Canonical Representations
of Partial 2- and 3-trees

Stefan Arnborg
Andrzej Proskurowski

CIS-TR-89-11
July 11, 1989

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Canonical representations of partial 2- and
3-trees

Stefan Arnborg*
Andrzej Proskurowski'
Department of Computer and Information Science

University of Oregon, Eugene, Oregon 97403, USA
July 11, 1989

Abstract

We give linear time algorithms constructing canonical representations of
partial 2-trees (series parallel graphs) and partial 3-trees.

1 Introduction

A canonical representation of a family of graphs assigns to each member of the family
a label that is independent of any arbitrary vertex numbering: two graphs have the
same canonical representation if and only if they are isomorphic. Thus, the graph
isomorphism problem can be solved using canonical representations and solved ef-
ficiently if such representations can be efficiently computed and compared. Other
uses of canonical representations are to investigate the structure of the automor-
phism group of a graph and to generate random graphs with some distribution over
isomorphism classes.

Most graph representations are not canonical since vertices are arbitrarily num-
bered. But if we consider all possible vertex permutations, compute the corresponding
representations, and select the lexicographically smallest, then we get a canonical rep-
resentation. The set of vertex permutations yielding the lexicographically smallest

*Supported in part by a grant from NFR.. Permanent address: NADA, KTH, S-100 44 Stockholm,
Sweden.

YResearch supported in part by the Office of Naval Research Contract N00014-86-K-0419.

representation is a coset of the automorphism group for the graph, regarded as a
subgroup of the symmetric group on the vertex set.

A straightforward application of the above procedure has exponential (in the graph
size) cost since there are exponentially many vertex permutations to minimize over.
But in some cases it is possible to constrain the set of explicitly considered permuta-
tions in such a way that the whole procedure can be performed in polynomial time.
We need only consider a set guaranteed to contain at least one coset of the auto-
morphism group of the given graph. In this paper we show how these ideas yield
an algorithm which produces a canonical representation for partial 3-trees in linear
time, and thus also solves the isomorphism problem for partial 3-trees in linear time.
Previously, the graph isomorphism problems for graphs of bounded valence (Luks
[14]), genus (Filotti and Mayer [10], Miller [15), [16]), and tree-width (Bodlaender [6})
(none of which is a subfamily of another) have been shown solvable in polynomial
time. Linear time algorithms for isomorphism of planar graphs (and thus also for
partial 2-trees, which are planar) are already known (Fontet [11]; Hopcroft and Wong
[13); Colbourn and Booth [9]).

For a fixed value of the integer parameter &, partial k-trees are exactly subgraphs
of chordal graphs with the maximum clique size k 4 1. Thus, partial 1-trees are the
acyclic graphs (forests), and partial 2-trees are the series-parallel graphs (graphs with
no Ky minors or homeomorphs).

Partial k-trees have been in the focus of attention in recent years because of their
interesting algorithmic properties. Namely, for a large number of inherently difficult
(on general graphs) discrete optimization problems, partial k-trees admit a linear time
solution algorithm when the value of k is fixed and the partial k-tree is given with
its k-tree embedding. Somewhat discouraging is the fact that, for a general value of
k, we do not know how to construct a k-tree embedding of such a graph in less than
O(n**?) time. The only more efficient and practical recognition (and embedding)
algorithms known are for & < 3. A quadratic time recognition algorithm for any
given k exists as a consequence of Robertson and Seymours results, but it uses a list
of minimal forbidden minors which it is not known how to find and which can be of
astronomical size.

The class of partial k-trees is also identical with the class of graphs of tree-width
k (Scheffler [21], Wimer [25]). In the next section, we will give an iterative definition
of partial k-trees that is the basis of our approach to solve problems for this class of
graphs. Bodlaender proposed an algorithm for deciding isomorphism of partial k-trees
[6]. His method is based on the brute force k-tree embedding method of Arnborg,
Corneil and Proskurowski [3], where all k-vertex separators of the given partial k-tree
are tested for suitability as separators in a k-tree embedding. This algorithm requires

solving bipartite matching problems and takes O(n*+4%) time. We follow a different
approach for k = 2,3. Namely, for these values of k there exist small complete sets of
safe reduction rules that determine k-tree embeddings of a given partial k-tree. With
help of these reduction rules we produce a canonical string representing that graph in
linear time, thus lowering the computation time from polynomial (actually, O(n"5))
to linear time for isomorphism of partial 3-trees.

The procedure we use is based on a canonical reduction sequence obtained from the
safe reduction rules reported in Arnborg and Proskurowski [4]. For any given graph,
the set of vertices reducible according to a given rule is fixed by the automorphism
group of the graph!. Each reduction involves a separator of the graph with one, two or
three vertices. Whether two reduced vertices are automorphic depends on symmetries
between the corresponding separators. Our method keeps a record of symmetries of
the reduced parts of the graph through a sequence of labels and orientations attached
to the separators used in the reduction process. Two reduced subgraphs cut off by
such separators are isomorphic (the isomorphism mapping one separator to the other)
if and only if the labels of the two separators are equal, and their orientations indicate
the correspondance between the separator vertex sets.

