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Abstract

In this paper we argue for a minimalist view of language design for Expert System
environments. In support of our arguments we present MIN, 2a minimal language which
extends the less-is-better philosophy of Scheme to include both object-based and rule-
based components. We discuss the strengths and weaknesses of MIN as an embodiment of
the minimalist philosophy, and point to other work supporting this view of language design.

1. Introduction

Our interest is in the integration of lisp-based, object-based, and rule-based language com-
ponents into a single framework. In this paper, we describe a language that attempts to
cleanly and simply represent all three.

There are three fundamental design principles that guide our work:

Principle 1: Less is better. Our goal is to provide the minimal number of primitive language
components to support lisp-based, object-based, and rule-based programming. In many
ways our approach is the antipode of languages like CLOS [Keene, 1988] and other Lisp
based AI shells, which attempt to provide a broad and complex set of functions to their us-
ers. Our work tests the opposite pole: is there a simple, minimal language that can act as the
foundation for more complex extensions.

We have chosen Scheme as our lisp-based component because of its balance of power and
simplicity. This paper, in essence, discusses our effort to create a similar balance in the ob-
ject and rule components of our language.
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Principle 2: Integration versus aggregation. Given Scheme as a foundation, our goal becomes
the integration of object-oriented programming (OOP) and rule-based programming (RBP)
into Scheme. In general, our goal is to avoid extensions to Scheme whenever possible, and
when forced to extend it, find sound justification for the extension.

Principle 3: Efficiency is a key concern. Our goal is to build an abstract machine model of
Scheme, RBP, and OOP that will act as the basis for efficient compilation and execution.
Such models exist for Scheme, object-based languages, and rule-based languages separate-
ly; our work attempts to integrate the three.

In the remainder of the paper, we will describe our language, MIN, and in particular, the de-
sign of its OOP and RBP components in relation to principles 1 and 2. A discussion of our ef-
forts to bring about an efficient implementation of MIN (principle 3) is taken up in a separate
paper [Fickas er al, 1988].

2. The Object Oriented Programming component

Following the principles above, the integration of OOP into Scheme has lead us to consider
the following implications:

. Objects should be first-class citizens.

. Slots should uniformly represent state and functionality, and of course, be first-class
citizens.

. Lexical scoping within the object system should be preserved whenever possible.

In defining MIN, we have chosen a delegation model of OOP [Lieberman, 1986] over a class-
instance model. The equivalence of the two models has been argued both informally
[Lieberman, 1986] and formally [Stein, 1987]. Our choice was motivated by our desire for
simplicity.

We have further simplified the delegation model as described in [Lieberman, 1986] by con-
structing objects solely out of two types of entities: generic slots that can represent both

state and functionality, and parent abjectsl. In particular, there is no distinct representation
of a methed.

1Bcnh the term parent objects here, and inheritance later, are misleading: the delegation model does not pro-
mote the class-instance view associated with either term. Lieberman would replace parent with prototype; we
preler shared objects. However, we will stick with parent and inheritance because of their common usage.

ZNotation: normal quote is represented by ’ ; quasi-quote or backquote is represented by ‘. A comma repre-
sents an eval-and-insert operation within a backquoted list.
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As an example, to define an object in MIN that represents a geometric point in space, we use
the folIowingZ:

{define slot1 (create-slot ‘( (name x-coord)
(value ,init-val-for-x)
(dtype real))))

(define slot2 (create-slot ‘( (name y-coord)
(value ,init-val-for-y)

(dtype real))))

(define p1 (create-object ‘{,point-operations) ‘(,slot1 ,slot2)))

The first argument to create-object is a list of objects to use as parents, in this case an ob-
ject point-operations, created elsewhere, that defines a set of operations on points. In gen-
eral, inheritance is based on pre-order traversal of the parent list.

Note that the variable point-operations is bound to another object - it is not simply a sym-
bol that somehow internally represents another object (c.f., Flavors [Moon, 1986]). In other
words, objects (and slots) are first-class in MIN.

The second argument is a list of slots. A slot is structured as a list of facets. Two facets,
name and value, are predefined; every slot must contain at least these two facets. The user
may define further facets to fit the application (e.g., dtype above).

