Downward Translations
of Equality

Christopher B. Wilson

CIS-TR-88-14
August 10, 1988

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Downward Translations of Equality

Christopher B. Wilson
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403 USA

Abstract

The main theorem of this paper gives a general technique for constructing an or-
acle which separates a deterministic and nondeterministic complexity class while the
classes at a higher level are equal. As a corollary of the main theorem we obtain a
result in [Book, Wilson, Xu, “Relativizing Time, Space, and Time-Space,” SIAM J.
Comput., 11(3), 1982, 571-581] that there is an oracle A such that P4 # NPA yet
DEXT# = NEXT*. Another corollary is that for some oracle A, DTIM EA(O(n)) #
NTIMEA(O(n)) and DTIME4(n?) = NTIM E4(n?). Some connections with sparse
sets are then discussed.

1 Introduction

It is known that if P = NP, then DEXT = NEXT. This follows from a simple padding
argument. In general, then, equality translates upwards (or inequality downwards). It is
not known whether equality translates downwards. That is, does DEXT = NEXT imply
P = NP7 In [1] there is shown the existence of an oracle set A for which P4 3 NP4 and
DEXT# = NEXT*. This indicates that such a translation may not hold and, if it does,
will require proof techniques which do not relativize.

In the next section we present the main theorem, which generalizes the result mentioned
above. We also discuss some applications of this to results in [2], which give the best known
characterizations of what DEXT = NEXT implies about the P versus NP issue.

The computational models used here are deterministic and nondeterministic Turing
machines equipped with the capability of making queries to an oracle, DTIM EA(f(n)) is
defined to be the class of languages accepted by some deterministic oracle Turing machine
relative to A in at most f(n) steps. Note that this differs from saying O(f(n)), since the
linear speed-up theorem does not apply to relativized computations. NTIA EA(f(n)) is
defined similarly. If F is a class of runtime bounds, then we define D(N)TIMEA(F) as
User DIN)YTIMEA(§(n).

2 Main Result and Corollaries

The main result is as follows.

Theorem 1 If g is ¢ monotonic function and F an enumerable class of run time bounds
such that

1. 3n < g(n) < 2" asymptotically,
2. Af € F, f(n) 2 2n asymptotically, and
3. Vf € F, f(n) < g(3 + 1)+ 2 asymplotically,

then there ezists an oracle A such that DTIMEA(F) # NTIMEA(F) and DTIM E4(g) =
NTIMEA(qg).

proof

The oracle A will be constructed in stages. At various points, strings will be reserved (or
placed into) A or A. Once a string is reserved, its status will never change. Occasionally
we will simulate a machine that will query the partially constructed oracle, and if an
unreserved string is queried, the oracle will answer ‘no’ to that string.

An index | = {i,j), which describes a deterministic oracle Turing machine M; with
runtime bound f; € F, will be cancelled when we ensure that M7 does not accept L(A)
in time f;. Initially, all indices are uncancelled. We also let N M; be an enumeration of all
nondeterministic oracle Turing machines.

In the proof we use a diagonal set L(A) and a complete set S(A), both based on the
oracle A. They are defined as follows:

L(A) = {=z : 3y, ly| = |z, 2y € A},
S(A) = {{i,z,0™) : NM? accepts z in < g(m) steps }.
We will separate the stages of the construction into odd and even stages. At
® odd stages we ensure that L(A) ¢ DTIMEA(F) and at
® even stages we ensure that y € S(A4) & y0oW) ¢ 4.
Since L(A) € NTIMEA(F) for any A, the odd stages ensure that
DTIMEA(F) # NTIMEA(F).
Since S(A) is complete for NTIM E4(g), the even stages guarantee that

DTIME*(g) = NTIME*(g).

Construction of A
Stage 0: A — 0

0dd Stege n = 2k + 1:
Find the least uncancelled index ! = (7, 7). The run-time bound of M; is f; € F. If the
following four preconditions are satisfied, then we will cancel index .

Cl fi(n)<glbk+1)+k+1

C22n<glk+1)+k+1

C3 n is greater than the length of the longest string queried at any earlier odd stage.
C4 fi(ny<2®

To cancel index], find an z (|z| = n) such that for no y (|y| = |z|) has ry been reserved.
Run M on z for f;(n) steps and place all unreserved strings queried into 4. If M?# accepts
z, then put all zy (ly| = |z|) into 4 (thus z ¢ L(A4)). Otherwise, put some unqueried zy
(ly] = |z|) into A (thus =z € L(A)).

Even Stage n = 2k:
For all strings y = (i,z,0™), |y| = k, run NM{ on x for g(m) steps. If it accepts, then
put y0?¢} into A and reserve for A all unreserved strings queried on one accepting path.
If it rejects, then see if adding (at most g(k)) strings to A will force NM# to accept
z. If so, then reserve those strings for A4, reserve y07*) for A, and reserve the remaining
unreserved strings on some accepting path for A. Otherwise, the behavior of N M# is
immune to later changes to the oracle set, so reserve y09(%) for 4.
end construction

We now have to prove that the construction is possible.

Point 1: An even stage does not impede the construction at the nezt even stage.

At even stage 2F, strings of length at most g(k) are queried (and so reserved). At the next
even stage 2(k + 1), strings of length g(k + 1) + k 4 1 (the y0908)) need to be unreserved.
Point 2: At eny even stage n, fewer than 2" strings are reserved.