A reducible vertex represents a k-leaf in an embedding k-tree. Thus, adjacent
vertices cannot be reduced in parallel. To deal with this, we refine the reduction rules
to deal with overlapping reduction instances. These refined reduction rules allow us
to construct a parse tree, where each node is associated with a reduction instance
and two nodes are adjacent if the reduction instance corresponding to one creates a
(hyper-) edge involved in the reduction corresponding to the other node. This tree
is used to implement efficiently the algorithms computing canonical representations.
In order to get linear time performance we use a technique of label numbering and
bucket sorting described in Aho, Hopcroft and Ullman [1].

Our paper is organized as follows. After defining the necessary terminology in
section 2 we introduce the method in section 3 by applying it to partial 2-trees.
This special case is much simpler. Then the additional reduction instances necessary
for partial 3-trees are derived in section 4. The algorithms used to give linear time
performance are presented and analyzed in section 5.

2 Definitions and terminology

We will use standard graph theory terminology, as found, for instance, in Bondy and
Murty [7]. We will also make use of concepts from the realm of hypergraphs, but will

'This means that the automorphism group of the graph permutes these vertices among
themselves.

introduce them first in section 4. Some elementary and completely standard group
theory is also used, see e.g., Rotman [20]. We will now define some basic concepts.

A walk is a sequence of vertices such that every two consecutive vertices are ad-
jacent. If all the vertices are different, we have a path. A walk forms a cycle if only
its first and last vertices are identical. A set of k vertices, every two of which are
adjacent, is called a k-clique. The graph on k vertices whose vertex set is a k-clique
will be denoted K. A (minimal) subset of vertices of a graph such that their removal
disconnects the graph is a (minimal) separator. A k-tree is a connected graph with
no Ky, subgraph such that every minimal separator is a k-clique. Equivalently, the
complete graph on k vertices (K}) is a k-tree, and any k-tree with n > k vertices can
be constructed from a k-tree with n — 1 vertices by adding a new vertex adjacent to
all vertices of a k-clique of that graph. In this new graph, the added vertex is a k-leaf.
A partial k-tree is any subgraph of a k-tree.

While partial k-trees are undirected, simple graphs (without multiple edges or
self-loops), in the course of our presentation we will allow both undirected edges
and directed arcs (ordered pairs of vertices), as well as parallel edges and arcs. Those
mixed graphs will be intermediate results of applying graph rewriting rules, consisting
of replacing a subgraph isomorphic to the lefthand side of such a rule by the righthand
side subgraph. In our case, the latter has always fewer vertices than the former and
thus a set of such rules defines possible reduction sequences. Given a class of graphs,
a rewriting rule such that its application preserves membership in both the class and
its complement is called a safe rule. A set of reduction rules such that any non-trivial
graph in the class contains as a subgraph the lefthand side of some rule is called a
complete set of rules.

Complete sets of safe reduction rules for partial k-trees are known for £ < 3
(Arnborg and Proskurowski [4]). Intuitively, they correspond to pruning of k-leaves
in an embedding k-tree, safe in the sense of the existence of such a k-tree. For partial
1-trees (forests), the set of reduction rules consists of the removal of pendant vertices
(of degree 1) and of isolated vertices. For partial 2-trees (series-parallel graphs) we
have additional series and parallel rules, in which a path of degree 2 vertices is replaced
by an edge, and multiple edges are replaced by one edge, respectively. For partial
3-trees, the additional rules deal with three cases of degree 3 vertex reductions: the
triangle, the buddy, and the cube rules (¢f. Figure 1). The cube-like configuration

with the ‘hub’ (vertex z in Figure 1) of degree greater than 3 can be safely reduced,
as well.

L 2 =y triangle

o— 2> =)

pendant rule =3 buddy

=)
cube

sertes rule

Figure 1: Reduction rules for forests, series-parallell graphs and partial 3-trees.

In a k-tree, vertices may be partially ordered with respect to the last (k + 1)-
complete subgraph (‘the root’) [17]. This partial order might be inherited by a partial
k-tree, once we decide an embedding. Non-adjacent vertices reduced according to ap-
plicable reduction rules are not related in partial orders corresponding to embeddings
having those vertices as k-leaves. Such reductions can be performed simultaneously
(or, emulating simultaneity, consecutively in any order), leaving the necessary infor-
mation as labels on other affected elements of the graph (for instance, on the pendant
vertex in the pendant rule or on the added edge in the series rule).

Unfortunately, some instances of the reduction rules may deal with adjacent pro-
posed k-leaves; obviously, for a k-tree embedding, only one of two such vertices is a
k-leaf. This situation has to be dealt with separately. We note that there is a simple
solution if the conflicting rules are different, e.g. a vertex reducible according to the
triangle rule is adjacent to a vertex reducible according to the buddy rule. We simply
order the rules and say that a higher priority rule takes precedence. The remaining
case of conflict is where adjacent vertices are reducible according to the same rule.
To break the ties in this case, we consider a refined list of rules derived from the
complete set of safe rules presented in [4].

3 Canonical representation of partial 2-trees

We start our exposition by presenting the algorithm for partial 2-trees and then we
generalize it to partial 3-trees.

Our algorithm is based on a construction of (vertex and edge) labels that record
the sequence of reductions of the original graph G leading to a set of labeled isolated

vertices. From these, we construct the final label that is a canonical representation
of G and, as such, would also allow a unique (and efficient) reconstruction of G.