Slots can be added after object creation using the add-slot! function. Conversely, slots can
be deleted from an object using delete-slot!.

Slot retrieval is accomplished using the primitive function get-slot, defined for all objects.
The arguments of the get-slot function are an object and a list of slot descriptors that de-
scribe, using facets, the slot or set of slots that are of interest. As an example:

(get-slot obj1 *((name slot1) dtype))

will return the slot which has a name facet whose value is slot1 and a dtype facet whose
value is anything. Multiple arguments are treated as a conjunctive description.

As another example,
(get-slot obj1 ‘((value ,pattern-val)))

will return all slots that have a value facet equal to the value of pattern-val.

A null list of facet descriptors is read as unrestricted lookup, and will cause a list of all slots
of an object, including ones inherited, to be returned.

(get-slot obj1 ‘()
—=> <list of all slots accessible from obj1>

A slot itself, can be accessed through the functions add-facet!, delete-facet!, get-facet,
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and set-facetl.

We have now discussed one half of an object, its slots. That leaves us with the second half,
its list of parents. One can access the parents of an object as follows:

(get-parents obj1)

This returns a list of objects that are the immediate parents of obji. One can also reset the
parent list, destructively altering the inheritance hierarchy:

(set-parents! obj1 ‘(,obj2 ,0bj3)})

Finally, there is a message defined for searching just the slots attached directly to an object,
in essence, ignoring inheritance.

(get-local-slot obj1 ‘((value ,pattern-val)))

In conjunction with the get-parents function, we can use get-local-slot, among other things,
to experiment with other inheritance schemes than the standard pre-order traversal built into
get-slot.

This completes the set of primitive functions defined for objects and slots in MIN.

2.1 Methods

In some sense this section could be omitted: there are no intrinsic method types in our lan-
guage. However, it is clear that some type of procedural mechanism must be associated with
an object. We use lexical closures, in conjunction with our generic slots, to implement this
OOP component in MIN,

In particular, a ‘‘method’’ can be defined by storing a Scheme lexical closure within a slot.
As an example,

(define method1 (lambda (x) (+ x 1)))

(add-slot! obj1 (create-slot ‘((name meth1) (value ,method1))))

will add a new slot methl to objl whose value is the procedure which adds 1 to its single ar-
gument. To use this method/procedure, we do the following:

{(cadr {get-facet (car (get-slot obj1 ’((name meth1)))) 'value)) 6)
==> 7

To simplify subsequent examples, we will define the following functions to carry out getting a
slot value and applying a method.
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(define get-siot-value (lambda (obj slot-name)

(let* ( (slots (get-siot obj ‘((name ,slot-name)))) list of slots
(slot {car slots)) first slot
(facet (get-facet slot 'value))) ;facet pair

{cadr facet)))) ;value

(define send (lambda (obj slot-name . rest)
(apply (get-slot-value obj slot-name) rest)))

It is important to note that a procedure placed in a slot carries normal lexical closure. Thus,

(define obj1 (create-object {...) ...))

(let* ( (secret-password 'Portland-in-5)
(method2 (lambda (p x) (if (eq? p secret-password)
(+x1)

o)

{(add-slot! obj1 (create-slot ‘((name meth2) (value ,method2)))))

will place the lexical closure of method2, including the binding of secret-password, into the
value facet of the meth2 slot of obj1, no matter where objf1 was initially defined.

2.2 Self

We have yet to provide a way for a procedure in one slot to reference other slots. For in-
stance, suppose we are given the following objects:

(define obj1 (create-object () '())
(define obj2 (create-object ‘(,0bj1) *((x 1) (y 2)))

(define obj3 (create-object ‘(,0bj1) *((x 5) (y 6))))

and now want to add a methed to obj1 that will return the sum of a pair of x and y slots, and
multiply the result by some constant:
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(let* ( (constant 5)
(add-mult <method>))
(add-slot! obj1 {create-slot ‘((name addxy) (value ,add-muit))}))

(send obj2 addxy <method args>)
==> 15

(send obj3 addxy <method args>)
==> 55

What should be the value of <method> above? Qur first approach at defining <method>
might be as follows:

(lambda (} (* (+ x y) constant)}

where <method args> in the send call would be unneeded. This captures the notion that
constant is lexically scoped, but the scope of X and y remain problematic.. In particular, we
want X and y to be looked up dynamically, depending on which object is invoking the method.

