On the Decomposability
of NC and AC

Christopher B. Wilson

CIS-TR-88-17
November 29, 1988

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON



On the Decomposability of NC and AC

Christopher B. Wilson*
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403 USA

Abstract

It is shown for rationals a,b > 1 that NCNCe = N Cats-1- As a consequence, if,
for some & > 1 and € > 0, NCy = NCpy,, then NC; = NC. A similar development
can be applied to circuits with unbounded fan-in. It is seen that ACACH = AC,,,,
ACiVC" = NC,4p, and NC;,“C“' = ACaé_—b-l- This shows for ¢ > 0 and b > 1 that
ACACy = N C'f_l_l" and ACNCv = N Cﬁ_l”. We then construct an oracle A for which
Vk, NC{ C AC# and, in fact, ACH - .NCZ",';‘_,,e # 0 for any ¢ < 1. Similarly, there is an
AsothatVkand e < 1, NC{,, — ACA, . #0, and hence ACAC N Cfﬂ. Combining,
this yields an A4 such that, for all k and 0 < € < 1, the classes AC# and NCg,, are
incomparable,

1 Introduction

In recent years the class NC has been established as one of the preferred characterizations
of those problems with very fast parallel algorithms using a reasonable amount of hardware.
It is a remarkably robust class, being invariant when defined on quite different models of
computation. The most common models are PRAMs with shared memory and uniform
Boolean circuit families (see [5,7]). As we are concerned here with some detailed structural
theorems about the N C hierarchy, we will use the more basic model, that of circuits. The
structural issue in question is whether it is possible to decompose any level of NC into
components involving lower levels. We answer this affirmatively.

NC} is defined to be the class of languages which are accepted by uniform families of
circuits with bounded fan-in whose size grows polynomially with the length n of the input
and whose depth grows proportional to log* n. The classes of particular interest are N C.
supplied with an oracle from NC;. First we see that this is contained in N Catb-1 50 long
asb>1. Thenfora>1andb>0, NCayp-1 can be expressed as NC, relative to NC,.

*Partially supported by NSF grant CCR-8810051



This provides characterizations of N C similar to those available for the polynomial time
hierarchy PH. The polynomial hierarchy was originally defined in terms of one complexity
class relative to another, and in [10] there was provided a characterization of each level
in terms of polynomially bounded alternating quantifiers applied to a polynomial time
computable predicate. Here NC is defined in terms of increasing depth, and we show that
there is an equivalent characterization in terms of one level of NC relative to another.

Using the above development, we get as a simple corollary a result first proved in [4]:
for integers k > 1 if NCi = NCjyq, then NC, = NC. This provides a structural analogy
with the polynomial hierarchy: if Zf = 2f,,, then &f = PH. However, the NC hierarchy
need not be discrete since we can surely examine N Cj for & rational or real (here rational
for reasons of constructibility). As a corollary of the main result are able to show for
rationals & > 1 and € > 0 that NC}, = NC;,, implies NC; = NC.

The class ACy is the same as NCj except that unbounded fan-in gates are allowed.
In section 6 these techniques above are applied to the AC) classes. It is shown that
ACHC = AC,44, ACNC» = NC,,p, and N CAC = AC,,y_y. This has several interesting
consequences, one being that the AC hierarchy may collapse in the same way as the NC
hierarchy: for rationals k > 0 and € > 0, k+ ¢ > 1, if AC; = ACp4., then AC, = AC.
Another consequence is for rationals @ > 0 and b > 1 that ACA% = NCA% and ACNCs =
N Cﬁﬁ". That is, an NCpyq reduction provides no more power than an AC) reduction
when acting on any level of NC or AC.

In [12] there was constructed an oracle A such that Yk, NC# C NCZ ;. In section 7 we
take that development considerably further. The same oracle A shows that Vk and € < 1,
ACH — NCp,, # 0. So in particular, NCff C AC{. A different approach to oracle based
languages allows us to construct an A for which Vk and e < 1, N Cf, —ACH  #0, and
hence AC{ C NCf,,. The first construction allows an unbounded fan-in circuit to query
a long sequence of large strings. The second construction takes advantage of the fact that
a bounded fan-in circuit is charged less for a short query than for a long one, which is not
true in the unbounded case. The two constructions can be combined to produce an A such
that for any k and 0 < e < 1, AC{! and NC{,, are incomparable.

2 Definitions and Notation

A Boolean circuit is an acyclic directed graph whose nodes are labelled with an operator.
Nodes of indegree 0 are labelled as either input or constant gates, and those of outdegree 0
are output gates. Nodes of indegree 1 are negation or identity gates, while those of indegree
2 are and or or gates. No nodes in the graph will be allowed to have indegree greater than
2. A node may be both an output gate and perform an operation. Since we are primarily
interested in deciding set membership, the circuits of use to us have only a single output
gate. The circuit accepts an input string if the length of the string in binary is the same
as the number of input gates of the circuit and the circuit outputs the value 1 when given



the string on its input gates.