Initially, every node label is (0) and every edge label is (0,0). The second compo-
nent in an edge label is the orientation information, locally recorded by ‘an arrowhead’
(say, an ordered pair of the edge’s end vertices) or its absence. When recorded per-
manently, this information is transformed into a 0, a 1, or a -1, (like, for instance, in
the label given above).

The algorithm will reduce a given connected graph to the single labeled vertex
in phases performed in the following manner. Every phase begins with finding the
first applicable reduction rule (closest to the beginning of the list of reductions, to be
presented shortly). All instances of this rule in the entire graph are then found and
the corresponding reductions are performed, resulting in a modified (reduced) graph,
and some new labels. Since each reduction decreases the size of the graph, in O(n)
phases the graph will be reduced to a single vertex.

3.1 Reduction rules

In this subsection we describe the rewriting rules (tailored to the needs of unique
labeling) that reduce a given connected partial 2-tree to a single labeled vertex. The
rules are given in their scanning order, together with the associated new label(s).

0 multiple vertices and edges. The rules below may create several edges with the
same end-points (series rules) or several labels for a vertex (pendant and chain
with identical end-vertices). The latter is referred to in the pendant rule 1 as a
label being merged into the label of a vertex.

0.1 vertex label merge. The merging of multiple vertex and self-loop labels into a
vertex label means that we keep a set of labels with multiplicities to describe the
merged labels. Before the vertex itself is reduced, we must construct a proper
label for it. This is done simply by lexicographically sorting the labels, and
keeping duplicates in the sorted list I. The label will be (0.1;1).

0.2 parallel rule. This rule is applicable when m edges have the same end-points s,
and sz (s1 # 53, arbitrarily ordered). Let the labels of these edges be ; and let
d; be 1 if edge ¢ has an arrowhead from s, to s,, -1 if an arrowhead is directed
from s; to s, and 0 if it is not present. The parallel edges are replaced by
one new edge between s, and s,. This edge has a label (0.2;), where I is the
lexicographically smallest of two sorted lists corresponding to edge orientations
from s, to s; and from s, to s;. The new edge will have arrowhead (s; — s,) if

the first list is smaller, (s; — s,) if the second is smaller, and none if they are
equal. The first list has the members (I;, d;)5!, the second (;, —d;)75!

1 pendant rule. This rule applies to vertices of degree 1 (pendant vertices) and to
edges with both endpoints the same (self-loops).

1.1 dipole. If there is a pair of adjacent pendant vertices, they must form a con-
nected component of the graph consisting of two vertices labeled I, and [; both
incident to an edge labeled ¥, directed from the first to the second vertex (d=1)
or not at all (d = 0). This graph is reduced to a single vertex with label
(L1;4,(V,d), 1) or (1.1;1,, (I, —d), 1), whichever is lexicographically smallest.

1.2 pendant vertices. Assume the set of pendant (degree 1) vertices is indepen-
dent. One vertex and one edge is removed by a pendant vertex removal. The
label I’ together with with the orientation d of the edge form a pair (/,d). d is
defined as 1 if the arrowhead of the edge is directed towards the pendant ver-
tex, -1 if it is directed the other way, and 0 if it is not present. Combined with
the label of the vertex, I, they form the label (1.2;(¥,d), 1), which is merged
subsequently into the label of the separating vertex according to rule 0.1.

1.3 self-loops. The label ¥ of a self-loop is merged into the label of its end-vertex
according to rule 0.1.

2 series rule. This rule applies to vertices of degree 2. A set of such vertices inducing
a connected graph will induce a path or a cycle in the graph, as detailed below:

2.1 chain rule. A maximal set of degree 2 vertices inducing a connected graph, and
ending in two vertices, s; and sy, of degree higher than 2 consists of a path
(v1y-..,vm) with v, adjacent to s1 and v,, adjacent to s,. Let I; be the label of
vt =1,...,m and ! of the edge (vi,vig1), = 0,...,m, with vy = s, and
Umy1 = S2. Let d; be 1, -1 or 0, depending on whether the arrowhead of
(vi, vi41) is directed from v; to Vit1, from vy to v;, or not present. The vertices
v, t=1,...,m and their incident edges are replaced by an edge connecting s,
and s;. The label of this edge is the lexicographically smallest of two labels,
(2.1; (&, do), b, (1, dh), ..., I, (I, dm)) and
(2.3 (Bns @) by (B gy =), ... 1y, (I, —dp)). The arrowhead will point
from s to s, if the first alternative is smaller, from s, to s, if the second
is smaller, and is absent if they are equal or if s1 = sz (the latter condition
describing a self-loop).

2.2 ring rule. A connected two-regular graph is a cycle consisting of vertices Voy+ -+ y Unei,
with vertex v; adjacent to vertex v;,, fori = 0,...,m—2 and with vg adjacent to
Um-1- 1t is reduced into a single vertex labeled with the lexicographically small-
est of 2m labels (2.2; (Il ;, kdigji), lipik) oo wherei=0,...,m—1,k=1,-1,
and indices are computed modulo m.

