However, by the time we backtrack to recorded, the postponed goal in the
argument to undo has been executed, and it has just asserted a new object, It is too
much to expect the internal database to keep straight the different objects that are
retracted and reasserted, and to expect them to be brought out once each.

Since $state is just a call to recorded, it can be expected to generate all matching
objects on backtarcking. This is why methods that do not change objects, i.e. the
methods with head object literals that are translated to $state instead of $get, can be
nondeterministic.

The call to instance in $get is needed in case the object contains an unbound
variable. We could skip this call, and use State in the call to recorda in the goal
that puts the object back on backtracking, except there will be a problem if the object
contains an unbound variable. If it does, State will be the unification of the object
in the call and the object in the database, and the object that is restored will be this
unified object. In other words, even though the method fails, the object put back is a
less general instance of the original object.
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One would think that the call to recorded in the postponed goal in $put is redun-
dant. Why not use the database reference R returned by the call to recorda, and just
call erase(R) on backtracking? The reason is, by the time the call to erase is executed,

some other method may have been applied to the object, deleting it from the database.

Instead of finding the original term with reference R, it could find a completely different
object, or no term at all.
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