Backward Execution Based on
Dynamic Data Dependencies®

David M. Meyer
University of Oregon
Eugene, Oregon

CIS-TR-89-10
May 18, 1989

Abstract

A backward execution algorithm for nondeterministic AND-Parallel logic pro-
grams is described. The algorithm extends the class of semi-intelligent backward
execution algorithms allowing them to efficiently execute programs with dynamic
data dependencies. This is accomplished by generalizing the data dependency graph
from an instance of data dependency for a clause to a static description of the set
of possible data dependencies. This static description makes the algorithm suitable
for compilation to a simple abstract instruction set.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

*Supported by NSF Grant CCR-8707177

1 Introduction

In recent years, much attention has been paid to the implementation of AND paral-
lelism in logic programs. A major problem one faces in such an implementation is the
management of nondeterminism. Nondeterminism refers to the fact that, for a given
logic program, there may be more than one way to satisfy a goal statement. In se-
quential systems (e.g. Prolog), nondeterminism is implemented by simple chronological
backtracking: if the currently executing goal fails, the implementation backtracks to the
most recent goal with an untried alternative. This method s unsatisfactory in an AND
parallel setting, however, where the most recently solved goal may not be the correct
backtrack point.

There are several related methods for exploiting nondeterminism in independent
AND parallel systems. Called semi-intelligent backtracking algorithms, these schemes
rely on a combination of static and dynamic information about producer/consumer
relationships within a clause to determine how to retry a previously solved goal after a
failure{1,2,3,6,12). The basic task of these algorithms is to coordinate retry and reset
operations so that a consumer literal ! sees all possible combinations of bindings from
its predecessors.

The semi-intelligent algorithms can be broadly classified according to their treatment
of the data dependencies that arise among the literals in a clause body. The first
class places emphasis on compile time construction of a fixed set of clause level data
dependencies [1]. These fixed data dependencies are used to compute the backtrack
points for a given failure, The purely static character of these algorithms requires that
backtrack points be chosen conservatively: a backtrack point must be correct for any
invocation of the clause in which the failed literal resides. As a result, these algorithms
are typically unable to adapt to favorable run time conditions, and may select a goal
which cannot cure the current failure.

The second class of semi-intelligent algorithms also use fixed data dependencies.
The distinguishing characteristic of these algorithms is that they maintain the dynamic
failure history of the literals in a clause body, which typically results in better precision
than is achieved by their static counterparts [3,6,12). However, these algorithms also
assume that the fixed data dependencies are exact, and require dynamic reconstruction
of these dependencies if and when they change. This requirement limits the efficiency
these algorithms can achieve in executing programs without fixed data dependencies,
since the cost of dynamic data dependency reconstruction can easily erase the run time
advantages of increased precision.

In this paper, we present a new type of data dependency graph, called a generator
inheritance graph, which allows us to implement semi-intelligent algorithms in the sec-

'We use the terms literal and goal interchangeably.

ond class using a static representation of the data dependencies. Static representation
of these data dependencies is crucial, since it allows us to design simple and efficient
abstract machine implementations. The rest of this paper is organized as follows: Sec-
tion 2 reviews the general problem faced by the semi-intelligent algorithms. Section 3
describes the details of a basic backward execution algorithm, and section 4 describes
generator inheritance graphs, and an extension to the algorithm described in section 3
which uses these graphs.

2 The Semi-Intelligent Backtracking Problem

The main problem confronting the semi-intelligent backtracking algorithms can be
stated as follows. Let Ly be a literal that has failed, let By, ;= {Li,...,L;} represent
the set of semi-intelligent backtrack points for Ly, and let L, € By, be the backtrack
literal selected after L; fails. The basic problem is to remember the backtrack points
that were considered when L; failed, so that they may be reconsidered if L; later fails.
This failure history, denoted Hy,,, is simply the set of unused backtrack points By, AP
Semi-intelligent behavior thus requires that the representation of B, be updated with
Hy, whenever L, is selected as the backtrack literal.