The size of a circuit is the number of nodes it contains and its depth is the length of the
longest directed path in the graph. Intuitively, the size can be thought of as measuring the
use of the hardware resource while the depth is a measure of parallel time. A circuit family
{an} accepts a set L if, for all n, a, has n input nodes and accepts only those strings in
L of length n. The circuit family has size s(n) and depth d(n) if size(a,) = O(s(n)) and
depth(ay) = O(d(n)).

Another requirement put on circuit families is that of uniformity. This can be described
in several ways, as covered in [9].

Definition 1 A circuit family {an} is u(n)-uniform if there is @ deterministic Turing
machine which on any input of length n outputs an encoding of o, using O(u(n)) workspace.

A circuit family is Up uniform if it is depth(ay,)-uniform, and it is Uge uniform if it is
log(size(an))-uniform. Other more complicated but technically more appealing notions of
uniformity involve determining the structure of the circuit’s connections on an alternating
Turing machine [9]. We will adopt Upg uniformity in the definitions below.

Definition 2 NC; = U(logn)-DEPTH (log* n)
Definition 3 NC =22, NC;

There is a slight deviation in notation here. NC), is normally written as NC* - here
we will leave room for an oracle as superscript. Also notice that the size of the circuits
is not explicitly restricted to be polynomial. This, however, follows automatically from
the uniformity condition. A Turing machine operating in O(logn) space will only run
for polynomial time (if it is going to halt), so will only be able to output descriptions of
polynomial size circuits.

The notion of allowing an NC circuit access to an oracle has been addressed in [5,12].
The circuit is allowed oracle gates through which it can determine the membership of a
string in the oracle set. An oracle gate which has k input bits (sufficient for determining
membership in the oracle of any string of length k) is defined to have size k and depth
[log, k]. If X is a set, we denote NC; relative to X by N C{. If C is a class of sets, then
NC§ is Uxee NC¥. The uniformity condition will be unaffected by the presence of an
oracle. The Turing machine which acts as a constructor of the circuit family will not have
access to the oracle. This issue is discussed in greater detail in [12).

This is directly analogous to the notion of N C)-reducibility defined in [5], where the
reduction is from function to function.

Definition 4 A is NC-reducible to B, A <V B, if and only if Ae NCE.

An unbounded fan-in circuit, which we will abbreviate hereafter as a UBF circuit, is
a Boolean circuit as above but with no restriction on the indegree of any node. A class
directly analogous to NC can be defined on this model.



Definition 5 AC, = U(logn)-UBF DEPTH(log" n)
Definition 6 AC =2, AC;

It is not too hard to see that for any £ > 0, NC, C ACL C N Cry1- A discussion of this
class and related issues can be found in [5]. It is also known that the PARITY function
is not in ACq ([6]). This separates AC, from NC; and AC), but is the only known such
separation, aside from the obvious NCy # AC,.

To handle an oracle in AC}, we will allow oracle gates as above. As in [3], however,
- the size and depth of this gate is 1. (This is similar also to [4].) Intuitively, this adheres
to the spirit of unbounded fan-in, as we can also compute the and of k bits in depth 1.
On a bounded fan-in model, the k-bit and requires depth logk, as it does to determine
membership of a k-bit string in an oracle.

All logarithms are to the base two. In fact, by logn we will mean the function

max(1, [log, n]).

3 NC Oracles

Initially we address the issue of allowing NC to have oracles from NC. That 1s, we want
to know how complex a set in NC% can be. This has been partially addressed in [5],
where it is seen that NC} is closed under <¥€ which is to say NCN = NC,. Adapting
the proof of that result yields NCNC C NC,;. This can be considerably sharpened. First,
however, we need a technical lemma.

Lemma 1 Given b > 1 and integers Zy,Tay...,TNe Such that Vi,0 < z; < N and
12 S N°, the mazimum value YN 18 can obtain is No+b-1 4 N°.

proof
Suppose b > 1. We can see that 3%, z? is maximized subject to the given constraints
whenzy = .=z, =Nand a4y = - =ape = 0, for appropriate k. That follows from

claim: f z >y —e>0and e > 0, then (z + ) + (y — €)® > zb + 4.

The claim is seen by examining f(z) = (2 + €)® — zb. A look at the derivative fi(z) =
b((z + €)*~! — zb71) indicates, for positive z, that f is an increasing function when & > 1.
Thus, since z > y — € > 0, f(z) > f(y — ¢) and the claim follows.