3.2 Example

We will illustrate the process of creating a canonical label by reduction of the partial
2-tree whose adjacency lists are:

vertex | neighbors
1 13
2 13,14
3 14
4 15
5 6,15
6 5,7
7 6,15
8 12
9 10,12
10 |9,11
11 | 10,12
12 18,9,11,13,15
13 | 1,2,12,14,15
14 |23,13,15
15 [4,5,7,12,13,14

The canonical reduction sequence produced is the following, where groups of par-
allell reductions are separated by horizontal lines:

rule | reduced edges removed label | labeled | arrow

1.2 1 (1,13) I 13
3 (3,14) L 14
4 (4,15) I 15
8 (8,12) 4 12
0.1 I 13
I, 14
I, 15
12 12
2.1 2 (13,3), (2,14) s | (13,14)

5,6,7 (15,5), (5,6), (6,7), (7,15) L | (15,15)
9,10, 11 | (12,9), (9,10}, (10,11), (11,12) | & |(12,12)

0.1 5 12
ls 15
0.2 (13,14) s | (13,14)
2.1 12 (13,12), (12,15) Iz | (13,15)
14 (13,14), (14,15) s | (1513) | —
0.2 (13,15) b | (13,15) | —
11 | 13,15 (13,15) 1o

The label abbreviations used above are as follows:

name value
ll (12: (010)1 (0))
Iy (0.1;(0), 1)
13 (211(01 0):(0):(010))
14 (2'1; (Ov 0)$ (0)’ (01 0)’ (0)1 (Oa 0)$ (0)1 (0: 0))
s (0.1; 15, 1,)
ls (0.2;(0,0), (15, 0))
I, (2.15(0,0). 15, (0, 0))
Is (2.1;(0,0), 1, (I, 0))
19 (0 2! (0 0) (181 _1) (IT: 0))
llO (1‘11 151 (191 _1)112)

and we can get the explicit label by expanding the above abbreviations:

(1.1;(0.1;(0.1; (0), (1.2; (0, 0)
((0.2;(0,0), ((2.1;(0,0), 1,
(0)1(0,0))10))10))’_1) 2.
(2.1;(0,0),(0),(0,0), (0

4 Canonical representation of partial 3-trees

The idea behind the algorithm for partial 3-trees is similar to that of the algorithm
constructing a canonical representation of partial 2-trees. The reduction of vertices
is performed in consecutive stages, where each stage consists either of independent
reduction instances or of groups of dependent reduction instances of the same kind.
The situation is more complicated for partial 3-trees for two reasons. For one, the
reduction information (recorded in labels) often concerns three vertices, and thus the
resulting label must be associated with triples of vertices. We will present this as the
labeling process for hyperedges of order 3. The second reason for a more complicated
algorithm is the larger number of ways in which reduction rules of the same kind
can involve adjacent vertices. For instance, more than one vertex of a triangle can
have degree 3. Below, we elaborate on these differences leading to an algorithm
constructing a canonical label for a given connected partial 3-tree.

4.1 Labeling of hyperedges

Each of the three reduction rules involving a degree three vertex causes the elimina-
tion of that vertex and edges incident with it and replaces them by edges between the
neighbors of the vertex. (We call this reduction of a single vertex » adjacent to the
separator vertices 51,52, 53 a basic degree 3 reduction.) We will separate this topolog-
ical action from the labeling action of creating a labeled hyperedge corresponding to
the three neighbors of the eliminated vertex.

Let a sufficient set of permutations denote permutations of vertices of a subgraph
that are able to represent all symmetries (automorphism group) of the subgraph.
(This can be achieved by a smaller than full symmetric group set of permutations
when permutations exchanging non-symmetric vertices are ommitted.)

Let 0 be the label of hyperedges (vertices, edges, or triangles) in the original graph.
A label of a hyperedge is determined with respect to a permutation of its vertices
and is given an orientation represented by a subset of permutations of these vertices.
These permutations are symmetric with respect to the label (they constitute the
projection, into the symmetric group on the vertices of the hyperedge, of a coset of the
automorphism group for the graph reduced into the hyperedge). When a hyperedge
is removed in a reduction operation involving one of its vertices, its label will form a
component of the label of the created hyperedge, together with an indication of how
the orientation of the removed hyperedge corresponds to the orientation of the created
hyperedge. Consider an orientation D of a removed hyperedge and a permutation o
of the union of vertices in the removed hyperedges. D is coded with respect to o in
the following way: Recall that D is a set of permutations of a subset of the vertices

10

appearing in o, so each vertex occuring in D can be replaced by its index in . The
resulting set of integer lists is then sorted lexicographically.

As an example, consider reduction of a degree 3 vertex v with neighbors a, b
and c. This reduction removes at most one 1-hyperedge, three 2-hyperedges, and
three 3-hyperedges. Now, for instance, the permutation ¢ = (a,b,c,v) will cause
the orientation D = {(a,b,v), (a,v,b)} of a 3-hyperedge {a,b,v} to be encoded as
(1,2,4),(1,4,2)).

We can now describe the reduction of a set of vertices R = {v;}_, separated from
the rest of the graph by vertices S = {s;}\.;

Produce a sufficient set P of permutations of RUS. For each permutation pin P,
produce a label as follows: consider the set of (label,orientation) pairs that contain
some vertices of R. Replace each orientation with its encoding wrt p and sort the
pairs to get a label wrt p. The subset of permutations that yield lexicographically
smallest label { constitute the orientation of the new edge. The minimum value [and
the rule number r according to which the reduction is made are used to build the
label (r;1) of the new hyperedge.