The semi-intelligent backtracking algorithms compute B, ; using information derived
the data dependencies between the literals in a clause body. These data dependencies
are typically represented by a data dependency graph (DDG), constructed at compile
time, in which the nodes represent the literals of the clause body and there is a directed
edge between one node and another if the first node generates the value of a variable
consumed by the second node. The generator/consumer relationship depicted by a
DDG frequently reflects a linear ordering that has been assigned to the literals in the
clause body. The linear order assigns an integer index to each literal such that if literal
i generates a variable consumed by literal j, then i < j.

The structure of By, can be elucidated by considering the ways in which L § may fail.
First, Ly may have immediately rejected the arguments supplied by its predecessors (i.e.
Ly failed to unify with a the head of a clause in the program). We call this consumer
failure; consumer failure may be cured by backtracking to one of the predecessors of
Ly in By,. A second type of failure, called generator failure, occurs when all of the
bindings generated by L are rejected by one or more of L 1's successors. In this case, the
successors may be solvable by the next value from another predecessor and one of the
values from Ls. Generator failure may be cured by backtracking to an element of By,
that is not a predecessor of L;. In the following discussion, we use Ber(r,) to denote the
set of backtrack points that could cure consumer failure and Bg F(L,) to denote the set
of backtrack points that could cure generator failure, with By, s = Berwy) U Bary)-

e o — e

If we assume that the data dependency graph G for a clause is fixed, then Ber 1)
is simply the predecessor set of Ly. Lj is the least element of Bcr(L,), and is known at
compile time. However, in the case of generator failure, the set of backtrack points must
be computed dynamically. One way to ensure that the appropriate backtrack points
are contained in Bgp(r,,) when Ly fails is to have the rejecting successor of L 1y say L,
update By, with Hy, when it fails, This is the basis of the algorithms described by Lin,
Kumar, and Leung [6] and Woo and Choe [12].

Another approach is to pre-compute the set of possible elements of Br,, called
the candidate set of Ly, and record only that failure history required to discriminate
among the possibilities, In this case, the failure history recorded is a set of failed
successors, called marks, for each literal. An important aspect of this representation is
that for a fixed data dependency graph, the candidate sets are fixed. The candidate
set for Ly given data dependency graph G, denoted candidatesg[L fl; is computed as
follows. First, define predg(Ly] to be the set of predecessors of Ly in G, ie. {p |
there exists a path from p to Ly in G}. The successor set of Ly, succg[Ly), is defined
similarly. Then candidatesg[Lr] = predg|Ly] |} epc[Ls]\{Ls}, where cpg[L 7] =

U predg(z]. This is the basis of the algorithm described by Conery [3].
r€suceq{Ly]

The goal of this work is to extend Conery’s algorithm to efficiently execute AND
parallel logic programs with dynamic data dependencies. To accomplish this, we will
define the candidate sets using with a new static data dependency representation. This
representation will allow us to avoid dynamic reconstruction of the data dependency
graph, while maintaining the fixed data structures and literal selection scheme of the
original algorithm. In the following sections we review the original algorithm, and
describe an extended algorithm which meets the requirements described above.

3 The CS Algorithm

Conery’s backward execution algorithm, which we will call the candidate set (CS) al-
gorithm, proceeds in two phases. The first phase, called the marking phase, begins
when an AND process receives a fail message from a process corresponding to one of
the literals it its body, say literal i. The AND process records the failure history by
adding the index i to the marks set of each of literal i’s predecessors. The next phase,
called the search phase, selects the appropriate backtrack literal by searching for the
candidate literal latest in the linear ordering (i.e. furthest to the right in the clause
body) which has i or a successor of 7 in its marks set. That is, when literal 7 fails, the
backtrack literal j has the property that

j = max{c| c € candidatesg(i] A (marks[c] N {&} U sueeali]) # 8)}

index litexal = capdidatas

1 q {2,3)
2 T {1, 3}
3 s {1,2}
4 t {1,2,3}
5 rado {1}

The psuedo-literal "redo" is usaed te
coodinate backtracking activities when
a redo maessage is received

Figure 1: DDG for p(A,B) :~ q(A,B),r(A,C),s(4,B,D),t(C,D)

where marks[i] denotes the marks set of literal i. Now, if no such literal exists, the
AND process fails. Otherwise, the backward step is affected by canceling or resetting
the successors of j, untrailing the appropriate variables, and sending a redo message to
the process corresponding to literal j.