In particular, the claim says for integers z > y > 1 that (x + 1)+ (y — 1)° is no less
than 2® + y*, The sum is maximized when we first make z, as large as possible, then z,,
and so on until we would violate the constraint 2?:1 z; £ N°. Since the maximum value
obtainable by an z; is N, this will happen when k = I_%J Since a may not be an integer,
there may be some remainder: z;,; = | Ve — kN. The z49 through zx. will all be zero.
When the z; are chosen as above to maximize the sum,

4



k41
Yozl = kNP4 (|N°|-kN)

=1

< _ab e __ __a_ b
< FNHW - (- )V
=Nu+b-1+Nb.

O
Theorem 2 For b>1, NCN® C NCy, where k = max(a 4 b — 1,b).

proof

Consider an O(log® n) depth circuit with queries made to a language in NC;. Look
at any path from an input to the output. It has length O(log®n), so the series of queries
a1, ..., ¢, made on that path must satisfy %, log || < ¢ log®n. Each query g; has length
at most polynomial in n, so log|¢g;] < dlogn. (Assume here that ¢ = d% if this is
not true, either ¢ or d can be increased to ensure it.) We will replace each query with
an NCy circuit. In the new circuit, after replacement, the length of the path will be the
maximum of O(log® n) (from the part of the path excluding the queries) and 3%, elog® |
(caused by replacing the query by an NC, circuit). The latter value has maximum value
e(d logn)***~1 + ¢(d logn)?, seen by letting @; = log |¢;| and N = dlogn and applying the
previous lemma (notice that N* = clog®n). Since b > 1, we havea +b—1 > a, so the
depth of the entire path becomes O((log n)*+*~1 + (log n)?).
(]

4 Splitting Circuits

To show a containment in the other direction, we must take a uniform circuit family and
be able to divide each circuit into arbitrarily sized uniform subcircuits.

Theorem 3 NCoypy C NCN for rationals a > 1 and b > 0.

proof

Let us assume that b > 1. Otherwise, if 0 < b < 1, then trivially NCpyy.y € NC, C
NCNGCs,

Given a language S € NC,y4-1, look at the family {a,} of circuits accepting it. The
@y are generable by a Turing machine M, in space O(logn) from any input of length n,
and each a, has depth ¢(log n)***~! for some constant c. Suppose that M, on an input of
size n outputs a sequence of p tuples of the form (i, I;, r;, t;), where /; and r; are the inputs
. to gate 7 and ¢; indicates the type of gate i. In a fixed oy, let dist(i) be the maximum
distance of gate i from an input gate.



We will demonstrate the existence of an NC, circuit family using an oracle from NC,
and behaving the same as {a,}. This will show that § € NCN. The idea is to divide
each ay into clog®™* n levels each of depth log’n. We then provide the computation of
each level as an oracle. Since each query will have at most polynomial length, the depth
of each query will be O(logn). There are at most clog®~! n of them in any series, so the
resulting relativized circuit has depth O(log® n). This NC, circuit family is easily seen to
be logn-uniform.

A problem arises with the N C} subcircuits. It is not at all clear that they are uniform
since generating them requires determining the depth of each node in a,. This seems to
require transitive closure, a problem complete for NL and not known to be solvable in
O(logn) deterministic space. Instead we use a technique found in theorem 12 of [1] to
construct from «, an equivalent circuit 8, with a very regular structure which can be
easily subdivided.

Let I{ = c(log n)***~! be an upper bound to the depth of a,. Also let p = p(n) bound
the number of gates in a,,. The circuit f, consists of K levels, each of p gates, one for each
gate of a,. Each level takes all its inputs from the previous level. Each level L; consists
of gates g;1,852:+ .+, 9jp-

In Lo, if gate i is an input node, then gate go; will be a single gate, labelled as an input
gate. Otherwise, gate go; will be a constant 0 gate.

At level L;, for j > 1, each gate g;,; will take as inputs g;_,, and gi—1,;- That gate will
compute g;_1 4, ©¢j-1,,, where ¢ is the operation determined by #;. Other gates of indegree
1 and 0 can be handled in an entirely similar manner. However, if i is an input gate in a,,
then g;; will perform the identity operation on input gj~1,i- This way, the original input
values are passed from level to level.

Figure 1(a) illustrates a sample circuit. Figure 1(b) shows the transformation of that
circuit. The circled nodes indicate which nodes are relevant in the simulation of the original
circuit.

The fact that g, performs the same as a,, can be shown by induction on the depth of
the gates of a,,. This follows from

claim: If dist(i) < j, then gate g;,i of B, outputs the same value as gate i of a,,.