Observe that the previous label construction for partial 2-trees was only slightly
different and can be easily changed to the present one. As an example, in the chain
rule, each d; would be changed from 1 to ((i,i + 1)), from -1 to (i + 1,¢)) and from 0
to ((i,i + 1), (¢4 1,7)). An arrowhead on an edge between vertices a and b would be
represented as an orientation ((a, b)) or ((b,a)) and its absence would be represented
by orientation ((a, b), (b, a)).

4.2 Reduction rules for partial 3-trees

Except for applications of the parallel rules, the sequence of reductions made is de-
cided solely on basis of adjacency information — we never investigate which type of
hyperedge (2- or 3-hyperedge) makes two vertices adjacent. So in this section we can
consider the graph represented by its clique representation when looking for vertex
sets to reduce. After this set has been decided, we must use another data structure
to find the set of hyperedges containing some reduced vertex, as detailed in section
5. The data structure for hyperedges is also used to decide when parallel rules (rule
group 3) are to be invoked.

3 parallel triangles. This rule is applicable when two or more 3-hyperedges have
the same set of vertices. Let the vertices be S=(s1,32,33), and the labels of
the hyperedges L;, i = 1,...,m. The orientations d;, ¢ = 1,...,m are sets of
permutations of S. Let d(p) be the coding of d wrt a permutatlon pof S. For
each permutation p of S, form the set {(l,,d },_1, sort it lexicographically and

11

extract the lexicographically smallest list (over p) as well as those p giving a
minimum, and call the smallest list { and the set of permutations P. The new
hyperedge with vertices sy, s2, 53 has label (3;1) and orientation P.

4 isolated instances.

4.1 triangle. A vertex that is triangle-reducible and not adjacent to another triangle-
reducible vertex can be reduced directly. This reduction of a single vertex ad-
jacent to three separator vertices will be called the basic degree § reduction.
The sufficient set of permutations consists of every permutation of the s;, each
followed by v.

4.2 buddy. Vertices in a buddy configuration not adjacent to another buddy config-
uration can be reduced simultaneously with the basic degree 3 reduction in all
occurences.

4.3 cube. The three reducible vertices in a cube configuration not adjacent to an-
other cube are reduced with the basic degree 3 reduction.

5 conflicting triangles.

5.1 diamonds. We can consider separately the cases when two adjacent triangle-
reducible degree 3 vertices v;, v5 have two neighbors s;, s in common.

5.1.1 K,. More than one occurrence of the diamond rule with adjacent reducible
vertices is possible only if a connected component of the graph is the 4-clique K.
The sufficient set consists of all 24 permutations of the vertices vi,1=1,2,3,4.

5.1.2 K. If the vertices v, and v, are not adjacent, they induce, together with their
common neighbors sy, s;, the four-clique without an edge, K. A sufficient set
of permutations to consider is each of the two permutations of {s1,8.} followed
by each permutation of {v;,v,}.

5.2 Subgraph H. The remaining configurations of adjacent degree 3 vertices re-
ducible according to the triangle rule and with at most one common neighbor
(triangle-reducible for short) are discussed below. For a given partial 3-tree G,
let us consider a maximal connected subgraph H consisting of triangle-reducible
vertices subject to conflicting reductions according to the triangle rule. We will
investigate the structure of those subgraphs and will make unique choices of
independently reducible vertex sets in G. We consider the following cases of
reductions in G depending on the degrees of vertices in H:

12

-

5.2.1 degree 1 only. Two adjacent vertices of degree 1 in H, v; and v,, represent
one of the two subgraphs in G shown in Figure 2. In the case of a four-vertex
separator, other reduction rules must be applicable in the rest of the graph (‘be-
yond the four separating vertices’), or else G cannot be a partial 3-tree. In the
case of a 3-vertex separator, a separate reduction rule allows us to reduce v, and
vg, creating a hyperedge containing the separator vertices, with a unique label
describing the reduced subgraph of the original graph (none of the separator
vertices is triangle-reducible).

o -0

Figure 2: Subgraphs of H with two adjacent degree 1 vertices.

5.2.2 degree 1 and 2 or 3. Nonadjacent vertices of degree 1 in H can be subjects
to the basic degree 3 reductions in G, since these do not conflict with each other.

5.2.3 degree 2 only. The vertices of degree 2 form a cycle in H. Let us call an
edge t if it is a side of a triangle of G and f otherwise. Notice that end vertices
of adjacent t edges have one common neighbor in G. Consider those vertices
incident to both a # and an f edge; call this set A. Depending on the relation
between A and H, we have three subcases (Figure 3).

SRlmy

a) wheel (¢} square

Figure 3: Cycles in H (a) a wheel, (b) a general case, (c) the square.

5.2.3.1 wheel. The set A is empty: all edges of H are ¢t edges. This is the wheel
configuration, reduced to a single vertex label (“the hub’s”) according to a
separate rule.

13

5.2.3.2 collection of paths. A does not contain all vertices of H and its vertices
partition the set of the remaining vertices of H into connected components.