The use of failure history is illustrated by the example in Figure 1. In this example,
suppose that s rejects the bindings provided it by q (consumer failure). In this case, the
failure of 8 will cause q to be marked with the index of 8, and q will be subsequently
selected as the backtrack literal. Suppose now that s accepts the bindings from q, but t
rejects all values of D generated by s, so that s fails (generator failure). In this case, the
failure of t will have caused r and s to be marked. When s fails, r will be selected as
the backtrack literal. This selection reflects the fact that, while t had previously failed
with all values of values of D generated by s, it may be solvable with the next value of
C from r and some other value of D from s.

4 Generator Inheritance Graphs

The CS algorithm performs well for the special case of fixed data dependencies. However,
if data dependencies change during clause execution, correct operation of the algorithm
will generally require reconstruction the clause’s data dependency graph, and thus its
candidate sets. These changes occur when a literal which has been designated as the

4

generator of a variable fails to produce a ground binding for that variable. In this section
we will see how the CS algorithm can be extended to handle dynamic data dependencies
without recomputation of the candidate sets. This is accomplished by applying the
algorithm to new type of data dependency graph, which we call a generator inheritance
graph (GIG).

A generator inheritance graph statically describes the ways in which clause execution
can cause generatorship of a variable to be propagated from its initial generator to some
other literal. The propagation of variable generatorship, called generator inheritance,
occurs when the generator of a variable fails to produce a ground binding for that
variable. We depend on static analysis to uncover the program points at which generator
inheritance is possible, 2

Abstractly, a generator inheritance graph can be viewed as the union of a finite
sequence Go,...,Gn of data dependency graphs. Gp is called the initial DDG, and
corresponds to the DDG used by the algorithms described previously. For 0 < i < n,
G; is called an induced DDG, and is derived from G;_; when static analysis determines
that a generator of G;_, may fail to produce a ground binding for one or more of its
generated variables.

The derivation of G; from G-, proceeds as follows. Let E(G) and V(G) denote the
edge and vertex sets, respectively, of a graph G. An edge in E(G) has the form (a, b, 1),
representing a directed edge from a to b with label /. Let Con(G,X) be the set of
consumers of variable X in G, and let generates(G, g) be the set of variables generated
literal by g according to the description of DDG G. Now, when analysis determines that
a generator g in Gi—1 may fail to produce a ground binding for a generated variable,
say X, a new graph G; is constructed to reflect the change in generatorship. G; will be
the same as G;_1, except that the consumer of X with the smallest index will become
the generator of X, the edges from g to the other consumers of X will be removed, and
there will be new edges connecting the new generator of X to the other consumers of
X.

More formally, generatorship of X is propagated from g to yz, where # = min(Con(G;_1, X)).
The set of edges removed from G;_; to reflect the new generator of X y ER(Gi_1,9,X),
is computed as follows: ER(Gi_1,9,X) = {(9,k,X) | k € Con(Gi—1, X)\{1}}. The
set of new edges, denoted EA(G;_1,g,X), is computed as follows: EA(Gi-1,9,X) =
{(e,k,X.1) | (9,%,X) € ER(G;-1,9,X))}. Finally, the edge set of the DDG induced
by Gi_i, g, and X, denoted E(Gi_,,g,X), is computed as follows: E(Gi1,9,X) =
E(Gi-1)\ER(Gi-1,9,X) U EA(Gi-1,9,X). The edge set of the induced DDG G; is
constructed by forming the union of the E(Gi-1,g,X), computed for each variable X
which g is designated to generate (in G;_;) but may fail to ground.