The claim is seen by induction on j. If disi(i) = 0, then 7 is an input and gate 9o,; provides
that input. Suppose then that dist(s) < j for j > 1. If i is an input gate in a,, then
by definition g;; provides that value. For i not an input, look at its left l; and right »;
- predecessors. Since dist(l;) < j —1 and dist(r;} < j — 1, by the inductive hypothesis g;_, 4,
and g;_1,, yield the same values as [; and r; in a,. Gate g;,i computes the same operation
on those values as gate 7 in a,, does.

The circuit family {8,} thus accepts S. Each f, is split into subcircuits By, By, ...,
B \oga-1,- Bo is simply Lg. Subcircuit B; consists of levels L-1)10g nt1 through Ly o .
Each of these B; is now log n-uniform, so each computes a function f; in NC,. Here we



(2) (b)

Figure 1: A circuit and its transformation

see the need for a and b to be rational, for otherwise those levels could not necessarily be
determined. The language

F={<y,i,0> | thei™ bit of fi(y)is1}

is also in NC,, since b > 1. Using F as an oracle, there will be an NC, circuit accepting
S.
(W]

In the previous proof, notice that we split up the circuit and provide each level as an
NC, oracle. Unfortunately, each of these correspond to separate languages, but the circuit
can query only one language. As in [4], we provide information about all the languages
encoded into the language F. To perform the selection, we need at least O(logn) depth,
which is why & > 1 was necessary in the construction above. This problem also arises
below in theorem 12(b,c) when dealing with AC.

5 Main Theorem and Applications
The main theorem follows directly from theorems 2 and 3.

Theorem 4 For rationals a >1 and b> 1, NCayp—y = NCNCs,

As corollaries to theorem 4, we get fairly simple proofs of some other structural prop-
erties.

Corollary 5 ([5/) NCy is closed under <N© for k> 1.



proof
NCY% = NCyyrr = NCy
m]

Corollary 6 ([4]) Let k > 1 be an integer. If NCy, = NCjy,, then NC, = NC.

proof
First note that

NCis2 = NCy = NCINC* = NCiyy = NC,.
The fact that NCy = NC follows by induction via this process.

a

The proof of the corollary 6 provided in [4] works only when & is an integer. As a minor
improvement, our characterizations provide for a more general case.

Corollary 7 Let k > 1 be rational. If NCy, = NCpyq, then NCy = NC.

proof

The proof is identical to that for corollary 6.
(]

We can also show under weakened assumptions that NC will still collapse. Consider
for example the assumption that NC35 = NC;. Then

NCys=NCIZ = NCNC*s = NC, = NC;3,
so by corollary 7, NCas = NC. This can be generalized.
Theorem 8 Let k> 1 and e > 0 be rationals. If NC;, = NCyy., then NC, = NC.

proof
We will start to decompose NCj,q:

NCiy = NG = NCN* = NCiyr_.

2-¢
NC, NC
= N Cz—z;“ =N C'2-2'2 =N Cly1-2e
= NCk+1—ce

after c iterations of this process. We must choose an integer ¢ so that 2 — ce > 1 (recall
that theorem 4 needs e > 1) and k+1—ce < k +e. Choosing cin the range 1 —1 < c < 1
will work. Therefore
NCiy1 = NCry1-ce © NCiyo = NC;.

Corollary 7 now yields the fact that NC, = NC.
a

The powers need not always be rational. The theorems above would hold for reals
satisfying certain space-constructibility constraints (such as requiring a sufficient number
of bits, dependent on the length of the input, to be computable in O(logn) space). The
previous theorem also holds for arbitrary reals.

8



Corollary 9 Let o > 1 and § > 0 be real numbers. If NC, = NCyys, then NC, = NC.

proof
If a = 1, then it is obviously rational. Pick rational ¢ € (0, §] and apply theorem 8. If
a > 1, then choose rationals k and e satisfying k > o, € > 0, and k£ + ¢ < @ + 6. This can
be achieved by picking & € [a,a + £] and ¢ € (0, £]. Note that k+e< a+ £+i=a+s.
Then
NCite € NCoys = NC, C NC,.

Because NCj = NCpy. and k > 1, we can apply theorem 8 and see that
NC=NCy=NC;  CNC,45 = NC,.

a
Theorem 8 can, under a weaker assumption, show a collapse of NC below NC;.

Corollary 10 Let k > 0 and € > 0 be rationals, k + ¢ > 1. If NC, = NCyy., then
NC, = NC.

proof

If & > 1, then theorem 8 applies. If k < 1, then NCi;. = NC; € NC,. In other words,
NC; = NCyy¢, where £ = k+€—1 > 0. Theorem 8 shows that NC = NC, CNCiye =
NC,.
a

6 Unbounded Fan-In Circuits

In this section we apply the previous development to the class AC. First, we will point
out that the standard containment of AC} in N C41 holds for any oracle.