We could force X and y (and all other slot references) to come in as arguments (see, for in-
stance, [Adams&Rees, 1988]). Hence, <method> would be defined as

(lambda (x y) {* (+ x y) constant)
and the actual method invocation would be

(send obj2 addxy (get-slot-value obj2 'x) (get-slot-value obj2 'y))
==> 15

(send obj3 addxy (get-slot-value obj3 'x) (get-slot-value obj3 'y))
==> 55

This approach is cumbersome in cases where there are a large number of slot references
within the body. It also forces an eager and potentially inefficient lookup policy.

What we propose is to allow a procedure body to reference a variable, self, freely, i.e., as if it
was within the lexical scope of the procedure. The system will bind self to the correct object,
and place self within the lexical scope of the method ar run time. With this approach,
<method> becomes

(lambda (xy) (* (+ (get-slot-value self 'x)
(get-slot-value self 'y)) constant))

and method invocation becomes
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(send obj2 addxy)
==> 15

(send obj3 addxy)
==> 55
In the first call on send above, self is bound to 0bj2; in the second it is bound to obj3.

To implement this use of self, we provide a primitive MIN function, extend-closure, that
takes as arguments an existing procedure (closure) P and a list of variable-value binding
pairs B. It returns a new procedure P’ that consists of the environment of P extended to in-
clude B as an enclosing environment of P. This can be used to implement the following alter-
native form of get-slot-value:

(define get-siot-value {lambda (obj slot-name)
(let" (  (slots (get-slot obj ‘((name ,slot-name)))) ;list of slots

(slot (car slots)) first slot
(facet (get-facet slot ‘value)) ;facet pair
(facet-value (cadr facet))) ;value

(if (procedure? facet-value)
(extend-closure facet-value ‘((self ,obj)))
facet-value))))

Note that the extend-closure function can be used to define other types of ‘‘free dynamic
variables’” as if they were lexical. For example, with the right call to get-parents, we can
define a new form of get-slot-value that includes super:

(define get-slot-value (lambda (obj slot-name)
(if (procedure? facet-value)

(extend-closure facet-value ‘((self ,obj) (super ,parent)))
facet-value))))

A more detailed discussion of the issues of mixing the lexical scoping of Scheme with the dy-
namic scoping of OOPS is presented in [Fickas et al, 1988).
3. The Rule Based Programming component

As with integrating OOP into Scheme, our goal is to avoid extensions specific to RBP alone.
This has lead to the following implications:

. Rules should be objects (that match on other objects).

. Databases should be objects (containing other objects).

. Rule matching must be integrated with our delegation model of objects.

. The components of a rule-based system (rbs) should be objects. This includes data-

bases and procedural components, e.g., matchers, conflict resolvers, rule invokers.



Page 8

. A rbs, itself, should be an object.

The representation of a rule-based system in MIN is the rbs object. The rbs object consists
of the following slots:

rbase: value is a rule database.

fbase: value is a fact database.

matcher: value is a matcher-object.

c¢s: value is a rule-instantiation database.
conflict-resolver: value is a conflict-resolver-object.
es: value is a rule-instantiation database,

engine: value is an engine-object.

All databases (rbase, fbase, cs, es) share, through delegation, the same general object, ob-
ject-collection. Procedural objects (matcher, conflict-resolver, engine) share the same gener-
al object, rbs-method.

The engine-object specifies the overall control cycle of the rbs. The default engine in MIN
models the forward chaining control cycle such as found in OPS-5 and YAPS:

1. A set of rules is gathered from a rule-base.

2. A setof facts is gathered from a fact-base.

3. A matcher is called to generate the conflict set.

4. A conflict resolver is called to filter the conflict set, producing the execution set.
5. The execution set is sent to a rule invoker, causing rule actions to be carried out.
6. The cycle repeats.