See, for example, [9,10].

When an edge is added to an induced DDG during the computation of EA(G;_y,g, X)
its label is expanded to record the fact that g is the generator of X in G;. For purposes
of our construction, we treat the new label as the name of a new “pseudo” variable.
This maintains the generator/consumer semantics of the edges in a GIG. An edge la-
beled X.Lg.L4..... L records the information that Lg is the generator of X.Lg, L, is
the generator of X.Lo.L1, and in general, L; is the generator of X.Lo.L;..... L;. Notice
that if at some point during clause execution, L; becomes the actual generator of X,
then the literals Lo, Ly,..., L;—; will be predecessors of L i, since each of these literals
will have previously failed to produce a ground binding for X. This information will
become important later when we compute the dynamic predecessor set for ;.

An example generator inheritance graph derivation is shown in Figure 2. In this
example, static analysis has discovered that that in literal one in Go may fail to ground
X. Since literal two is the consumer of X with the smallest index, it “inherits” genera-
torship of X. The relevant sets for Gy, literal one, and X are

E(Go) = {(1,2,X.1),(1,3,X.1),(1,4,X.1),(2,4,Y.2)}
ER(Go,1,X) ={(1,3,X.1),(1,4,X.1)}

EA(Go,1,X) ={(2,3,X.1.2),(2,4,X.1.2)}

E(Go,1,X) ={(1,2,X.1),(2,4,Y.2),(2,3,X.1.2),(2,4, X.1.2)}

Since the only variable generated by literal one is X, E(G;) is simply E(Go,1,X), as
shown in Figure 2. Now, suppose that analysis discovers that literal two may also fail
to ground X. In this case, generatorship of X is propagated to literal three, resulting
in graph labeled G;. Finally, a generator inheritance graph for the clause is obtained
by forming the union of the edge sets of the G;’s, as shown by the final graph in the
figure.

4.1 Extending the CS Algorithm

Our philosophy has been to minimize extensions to run time behavior of the CS algo-
rithm and concentrate the major effort at “compile time”. As a result, the extended
algorithm follows the same two-phase approach as the original algorithm: the marks set
is constructed in the first phase, and the candidate sets are searched during the second
phase. The extended algorithm is defined in terms of following three sets, which are
computed using a generator inheritance graph G.

e candidatesg|i] — The candidate set for literal i. The computation of the candidate
set for literal i is the same as in the original CS algorithm, except that the prede-
cessor and successor sets used in the computation are derived from the generator
inheritance graph G.

G G,

o ° Litersl 1 May Fail To Ground X.1 ° °
v.2 Y.2

Literal 2 May Fail To Ground X.1.2

Generalor Inheritance Graph

Figure 2: Initial DDG, Induced DDGs, and GIG

o initial_predecessorsgfi] — The set of literals that are known at compile time to
be predecessors of i. Note that initial_predecessorsg[i] = predg,[i].

e consumesgli] — The set of variables consumed by literal i, i.e. {X | (g,i,X.a) €
E(G)}.

The marking phase of the extended algorithm is divided into two sub-phases. During
the first sub-phase, the set of literals which are statically known to be predecessors of
the failed literal, say literal i, are marked with the index #. The static predecessors of
literal ¢ are simply the elements of initial_predecessorsg[i]. The next sub-phase marks
the dynamic predecessors of literal i. The dynamic predecessor set of literal 7 is the set
of inherited generators which have actually generated a variable consumed by literal i
at the time that literal i fails. To determine which, if any, of the inherited generators
are actual generators when a literal fails, a generator attribute is maintained for each
variable in the clause. When literal i fails, any inherited generator which is a dynamic
predecessor of 1 is marked with the index 1.

Notice that we can use the generator inheritance graph to restrict the set of variables
and generators that must be inspected during construction on the dynamic predecessor
set. In particular, the set of variables that must be inspected when literal i fails is
simply {X | X.g.« € consumesg[i]}. Furthermore, we need only check the generators
in @ for generatorship of X.