Lemma 11 For any oracle A and k 20, NCA C AC{ C NCL,,.

proof

The first containment is trivial. To see that ACf! C NC{,,, we can expand the and and
or gates into a bounded fan-in tree. This will increase the depth by a factor of O(logn).
Charging log k rather than 1 for the depth of an oracle gate of size k will likewise add a
factor of O(logn). In both instances, recall that the size of the AC} circuit is polynomial
in n.
O

Similar to theorems 2 and 3, we can see what happens when we give NC, and AC; to
NC, and AC, as oracles.

Theorem 12 (a) ACAC C AC,,; fora>0 and b > 0.



(b) AC,yy C ACAC: for rationals a > 0 and &> 1.
(¢) NCoys € ACNCs for rationals a > 0 and b> 1.
(d) NCAC C AC, 44—y fora>1 and b> 1.

proof

(a) In a UBF circuit of depth O(log®n), look at the series of queries to AC, made on a
path from an input to the output. There are at most O(log®n) of them, since each has
depth 1. At worst, they are polynomial in size, so we will replace each by a UBF circuit of
depth O(log’ n). The resulting UBF circuit is log n-uniform and has depth O((log n)**?).
(b) The uniform levelling technique in theorem 3 applies just as well to UBF circuits. In
the same way, we can take a circuit of depth O((log n)***) and split it into O(log® n) levels
(each log n-uniform) of depth log’ n. Each computes a function f; (1 < 1 < Oflog® n)) in
ACy. The set

F = {{y,1,1) |thei* bit of fi(y)is1}
is also in AC} so long as b > 1. The queries to F have depth 1, so the set accepted by the
original circuit family is in ACT.
(¢) The same levelling technique used in theorem 3 and in the previous paragraph applies

here. The O(log” n) queries to NCj are of polynomial size but are made by a UBF circuit
in this context. Each will have depth 1.

(d) Here we replace a series of queries in the NC, circuit by AC), circuits. The result will
be a UBF circuit. Its depth will be O((log n)?+*~1) by an appeal to lemma 1 as in theorem
2.

(]

Now we are able to provide other characterizations of NC} and AC} as in theorem 4.

Theorem 13 Let a and b be rationals.

(a) ACHC: = ACuyp fora>0and b> 1.
(b) ACNCo = NC,,; fora>0 and b> 1.
(c) NCACt = AC, 44y fora>1 and b> 1.

proof

Part (a) follows from theorem 12(a,b). Part (b) in one direction follows from theo-
rem 12(c). To get containment in the other direction, we notice that

ACNG C NCXG C NC,yy

by lemma 11 and theorem 2. Part (c) is obtained by use of theorem 12(d) and the fact
that

ACq4-1 C ACES C NCA%

10



by theorem 12(b) and lemma 11.
a

The AC hierarchy collapses like the NC hierarchy. Modifying the proof of theorem 8
suffices to show this.

Corollary 14 Let k > 0 and € > 0 be rationals, k + ¢ > 1. Jf AC, = ACyy., then
AC, = AC.

An interesting point that theorem 13 shows is that AC, is equal to N C,41 if oracles
© from AC, or NC) are used.

Corollary 15 Leta > 0 and b > 1 be rationals.
(a) ACAC = NC2%

a

(b) ACY% = NCJS

a:

proof

By theorems 4 and 13, ACA% = AC,,, = NC/7} and ACN% = NC,, = NCNG.,
a

We see that if oracles are chosen from AC, or NC, for b > 1, then AC, offers no
less power than NC,,;. This seems counter-intuitive in light of the fact that ACj is
properly contained in NC;. We also see that ACN* = N Cﬁf’l“ = NCjyy. Similarly,
NC{# = AC:. Note that this does not say that any NC,41 reduction can be replaced
with an AC, reduction on sets from AC; or NC,. It does say that if A NC,  -reduces to
B € NC, then thereis a C € NC such that A AC,-reduces to C'. An interesting question
is the relationship between B and C.

At lower levels of the NC and AC hierarchies, we are especially interested in the
containment NC, € AC; € NC,;. Theorem 13 shows that AC, = N wa’ and NC; =
ACY®, We could view this as evidence that AC; is “closer to” NC, than NC; since it
needs a weaker oracle. However, AC; has more power in accessing the oracle than does
NC4, so we must be careful making such interpretations.

In [4] there is a characterization of NC as a hierarchy similar to the polynomial hi-

erarchy: BYC = NC; and Z{8 = ACE *°. 1t is shown that for all integers k& > 1 that
BY¢ = NCy. This follows from theorem 13(b) as well. Also, AC; can be replaced by N C,.

Similarly, each AC} could be defined in this manner: TAC = AC; and £4¢, = ACTH
$AC
(=NG* ).
We have seen that if NCy = NC; (AC; = AC;) for k < j, then NC (AC) collapses.