Any rbs slot can be changed at run-time. Typically this involves changing the rule-base or
the fact-base. However, it is also possible to change the other slots, including the matcher or
even the engine.

3.1 Rules

A rule consists of a condition part and an action part. The condition part, in turn, consists of a
set of object pattern-matching clauses (declarative) and a set of matching filters
(procedural). The action part of a rule consists of one or more evaluatable MIN expressions.

The primitive function create-rule is used to define a rule:

(define rule1 (create-rule (<clausel> ... <clausen>)
( <filter1> ... <filterm> )
( <action1> ... <actionk> }))

Each <clause> has the following form:
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(object-label (slot-name slot-value) ... (slot-name slot-value))

The object-label is optional; if present, it is bound to whatever object matches the clause.
The slot-name and slot-value can be either a literal or a pattern variable. Thus, object
matching is fully associative on the two facets name and value.

Rule clauses match on objects in object-collections. Object-collections are objects that can
hold any MIN object. Thus, rules can match on application objects and rbs objects as well,
e.g., other rules, rule instantiations, rbs-methods, other object-collections, or even other rbs
objects.

The actions of a rule are invoked within the lexical scope of the rule. Thus, the action (foo -x -
y) in rule1 would look for -X and -y in the clauses of rulel. Of course, references to -X or -y
within the body of f00 will be resolved in the environment where foo is defined, i.e., foo itself
retains normal lexical scoping.

Rules, being first class objects, can be passed as values, and shared among various rule-
bases:

(send rbasel 'add-object rulei)
(send rbase? 'add-object rulet)

3.2 Object collections

The MIN object object-collection is a generic representation for a heterogeneous collection of
MIN objects. Individual object elements within the collection are stored as slots with a facet
of (stype object-element). The object collection has three major benefits and at least one
major drawback. The benefits first.

Benefit: Gathering the objects in an object collection is trivial:

(get-slot db1 ’((ftype object-element)))
==> <list of all objects visible from db1>

Benefit: Object lookup can be integrated with delegation:

Thus, in the previous call to get-slot, we will return not only the objects in the object-collec-
tion db1, but also any objects seen by db1 through delegation. This allows us to share data-
bases in arbitrarily complex ways. For instance, we might set up a global database as a type
of blackboard shared by all rbs objects, and at the same time, allow each individual rbs to de-
fine its own local database. It we link the local databases to the global one, through delega-
tion, then we have a public-private rbs architecture. A wide variety of other architectures are
possible.

Benefit: Object collections can be shared, in interesting ways, among rbs.

As discussed above, the same object collection can be shared among various rbs. Thus, the
same collection of rules or facts can be shared, either by direct installation or through delega-
tion, by more than one bs.
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Typically such sharing is uniform: two rbs use an object collection as a joint fact base or a
joint rule base. However, this does not have to be the case. For instance, the rule-base of
rbs1 can be used as the fact base of rbs2, where rbs2 may contain its own rule base that at-
tempis to add, delete, or refine the rule base of rbs1 (as noted, object-collection is pre-
defined by the system):

(define dbshared (create-object ‘(,object-coliection) ... ))

(define rbs1 (create-object ‘(,rbs) ‘( (rbase ,dbshared)
(fbase ,facts) ... )})

(define rbs2 (create-object ‘(,rbs) ‘( (rbase ,refinement-rules)
(fbase ,dbshared) ... )))

In another example, the same object collection may be used by rbs1 as a conflict set, and by
rbs2 as a fact base. Here, we would expect rbs2 to be the conflict resolver of rbs1, i.e., rbs2
would be installed in the conflict-resolver slot of rbs1 (an rbs object can act as an rbs-meth-
od as well):

(define dbshared (create-object ‘(,object-collection) ... ))

(define rbs2 (create-object ‘(,rbs) ‘( (rbase ,meta-rules)
(fbase ,dbshared) ... )))
(define rbs1 (create-object ‘(,fbs) { (rbase ,rules)
(fbase ,facts)
(cs ,dbshared)
(conflict-resolver ,rbs2) ... ))

Drawback: A simple RETE style matcher will no longer function in the face of our more gen-
eral view of RBP in MIN.