During the search phase of the extend algorithm, the candidate sets are searched
in the same manner as the original CS algorithm. That is, the backtrack literal, if it
exists, is a literal 7 such that

j =maz{c| c € candidatesgli] A (marks[c] () ({¢} | suecqli]) # 0)}

The difference between the two algorithms occurs at “compile time”. In the original
CS algorithm, the graph G used in the above expression is a data dependency graph; in
the extended algorithm, it is a generator inheritance graph. To complete our extension,
we show that searching candidate sets computed using a generator inheritance graph
preserves the correctness of the original CS algorithm.

4.2 Extended Candidate Sets

The CS algorithm uses the candidate sets to restrict the search for an appropriate
backtrack literal. In the original algorithm, a literal L. is candidate to cure the failure
of Ly if L. is either a predecessor of Ly or a predecessor of a successor of L 7- In this case,
the predecessors of L; correspond directly to the literals that must complete execution
before L; is allowed to execute. However, this is not necessarily the case for generator

inheritance graphs. Instead, some predecessors may correspond to inherited generators,
and are therefore “conditional”. Now, suppose that an inherited generator L;g is not
actually a generator at the time L; fails. Then since Ljg is not a predecessor of Ly,
we may not have required that Ljs execute before the Ly. In this case, backtracking
to Lig may not cure the failure at hand. Thus the candidate sets computed using a
generator inheritance graph may contain irrelevant literals.

As an example of how these irrelevant literals arise, consider the generator inheri-
tance graph in Figure 2. Now, suppose literal four fails, and literal two is the actual
generator of X (as depicted by the graph labeled G, in the figure). Notice that literal
three is a candidate to cure the failure of literal four, since it is a predecessor (in the
GIG) of literal four. Backtracking to literal three is a bad choice, however, since it
cannot cure this failure when literal two generates X. The correct choice is literal two.
Thus for this failure sequence, literal three is a superfluous candidate.

Surprisingly, the presence of these superfluous literals in a candidate set does not
affect the correctness of the algorithm. To see this, observe that the CS algorithm
requires only that the correct backtrack literal be a member of the failed literal’s can-
didate set. This is because the superfluous literal will not be marked during the failure
sequence, and thus will not be selected as the backtrack literal. Indeed, the back-
track literal could be correctly defined to be the largest element of the set {I | | €
V(G) A (marks{l) N({i} U sucegli]) # 8)}.2 This being the case, we can show that our
extensions to the CS algorithm preserve its correctness by showing that the candidate
sets computed using a generator inheritance graph contain the appropriate literals for
any data dependency that could arise during clause execution.

Theorem 1 Let Go,Gh,...,G, be the sequence of induced DDGs derived during con-
struction of a generator inheritance graph G. Then

eandidatesg,|i] C candidatesg, [i] C ... C candidatesg,[i] = candidatesg[i]

Proof: To simplify our discussion, we make the following definitions. Let pathg(X,Y)
be true iff there exists a path from X to Y in G, let GFg,[i] be the set {(X,Y) |
pathg, (i,Y) A pathg, (X,Y)}, and let II; be the standard projection function which
selects the first element of a tuple.

To prove the theorem, we use the following technical lemmas.
Lemma 1 GFg,li] C GFg [{]C ... C GFg,[i] = GFgli]

Proof: Notice that for 0 £ ¢ < n, a path is never removed from G; during the con-

struction of Giy1. In particular, suppose that a generator ¢ € V(G;) may fail to

®In fact, Conery initially describes the the search phase of the original CS algerithm in this way [3].

ground variable X. Let p = min(Con(G;,X)). Then for @ € Con(Gi,X)\ {u},
the construction ensures that the paths containing an edge (g,a,X) in E(G;) are
rerouted through the edges (g,4,X) and (p,e,X.u) in E(Giy1). Thus by construc-
tion, pathg,(g,a) == pathg,,,(g,0). 0