A natural question is what happens if either NCy = AC; or ACE = NCyyy. We cannot
exhibit a hierarchy collapse, but the equalities translate upwards.

Corollary 16 Let k > 1 be rational.

11



(a) If NCy = ACy, then, for all rational j > k, NC; = AC;.
(b) If ACy = NCpya, then, for all rational j > k, AC; = NCjy1.

- proof
For part (a), assume that NC), = AC}. For any rational § > 0,

ACiys = ACH% = ACNC = NCyys.
Similarly for part (b}, assume that AC, = NCyy.,. For any rational § > 0,
NCiyays = NCLGH = NC{% = AC,ys.

These follow directly from theorems 4 and 13.
a

7 Separation with Oracles

In [12] there is exhibited an oracle A so that, for all k, N CA#N Cit.,. Here we will apply
the same method to separate NC} from AC, and AC, from N Cry1-

A language Ly41(4) was introduced in [12] having the property that VA, Lipi(A) €
NCg,,. A specific oracle A was then constructed so that Vk, Liy1(A) € NC{. It turns out
for any k and oracle A that L;.,(A) € ACA. This suffices to give a relativized separation
of NC} and AC,.

Theorem 17 There ezists a recursive oracle A so that for any rational k > 0 end 0 <

proof

We will describe the language Li41(A) and then point out why it is in ACE. Lia(A)
is the set accepted by the following procedure.

input z, |z| =n
K « [logtt n]
forie—1to K —1do
if 0" *1b;_;...b, € A then b; «— 1
else b; — 0
if I:Ou-Kle_l ...hheA
then accept =
else reject «



A cursory examination of this algorithm would seem to indicate that Ly,,(A) is in
AC{.,. We can do better if we are careful. A UBF circuit can determine logn bits b;
at a time, so the maximum depth need only be O(log"n). To see that logn bits can
be determined in constant depth and polynomial size, let us illustrate how to find the
first logn bits b;. Let binary strings v have length logn: v = Tiogn ** * Y1. Define f, =
A (205~y;.. .y € A). Then b; = V=1 fy A similar process can be repeated to find
the next log n bits in constant depth and polynomial size, and so on. Thus, for all k and
As Lk-{-l(A) € ACJ‘?

Let {-,-) be a standard pairwise encoding function on integers. This can be extended
to handle more integers by composition. The i* circuit family is the one constructed
by machine M;, where M;, M,,... is an enumeration of O(logn) space transducers. At
stage e = {i,¢,p,q,,1), letting k = 2 and e = § we ensure that if M; constructs a circuit
family of depth at most clog**“n, then that family cannot accept Li+1(A). This is done
be choosing n appropriately, ensuring on an input of length n that M; constructs an a of
depth at most clog"*n, and, if so, diagonalizing across the behavior of @. Initially, A will
be empty, and strings will be added to it. Once added, no string will ever be removed.

For the moment we are only concerned about queries of length 2n, those which are
relevant to membership in Li41(A). Given a circuit e, we will break it up into independent
guery levels. Level 1 consists of those queries which depend on no other query (that is, no
other query lies on a directed path ending at that query). Level j consists of those queries
which depend on some query from level j — 1. If @ has depth clogk"'c n, then it can have
at most %’fs% < clog"** ™! such levels.

Construction of A stage e = (i, ¢, p, g, s,t)

Check that ¢ # 0, %50, and e = 2 < 1. If not, skip this stage. Let k = g,
Choose n large enough to satisfy the following constraints:

o 2log"“nfe jg larger than the polynomial which bounds the size of the circuit con-
structed by M; on 0" and

¢ 2n is larger than anything queried or added to A at any previous stage.

Let a be the circuit constructed by M; on 0*. If the depth of o ?‘xceeds cljgk"" n, then
skip this stage. We now proceed in steps, and at each step fix ﬁ:k:_’,‘n =k :" bits b;.
The steps will be numbered 1 through clog***~'n. Fix 2 = 0" as the input to a.
step m: Let 7 = ilc‘—lllogz"n
[Invariant: No string of the form xzb;+--by, |2| = n — j, has been queried by « at levels 1
through m —1.] There are 208" /¢ strings y of length 135:—4 By the first constraint in the
choice of n there must be some y for which no string of the form zzyb; - by, |2| = n—|y|-3,
has been queried at this or any previous level. Pick such a yand for [ =1 to !95? put
£0""=1y,_y -y b; - - by into A if and only if w=1. (end step m)

Now that we have dealt with all levels of «, we can add strings of the form zzbg_; - - - by,
K =log""n and |z| = n — K + 1, to A without affecting the lichavior of @ on z. The

13



final step is to add z0*~K1bg_,---b, to A if and only if a with oracle A rejects z. end
construction

Adding the final string to A cannot affect the behavior of & on = due to the invariance
condition.