The original RETE algorithm was devised for a single rbs working on a single fact base with
a single rule base [Forgy, 1982]. In MIN, we have generalized this to a rule-based system
where 1) more than one rbs may be extant at any one time, 2) object collections can be
shared among rbs, and 3) delegation can be used in object lookup during matching.

If we wish to retain the benefits of doing incremental matching in a RETE style, then we
must devise a more general model of incremental matching. We have done so - the details
are discussed in [Fickas et al, 1988]. Briefly, we allow an rbs that uses an object collection
to register with that collection. This registration includes a time stamp indicating the last
time at which the rbs was updated. The object collection will then keep track of changes
since that time, and provide the changes on demand when the rbs is ready. While this two
sentence explanation leaves out many details, two aspects of our matching algorithm war-
rant emphasis: 1) it is lazy in that changes are only supplied to an individual rbs on demand,
2) it avoids direct pointers from object collections to the rbs that employ them. Both of these
appear to be necessary features in several distributed models of MIN that we are exploring.
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4, Related work

There are two projects that have explored the integration of OOP with Scheme:
[Lang&Pearlmutter, 1988], [Adams&Rees, 1988]. Both have made strong contributions to
the area. One might view MIN as an attempt to bring together the best of both of these
projects — the uniform view of objects and methods as first-class in Oaklisp, and the delega-
tion based model of OOP in T -- while following the minimalist philosophy laid out in section
1

Also related to the OOP component of MIN, the Self language [Ungar&Smith, 1987] is based
on the integration of a delegation model within a Smalltalk like language. As with our lan-
guage, Self makes no distinction between ‘‘state’” slots and ‘‘behavior” slots. One of the
main arguments put forth in the Self project is that of unification: lexical scoping and closures
can be unified with delegation-based inheritance. While this is a seductive goal -- for in-
stance, aren’t the environment diagrams of Scheme [Abelson&Sussman, 1985] just inherit-
ance graphs -- we do not believe that Self has demonstrated this unification, nor are we con-
vinced that it is desirable. In particular, our view is that OOP is inherently dynamic in nature.
While it may be possible to mutate an QOP system to model Scheme, we expect that the re-
sulting system would no longer be object-oriented in nature. In short, we believe that there
is a place for both OOP style and Scheme style semantics in a single language.

Regarding the RBP component of MIN, the foundations of our approach were first presented
in [Fickas, 1985]. Later work attempted, on a more limited basis, to integrate a Smalltalk
view of OOP with RBP [Laursen&Atkinson, 1987].

5. Conclusions and future work

What we have presented in this paper, in reality, is a philosophy of language design for Al
environments (among others), and a first prototype language built under that philosophy. We
can make no claims that the prototype is the simplest or most minimal: the former would re-
quire quite subjective criteria, and the latter arguments from abstract language theory that
we find of little practical interest at this point in our project. What the prototype can demon-
strate is the outcome of a diligent effort to follow the less is berter philosophy. As with
Scheme, our design of MIN has been driven by a desire of elegance through simplicity. While
it is clear to us that we have not fully achieved our goals in MIN -- debate within our group
about almost every MIN component continues unabated -- we remain convinced that they
are worthy goals to pursue.

Conversely, we note that work on complex languages such as CLOS plays a valuable role:
they explore the type of functionality we must eventually provide to build practical systems.
In our project in particular, CLOS is one of several target systems that we feel we must be
able to construct on top of MIN to be successful.

The MIN system -- the extended Scheme abstract machine, the OOP component, the RBP
component, and a copy-based garbage collector -- is implemented in C and MIN (taking a
minimum of 512K bytes), and has been ported to UNIX based, Mac, and PC hardware.

The majority of our current effort goes towards refining the components of the MIN system,
and studying means for their efficient implementation. We also have started work on the ad-
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dition of a logic-based component to MIN, modeled as just another rbs object [Doerry, 1988].
The interesting aspect of this work is the concept of multipie Prolog-style systems 1) in ex-
istence simultaneously, and 2) sharing databases. Each of these ideas has seemed to flow
naturally and simply from the root MIN implementation.
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