Lemma 2 predg,[i] C predg, [i] C ... C predg, [i] = predgi]

Proof: The proof follows from the construction, as described in Lemma 1, and the
definition of predg(i]. O

Lemma 3 cpg,[i] = I{GFg,[i])

Proof: b € cpg,[i]] <= 3z € Gy | z € sueeg,[i] A b € predg, [z]
<= 3dz € G | pathg,(i,z) A pathg,(b,z)
<> (b,z) € GFg,[i]
<= beIl1(GFg,[i]). O

Corollary 1 cpg,[i] C epg,[i] € ... C epg.[i] = epgli]

The theorem follows immediately from Lemma 2, Corollary 1, and the definition of
candidatesg([i]. Since the sequence of induced DDGs includes all of the data dependen-
cies that might arise from Gy in the global environment, the candidate sets computed
using the GIG G contain the correct backtrack literal for any failure sequence.

4.3 Discussion

Our goal has been to extend the CS algorithm so that the effect of run time changes
in clause level data dependencies are minimized, while at the same time retaining the
precision and efficient representation provided by the original algorithm. For this reason,
the operation and data structures of the extended algorithm closely parallel those of
the original algorithm. Indeed, the run time behavior of the algorithm remains largely
intact, with the exception that in some cases variable generator must be inspected while
constructing the marks set.

These extensions are illustrated by the example in Figure 3. This example shows the
GIG that results when the graph in Figure 1 is used as an initial DDG, and global anal-
ysis reveals that q may fail to ground A. Now, consider the case in which s immediately
fails due to the bindings supplied it by its predecessors (consumer failure), Further,
suppose that execution of q has failed to ground A. In this case, q will be marked with
the index of s, since q is an initial predecessor of 8. Next, r is checked for generatorship
of 4, since r is a possible dynamic predecessor of s (4.1.2 is consumed by s). Since r is

10

1 q {2, 3}
2 r {1, 3}
3 s {1,2}
4 t {1.2,3)
5 redo {1,2}

Figure 3: Generator Inheritance Graph and Its Candidate Sets

the current generator of 4, it will be marked with the index of &. r is then selected as
the backtrack literal, since it is the marked candidate of s with largest index.

The run time costs of the extensions result from managing the generator attributes.
These costs, along with the assaciated space costs, have been shown to be negligible [5,7].
For example, if we assign an integer index to each variable in a clause, then we can
represent the variable generators for a clause with m variables and » literals as a vector
of m * logn bits. The generator of variable k is kept in the logn bits from k logn
through (k + 1) xlogn — 1.

We can use this representation to efficiently implement recording and checking of
generator attributes. To record the fact that literal i has become the generator of
variable j, we update the generator attribute vector A as follows. Let Shi ft; = jxlogn,
let Jp be a bit mask of size m * logn which has zeros in positions j * logn through
(7+1)*logn — 1 and ones in the other positions, let I be the log n-bit representation
of ¢, padded on the right with (m — 1) ¥ log n zeros, and let b be the logical right shift
operator. 4 Then the updated version of A is simply (A A Jo) v (Shift ; > I

Checking variable generatorship is also very efficient. We check literal i for genera-
torship of variable j as follows. Let J; be a bit mask of size m * log n which has ones
in positions j +logn through (j + 1) *logn — 1 and zeros in the other positions, and let
< and @ be the logical left shift and exclusive-or operators, respectively. Then i is the

‘X b Y represents Y right shifted X bit positions.

11

generator of j iff (A A J1) < Shift;})@I) is zero. Since Jo,J1,I, and Shift; are fixed
values, they can be computed at compile time. Given these efficient representations,
the extended algorithm runs with cost comparable the original CS algorithm [7).