The first constraint in the choice of n provides further assurance that o will be unable to
accept Li1(A). Since it is certainly true that 21674 5 5 we must have l—"“? > logn
or d < log'™“n. This implies that dlog"**n < log"*! n, the latter value being the depth
within which an NC circuit could simulate the AC} circuit accepting Ly4;(A) described
above.

(]

Corollary 18 There ezists an oracle A so that for any rational k > 0, NCf c Acgp
(where “C” denotes proper containment).

An oracle was able to witness a separation between NC; and AC; since an AC} circuit
is able to ask a dependent series of O(log*n) questions each of length O(n). An NC;
circuit is not always able to do this. If we want to separate AC; and N Crs1, we will
have to look at some advantage NCy,; has over AC;. One advantage is that it can ask a
series of O(log**! /loglogn) questions each of length O(log® n). A bounded fan-in circuit

benefits from asking shorter questions, while an unbounded fan-in circuit has no easy way
to do this.

Theorem 19 There ezists o recursive oracle A so that, for any rational k > 0 and 0 <

proof
Consider the language Si11(A) described by the following algorithm:

input z, [z) =n
Tg — Qlog® n
K «log’n, L « [E 22
for i « 1 to L do begin
for every 1 £ j < K do in parallel
if a:.-_IOK“J'IOJ"‘ € A then b_,' —1
else b; — 0
end parallel
Ti +— bpebpe_y - by
end
if :BLOK €A
then accept z
else reject z

14



On an NC circuit, the depth to determine membership in Sgy1(A4) is

Iog""'l

_...._n . 2 B = 1 k+1 .
loglogn + 1) - log(2log“n) = O(log*™" n)

(
So for any A, Si;1(A) € NC{,,. The obvious UBF circuit for Si;,(A) has depth lﬁ%.
We will show how to construct an oracle A such that, for all k, Si11(A) € ACH,..

Similar to the previous construction, at stage e = {i,c,p,q,s,t) if M; constructs a
circuit family of depth no more than clog"*“n where k = 2 and € = ¢, then we will ensure
that this family will not accept Si41(A4). Initially, A will be empty, and strings will be
added to it. Once added, no string will ever be removed.

Given a circuit o, we will break it up into independent query levels, as above. The
number of independent query levels in a UBF circuit is clearly bounded above by its depth.

Construction of A stage e = {i,c,p, q,s,1t)
Check that ¢ # 0, t # 0, and € = £ < 1. If not, skip this stage. Let k = -;3.
Choose n large enough to satisfy the following constraints:
Ek-{—l k
Il?)glog: > C].Og +€ﬂ

e 21°8'" exceeds clog***n plus the size (a polynomial) of the circuit constructed by M;
on 0",

e 2log’n is larger than anything queried or added to A at stage m — 1.

Let o be the UBF circuit constructed by M; on 0. If the depth of « is larger than
* clog"** n, then skip the; rest of this stage. Fix 0" as the input to a. This fi?.ge proceeds
in steps 1 through 2. Initially, let zo = 0", K = log?n, and L = oz
step 1 Find an z; of length log’ n and Vj < ¢, z; # x; so that for no z of length log®n is
z;z queried at levels 1 through i of &. This must exist since 298" " is larger than the size
of the circuit plus the number of its query levels. Where z; = by - - - by, add z;_,0K-71071
to A for each j satisfying b; = 1. (end step 1)

Finally, if o rejects 0", then add z,0X to A. If @ accepts, do not add it to A. end
construction

Note that L is larger than the number of independent query levels of o, so by construc-
tion e cannot have queried z;0%. For the A described by the construction, it is the case

for every rational k and ¢ < 1 that any AC{,, circuit family cannot accept Si1(A4).
(]

Corollary 20 There ezists an oracle A so that, for any rational k > 0, AC{ C NCA,
(where “C” denotes proper containment).

15



In fact, we have shown that NC{,, — AC{,, contains a tally set. Another fact worth
noting is that the proofs of the two previous theorems could be interleaved to construct
an A where for all k, NCf Cc ACACN Cf)1. As an even stronger result, we can get the
following.

Corollary 21 There ezists an oracle A such that for all rationals k> 0 and 0 < € < 1,
ACE and NCP,, are incomparable.

In [2,13] there is introduced a notion of relativized space which is a reasonable measure
to compare with relativized depth. We refer the reader to the original papers for details,
but essentially the oracle Turing machine can put partially constructed queries into some
storage mechanism, say a stack. In this way we define, for an oracle A, the classes sLA,
stack log-space relative to A, and sN L4, the nondeterministic version (an important con-
sideration here is that the nondeterministic machine must act deterministically while the
stack is not empty). In [13] it is shown, for any A, that NC{! C sL4 and sNL* C NC4.
The proof of the latter containment can easily be modified to show that sNL4 C ACA,
Compare these to the unrelativized NC; CL C NL C AC, C NC,.