Those can be dealt with in a manner similar to that in rules 4.1, 5.2.1, and
5.2.2.

5.2.3.3 square. If H consists of alternating ¢ and f edges (all the vertices are in
A), then we have to consider subcases depending on the number of edges in H
(it is trivially greater than 3). When H has 4 edges (only two triangles are in-
volved), the triangles’ ‘third vertices’ form a separator of G. The corresponding
configuration (square, Figure 3(c)), is the left hand side of a separate reduction
rule. If there are more than two triangles, then there must be another instance
of a reduction rule ‘beyond the separating vertices’ (i.e., in the subgraph of G
induced by vertices of G other than in H), or else G is not a partial 3-tree.

5.2.4 degrees 2 and 3. If H consists of both vertices of degree 2 and vertices of
degree 3, then the vertices of degree 2 form in H paths that end in degree 3
vertices. When such a path has exactly two degree 2 vertices, these can be
reduced according to rule 5.2.1. Otherwise, there are unique and nonadjacent
vertices of degree 2 in H and the corresponding vertices in G can be reduced
with the basic degree 3 reduction, similarly to the situation in 5.2.2.

5.2.5 degree 3 only (prism). Since a vertex in H is of degree 3 in the original
partial 3-tree G, a cubic H is identical with G. To analyse this case, we consider
the multigraph H obtained from H in the following manner: The set of vertices
of H is the set of triangles (K subgraphs) of H. The set of edges of H is the
set of edges of H nof in the triangles. A vertex of H is incident with an edge
of H if the corresponding triangle contains a vertex of H incident with that
edge in H. We will show that H is a series-parallel grah, which has important
consequences in determining unique triangle reductions in H (or, equivalently,
G). A multigraph is series-parallel if and only if it does not contain a subgraph
homeomorphic to K. However, if H contains such a subgraph, then H contains
as a minor the 4-regular Duffin graph (see Figure 4(b)), and is thus not a
partial 3-tree. Since all vertices of H have degree 3, there must be instances of
independent parallel edge reductions in H. Unless H has six vertices and nine
edges (‘the prism’, see Figure 4(a)) reduced to a single vertex by a separate rule,
an instance of the parallel edge reduction in H corresponds to the subgraph of
the 5.2.8.3 square rule in H.

14

a) Prism b} Durfin graph

Figure 4: 3-regular subgraphs (a) the prism, (b) a minimal forbidden minor.

6 conflicting buddies. The 3-leaves v;,v; in an instance of the buddy reduction
can be adjacent to 3-leaves u1,u, in another instance of the buddy reduction
only if uq, us are commonly adjacent to a third vertex w. This third vertex may
be identical with or different from the third common neighbor of vy, v, leading
to two configurations that can be incorporated as the left-hand-sides of new
reduction rules. The former is a case of the 5.2.3.1 wheel rule discussed above,
the latter, cat’s cradle, is shown in Figure 5.

&> R

a) Cat's cradle b K(3, 3)

Figure 5: Overlapping buddy configurations.

6.1 K33. Two cat’s cradles can overlap only where the graph has a connected com-
ponent which is Kj3.

6.2 cat’s cradle. This is the other case where w ¢ T'({vy,v;}). The separator ver-
tices s1,57 and the cycle (v1,vs,v3,7v4) have edges (s1,v1), (s1,v3), (s2,v2) and
(sz,v4) between them.

7 conflicting cubes. There are two basic cases of possible conflicts between the
reduced vertices in two different instances of the cube reduction.

7.1 qube. In one case, the purported 3-leaf vertices vy, v, v, in one instance of the
cube reduction are adjacent to 3-leaf vertices of another instance. This occurs
only in the 8-vertex, 12-edge three-dimensional cube graph. This is because the

15

vertices uy,us, and u; (cf Figure 6) have then degree 3 and are adjacent to a
common neighbor (the hub of that instance), also of degree 3.

a) Qube b) Hammock

Figure 6: Overlapping cube configurations.

7.2 hammock. In the second case, the hub z of one instance is a 3-leaf of the other
instance. This implies that one of the 3-leaves of the first instance, say v,, is
the hub of the second instance and its other neighbors u;, u; are the remaining
3-leaves of the second instance. The vertices u;, #, must have another common
neighbor y. If this vertex is identical with the remaining vertex u3 of the original
cube, u;,u; are triangle-reducible. If y is different than ug, this leads to a new
reduction rule with the left-hand-side configurations given in Figure 6(b).

5 Complexity of the algorithms

Any reasonable implementation of the labeling and reduction process will run in poly-
nomial time for some low-order polynomial. In order to get a linear time algorithm
we must be more careful. Some apparent obstacles to linear time performance are
introduced by the need to perform the following tasks:

(i) Sorting O(n) labels, each of length O(n), when producing labels for applications
of parallel rules.

(ii) Finding the lexicographically smallest of m labels each of size k&, where mk is
O(n), when deciding label for a 2.2 (ring) reduction.

(iii) Finding instances of applicable reductions.