Finally, notice that the extended algorithm described in this paper can be viewed
as a backward execution analog to DeGroot’s RAP scheme [4]. In particular, the inde-
pendence and ground checks employed by the RAP algorithm during forward execution
to construct the dynamic data dependencies are analogous to the generator checks
used by the extended algorithm during backward execution. Further, the edges added
during construction of a generator inheritance graph correspond directly to the edges
(implicitly) added by the RAP algorithm when it discovers variables are nonground or
dependent.

5 Summary and Future Work

This paper has described a new type of data dependency graph, and shown how these
graphs can be used to extend the CS algorithm. The extended algorithm improves on
the algorithms in its class by using a static representation of the set of possible data de-
pendencies for a clause. The extended algorithm attempts to minimize run time expense
by computing the set of possible data dependency graphs at compile time, and using
variable generator attributes to discriminate among the possible graphs at run time, A
simple abstract machine based on the extended algorithm has been implemented, and
various optimizations based on this representation have been reported [8].

Areas for further study include analysis techniques for GIG construction, and op-
timizations based on these analyses. For example, in some cases, it is known that a
generator will always leave a generated variable unbound [11]. This information allows
edges to be removed from the corresponding GIG, which in turn reduces the amount of
generator checking that must be done at run time.

Acknowledgments

I wish to thank Prof. John Conery for his valuable suggestions for improvements and
careful proof reading of earlier drafts of this paper.

References
[1] Chang, J., Despain, A.M., and DeGroot, D. AND-parallelism of logic programs

based on static data dependency analysis. In COMPCON Spring 85, (Feb.), IEEE,
1985, pp. 218-225.

12

[2] Conery, J.S. The AND/OR Process Model for Parallel Interpretation of Logic Pro-
grams. PhD thesis, Univ. of California, Irvine, 1983. (Computer and Information
Science Tech. Rep. 204).

[3] Conery, J.S. Implementing backward execution in nondeterministic AND-parallel
systems. In Proceedings of the Fourth International Conference on Logic Program-
ming, (Melbourne, Australia, May 25-29), 1987, pp. 633-653.

[4] DeGroot, D. Restricted AND-parallelism. In Proceedings of the International
Conference on Fifth Generation Computer Systems, (Tokyo, Japan, Nov. 6-9),
1984, pp. 471-478.

[5] Kumar, V. and Lin, Y. A Data-Dependency-Based Intelligent Backtracking Scheme
for Prolog. Journal of Logic Programming 5, 2 (1988).

[6] Lin, Y., Kumar, V., and Leung, C. An intelligent backtracking algorithm for par-
allel execution of logic programs. In Proceedings of the Third International Con-

ference on Logic Programming, (London, England, Jul. 14-18), Springer-Verlag,
1986, pp. 55-68.

[7] Meyer, D.M. Architected Failure Handling For AND-Parallel Logic Programs.
OM note 89-02, Department of Computer and Information Science, University of
Oregon, Eugene, OR 97403, 1989.

[8] Meyer, D.M. and Conery, J.S. Architected Failure Handling For AND-Parallel
Logic Programs. Tech. Rep. CIS-TR-89-05, Department of Computer and Infor-

mation Science, University of Oregon, Eugene, OR 97403, March 1989. Submitted
to NACLP '89.

[9] Warren, R., Hermenegildo, M., and Debray, S.K. On the Practicality of Global
Flow Analysis of Logic Programs. In Proceedings of the Fifth International Con-
ference and Symposium on Logic Programming, Aug. 1988, pp. 684-699.

[10] Winsborough, W. Automatic, Transparent Parallelization of Logic Programs at
Compile Time. PhD thesis, The University of Chicago, Aug. 1988,

(11} Winsborough, W. and Waern, A. Transparent And-Parallelism in the Presence of
Shared Free Variables. In Proceedings of the Fifth International Logic Program-
ming Conference/Symposium, Seattle, Aug. 1988.

[12] Woo, N.S. and Choe, K. Selecting the backtrack literal in the AND process of
the AND/OR Process Model. In Proceedings of the 1986 Symposium on Logic
Programming, (Salt Lake City, UT, Sep. 22-25), 1986, pp. 200-210.

13