Corollary 21 now shows that there is an oracle A so that, for any € < 1, sLA — ACA
is not empty, because NCi! and AC2 are incomparable. This indicates that it may be
difficult if not unlikely to improve upon the containment NL C AC;. By improvement, we
mean in terms of depth, as it is known that N L is contained in the semi-unbounded class
SAC; [11]. Similarly, for any € < 1, NC#,, — sNL4 is not empty.

8 Conclusion

The NC and AC hierarchies provide an interesting structural contrast to other hierar-
chies. In many respects they behave like the polynomial hierarchy. This is especially true
when considering that for these hierarchies a collapse at one level spreads upward, and
this collapse can be shown by a decomposition of the higher levels. Unlike the polyno-
mial hierarchy, the NC and AC hierarchies are dense. In this, they act like the classical
space/time complexity classes. This is reasonable: NC and AC are defined by allowing
progressively more and more parallel time. For NC and AC however, no separation re-
sults are known (aside from ACj # NC, [6]). A statement about the NC hierarchy which
combines features of both the other hierarchies is the following;:

for any two rationals r < ¢ there exists an s such that N C. CNC,C NC, and
if NC, is equal to either NC, or NC,, then NC collapses at least to NC,.

An interesting open question raised by Corollary 15 is the relationship between AC,
and NC,4, reducibilities. For example, are they the same on L or NL: is ACEl=NCE 7
Under what circumstances can we say that 4 <NCat1 B implies that A <4% B? Answering
these questions should help us pinpoint the relationship of AC, to NC,,;.

16



In section 7 we saw oracles A so that, for any rational #, NCf C AC# and AC# C
NCp. ;. We would like to see oracles B a.nd C where, for any k, NCF C ACE = NCE,
and NCf = AC{ C NCg,,. This would raise an intriguing p0351b111ty
We conclude this paper by pointing out that although the method presented here may
seem a natural way to provide NC and AC with an oracle, the corresponding problem for
space bounded classes has been much more difficult ([2,8,13]). This has been especially
true when comparing relativized NC to relativized space.

Acknowledgements

Several people deserve my thanks for helping improve this paper. In particular, I have
benefited from discussions with Ron Book, Gene Luks, Larry Ruzzo, and Osamu Watanabe.

References

[1]

(3]

[4]

(5]

[6l

[7]

[8]

[°]

A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa, “Two Applica-
tions of Complementation via Inductive Counting,” Proceedings of the 9rd Structure
in. Complezity Theory Conference, 1988, pp 116-125

J. Buss, “Relativized Alternation,” Proceedings of the 1st Structure in Complezily
Theory Conference, 1986, pp 66-76

A. Chandra, L. Stockmeyer, and U. Vishkin, “Constant Depth Reducibility,” SIAM
Journal on Computing, vol. 13, no. 2, 1984, pp 423-439

Jian-er Chen, “Logarithmic Depth Reducibility and the NC Hierarchy,” manuscript,
1987

S. Cook, “A Taxonomy of Problems with Fast Parallel Algorithms,” Information and
Conitrol, vol. 64, no. 1, 1985, pp 2-22

M. Furst, J. Saxe, and M. Sipser, “Parity, Circuits, and the Polynomial-Time Hierar-
chy,” Mathematical Sysiems Theory, vol. 27, no. 1, 1984, pp 13-27

N. Pippenger, “On Simultaneous Resource Bounds (Preliminary Version),” Proceed-
ings of the 20th FOCS (1979), pp 307-311

W. Ruzzo, J. Simon, and M. Tompa, “Space-bounded Hierarchies and Probabilistic
Computations,” Journal of Computer and System Sciences, vol. 28, 1984, pp 216-230

W. Ruzzo, “On Uniform Circuit Complexity,” Journal of Computer and System Sci-
ences, vol. 22, no. 3, 1981, pp 365-383

17



[10] L. Stockmeyer and A. Meyer, “Word Problems Requiring Exponential Time,” Pro-
ceedings of the 5th STOC (1973), pp 1-9

[11] H. Venkateswaran, “Properties that Characterize LOGCFL,” Proceedings of the 19th
STOC, 1987, pp 141-150

[12] C. Wilson, “Relativized NC,” Mathematical Systems Theory, vol. 20, no. 1, 1987, pp
13-29

[13] C. Wilson, “A Measure of Relativized Space Which is Faithful with Respect to Depth,”
Journal of Computer and System Sciences, vol. 36, no. 3, 1988, pp 303-312

18