Actually, there are already methods available to overcome these obstacles. F irst,
the abbreviations introduced in the example of section 3.2 can be formalized into a
canonical numbering of labels (or objects labeled), as is done for a tree isomorphism
algorithm due to Edmonds and described in, e.g., Aho, Hopcroft and Ullman [1] and

16

Colbourn and Booth [9]. The technique presented there is directly applicable here,
and solves problem (i). With this canonijcal numbering, any of the corresponding
algorithms by Syslo [23], Shiloah [22], or Booth [8] solves also probiem (i) above.
The total number of times vertex adjacencies change during the reduction process
is proportional to the graph size. Thus, maintaining ready lists’ for vertices that

reach small enough degree to be considered in the reduction rules resolves problem
(iii) above.

5.1 Parse tree levels and bucket sort

In our implementation of the idea of constructing the canonical representation for
a partial k-tree (k < 3) we are motivated by the goal of a linear time algorithm.
Towards this goal we use the paradigm of linear time tree isomorphism algorithm, as
presented in [1]. (Actually, that algorithm can be easily modified to yield a canonical
representation of a tree.) We should mention two salient features of the algorithm,
which we will try to emulate in the k-tree context. While labeling of the tree nodes
is performed ‘bottom-up’, the tree is rooted and the nodes are assigned their levels
with respect to the root, i.e., distances from that distinguished node. This implies a
‘top-down’ preprocessing of the tree. Considering nodes by levels limits the necessity
of sorting node labels to nodes of one level at a time. This, in turn, allows the bucket
sort to take only linear time.

In determining the label of a hyperedge resulting from the parallel or independent
rules (0.1, 0.2, 3, 4.1, 4.2, and 4.3) we need to sort the label’s components. Since
they are assigned numbers ranging over the interval [1...7n)], a bucket sort guarantees
only linear performance in n, the number of nodes. However, each of such (parallel or
independent) reduction rule requires a sort which would force the complexity of our
algorithm beyond linearity. Only when sorting label values ranging over an interval
of the same cardinality as the sorted set, we get the total complexity of the necessary
bucket sorts proportional to n.

To limit the range of label values that require sorting, we introduce the notion of
a parse tree. For a given partial k-tree G (k < 3), each node of the unique, rooted
parse tree is associated with a reduction instance. Two nodes are adjacent if the
reduction instance corresponding to the child creates a hyperedge involved in the
reduction corresponding to the parent node. This tree can be constructed in linear
time assuming constant time per recognition of an applicable reduction rule (more
about this assumption later). The root node will then be assigned level 0 and, by a
top-down traversal, all other nodes can be assigned their level values.

i)

5.2 Ready lists

The reduction instances are either bounded size, connected graphs cut off by a sep-
arator (rules 1.1, 1.2, 1.3, 4.1, 4.3, 5.1.1, 5.1.2, 5.2.3.3, 5.2.5, 6.1, 6.2, 7.1, 7.2),
variable size configurations involving only vertices of degree not greater than 3 (2.1,
2.2, 5.2.3.1), parallel rules (0.1, 0.2, 3) or the buddy configuration (4.2). The mem-
bership of a vertex in such a configuration may vary during the reduction process.
However, membership is altered only when one of the adjacencies of reducible ver-
tices is altered. Since each reduction involves at most adjacencies of three remaining
vertices, the total number of times a vertex changes its neighborhood or is part of a
created hyperedge (by being in the separator associated with a reduction) is O(n),
summed over all vertices. Each time this happens we investigate which is the highest
ranking rule by which the vertex is reducible, or if it is a vertex of a hyperedge to
which a parallel rule applies. The vertex is then linked into a list for that reduction
rule.

5.3 Ring algorithm

As an exercise in algorithm design and quick and dirty programming in the Lisp-
dialect Scheme, we include here an solution to the problem of finding the lexicographi-
cally minimum representation of a (cyclic) string of n elements 0.m(0 < 1 < ... < m).
The algorithm uses few pointers to positions in the string: one pair, g and jg, in which
such a minimum representation might start and another, 7; and j;, delimiting identi-
cal substrings. We acknowledge Alexander Proskurowski for the idea of the algorithm
and Art Farley for introducing us to MacScheme.

(define ring
(lambda (string m)
(let ((i0 0) (jO 1) (i1 1) (1 2))
(while (and (< jOo m) (> jO 0))
(set! jO (remainder (+ jO 1) m))
(while (and (and (< jOom) jo 0))
(= (vector-ref string j0) 1))
(set! il (remainder (+ i0 1) m))
(set! j1 (remainder (+ jO 1) m))
(wvhile (and (and (< jO m) (> jO 0))
(> (vector-ref string j1) 1)
(= (vector-ref string il)
(vector-ref string ji)))

18

(set! i1 (remainder (+ il 1) m))
(set! ji (remainder (+ ji 1) m)))
(cond ((= (vector-ref string il)
(vector-ref string ji))
(set! jO j1))
((< (vector-ref string it)
(vector-ref string j1))
(set! jO (remainder (+ ji 1) m)))
((> (vector-ref string i1)
(vector-ref string j1))
(set! 10 jO)
(set! jO j1)))))
10)))

5.4 Data structures

An important factor in our algorithm is the ability to efficiently check adjacencies of
vertices. To avoid scanning adjacency lists, we have decided to use a data structure
implementing the adjacency matrix and thus requiring O(n?) space. This structure,
however, allows us to initialize the non-zero entries in time proportional to their
number; since a partial k-tree has O(n) edges, this allows a linear-time preprocessing,.
The complexity of queries (of the type ‘are vertices u and v adjacent?’) is, of course,
constant per query. Below follows a brief description of the structure (known from
the folklore).