When n = 2k, at most g(k) strings are reserved by any machine represented by any of the
2* encodings. So at most g(k)2* < 22 = on strings are reserved.

Point 3: At an odd numbered stage n = 2k + 1, less than 2" strings have been reserved by
previous even stages.

This follows from point 2 and noticing that T% | 2% < 2241 = 9,

Point 4: An odd stage does not reserve any y0oIv) ywhich may have to be reserved at the
nezt even stage.

This follows from preconditions C1 and C2.

Point 5: The construction at the even stages is possible.
Because of points 1 and 4.

Point 6: An odd stage does not affect the consiruction at the next odd stage.
By precondition C3.

It remains to prove that the construction at the odd stages is possible. Now only the
even stages cause concern, by point 6. So we must show that at stage n = 2k + 1, we can
always find some z such that for no y has zy been reserved. There are 2" different sets
H(z) = {zy : |z| = ly| = n}. By point 3, the number of strings reserved by all previous
even stages is less than 2%, Thus there must exist an z of length n for which no member
of H(z) is reserved.

Once such an z is found, we may still need to find some xy not queried at the end of
the stage (this ry may be placed in A). The number of strings reserved at this stage is, for

some j, at most f;(n) < 2" = card H(x), by precondition C4. So there will always exist a
y for which zy is not reserved.

Finally, note that for each index [, the preconditions C1-C4 will be satisfied infinitely
often, and every index will eventually be cancelled.
O

We should point out that if F' is a recursively enumerable class of recursive functions
and g is a recursive function, then the oracle A is itself a recursive set. The statement of
the theorem is a little technical. It does have quite a few interesting corollaries.

Corollary 2 ([1]) There is a recursive oracle A such that
PA £ NP4 and
DEXT* = NEXTA.
Corollary 3 There is a recursive oracle A such that
DTIMEA(2Fv="29) o NTIMEA (2P0 gng
DEXT4 = NEXT.
Corollary 4 There is a recursive oracle A such that
DTIME*(O(n)) # NTIME*(O(n)) and
DTIMEA(n*) = NTIMEA(n?).
Corollary 5 For each polynomial p(n), there is a recursive oracle A such that
DTIME*(O(p(n))) # NTIME*(O(p(n))) and

DTIME*(p(n)logn) = NTIME(p(n)logn).

Corollary 6 There is a recursive oracle A such that
DTIMEA(2n) # NTIME*(2n) and
DTIMEA(3n) = NTIMEA(3n).

In [5] there is the surprising result that DTIME(O(n)) # NTIME(O(n)) (unrela-
tivized!). Since it is not too difficult to construct an oracle for which these two classes
are equal, the result in [5] provides an excellent example of a proof technique which does
not relativize. Corollary 4 seems to indicate that even given the result in {5], it will re-
quire another nonrelativizing technique to prove that deterministic and nondeterministic
quadratic time differ. Thus, inequality does not smoothly translate upwards.

The well known linear speed-up theorem [3] is another result which does not relativize.
This is due to the fact that while we are free to increase the size of the alphabet of a
'Turing machine, the oracle itself is fixed, and thus queries cannot be sped up. This is why
corollary 6 appears to be anomalous.

3 Sparse Sets

In [2] it is shown that there are no sparse sets in NP — P if and only if DEXT = NEXT.
In [4] there is constructed an oracle A for which P4 # NP# and NP4 — P4 contains no
sparse sets. Since the result in [2] relativizes, the result in [4] and corollary 2 are seen to
be equivalent.

Other densities also are considered in [2]. We say a set S is s(n)-sparse if there are
at most s(n) strings in S of length n. A set is thus sparse if it it s(n)-sparse for some
polynomial s(n). In addition, we sometimes need to require the strings in a sparse set
to be uniformly distributed, thus defining a uniform s(n)-sparse set (see [2] for details).
It was also shown that there are no uniform n'*8"-gparse sets in NP — P if and only if
DTIME(2°0V™)) = NTIM E(200/™), Theorem 1 can now be applied to yield an oracle A
such that P4 # NP4 while NP4 — P4 contains no uniform n!%"-sparse sets.

An interesting open question is to generalize the results of [2]. Perhaps it could be
shown that there are no (uniform) 297" (F)-sparse sets in NTIME(F)—DTIME(F) if and
only if NTIME(g) = DTIME(g). The construction of theorem 1 could then be applied
to construct an oracle which separates a deterministic class from a nondeterministic one
in such a way that the difference of the two classes contains no sparse sets.

References

[1] R. V. Book, C. B. Wilson, and Xu M. R., “Relativizing Time, Space, and Time-
Space,” SIAM J. Comput., vol. 11, no. 8, August 1982, pp 571-581

[2] J. Hartmanis, V. Sewelson, and N. Immerman, “Sparse Sets in NP-P: EXPTIME
versus NEXPTIME,” Proceedings of the 15th STOC, 1983, pp 382-391

[3] J. E. Hoperoft and J. E. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979

[4] S. A. Kurtz, “Sparse Sets in NP-P: Relativizations,” SIAM J. Comput., vol. 14, no.
1, February 1985, pp 113-119

[5) W. J. Paul, N. Pippenger, E. Szemeredi, and W. T. Trotter, “On Nondeterminism

versus Determinism and Related Problems,” Proceedings of the 24th FOCS, 1983, PP
429-438