The initialization is performed via a non-zero entry array N, where each entry
of the adjacency matrix A, say A[u,v], has its unique index, say z. Thus, N[i] =
{(u,v), Alu,v]). An entry of the augmented adjacency matrix AA, say AA[u,v],
has the value of (¢, A[u,v]) where 7 is the corresponding index. At the conclusion of
initialization process, a counter m contains the number of non-zero entries in A. Only
when Nf{first(AA[u, v])] is equal (u,v) and first(AA[u,v]) < m, the value of Afx,v]is
non-zero (‘first’ denotes the first element of a pair).

Similar data structures can be used to detect creation of parallel hyperedges and
of buddy configurations (here, 3-dimensional matrices are used to record 3-hyperedges
and adjacencies of degree 3 vertices).

The adjacency matrix does not allow us to find in constant time the neighborhood
of a low degree (1, 2 or 3) vertex. Therefore we also maintain adjacency lists, in which
new neighbors of vertices are added. When a vertex degree falls to 3, a lazy delete
operation is performed, in which the whole list is scanned and reduced vertices are
removed. The constant time of deleting a list element can be apportioned to the

19

reduction operation for the vertex, thus an amortized analysis yields linear time.

6 Conclusions

The existence of a complete set of safe reduction rules allowing recognition of partial
3-trees led us to a linear time isomorphism algorithm for this class of graphs. We
expect that this can be generalized to higher values of & if such rule sets exists.

References

[1] AHO, HOPCROFT AND ULLMAN, Design and Analysis of Computer Algorithms
Addison-Wesley 1972.

[2] S. ARNBORG, Efficient Algorithms for Combinatorial Problems on Graphs with
Bounded Decomposability — A Survey, BIT 25 (1985), 2-33.

[3] S. ARNBORG, D.G. CORNEIL AND A. PROSKUROWSKI, Complexity of Finding
Embeddings in a k-tree, SIAM J. Alg. and Discr. Methods 8(1987), 277-287.

[4] S. ARNBORG AND A. PROSKUROWSKI, Characterization and Recognition of Par-
tial 3-trees, SIAM J. Alg. and Discr. Methods 7(1986), 305-314.

[5] S. ARNBORG AND A. PROSKUROWSKI, Linear Time Algorithms for NP-hard
Problems on Graphs Embedded in k-trees, Discr. Appl. Math. 23(1989) 11-24.

[6] H.L. BODLAENDER, Polynomial Algorithms for graph isomorphism and chro-
matic index on partial k-trees. SWAT, Springer-Verlag LNCS 318 (1988), 227-
232,

[7] J.A. BONDY AND U.S.R. MURTY, Graph Theory with Applications, North Hol-
land (1976).

[8] K.S. BOOTH, Finding a lexicographic least shift of a string, Information Process-
ing Letters 10 (1980), 240-242;

[9] C.J. COLBOURN AND K.S. BOOTH, Linear time automorphism algorithms for
trees, interval graphs, and planar graphs, SIAM J. Computing 10 (1981), 203-
225;

20

[10} LS. FILOTTI AND J.N. MAYER, A Polynomial-time Algorithm for Determining
the Isomorphism of Graphs of Bounded Genus, Proc. 12th ACM Symp. on The-
ory of Computing (1980), 236-243.

[11}] M. FONTET, A Linear Algorithm for Testing Isomorphism of Planar Graphs,
Proc. 3rd Int. Conf. Automata, Languages, Programming, Springer-Verlag
LNCS (1976), 1411-423.

[12] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, W.H. Freeman
and Company, San Francisco (1979).

[13] J.E. HOPCROFT AND J.K. WONG, A Linear Time Algorithm for Isomorphism
of Planar Graphs, Proc. 6th ACM Symp. Theory of Computer Science (1974),
172-184.

[14] E.M. LUKS, Isomorphism of Graphs of Bounded Valence Can Be Tested in Poly-
nomial Time, JCSS 25(1982), 42-65

[15] G.L. MILLER, Isomorphism Testing for Graphs with Bounded Genus, Proc. 12th
ACM Symp. on Theory of Computing (1980), 225-235.

[16] G.L. MILLER, Isomorphism Tesing and Cannonical Forms for k-contractible
Graphs, Proc. Foundations of Computation Theory, Springer-Verlag LNCS 158
(1983), 310-327.

[17] A. PROSKUROWSKI, Recursive graphs, recursive labelings and shortest paths,
SIAM J. Computing 10 (1981}, 391-397;

[18] A. PROSKUROWSKI, Separating Subgraphs in k-trees: Cables and Caterpillars,
Discr. Math. 49(1984), 275-285.

[19) D.J. ROSE, Triangulated Graphs and the Elimination Process, J. Math. Anal.
Appl. 32 (1970) 597-609.

[20] J.J. ROTMAN, The theory of Groups (2nd ed.), Allyn and Bacon, 1973.

[21] P. Scheffler, Linear time algorithms for NP-complete problems for partial k-trees,
R-MATH-03/87 (1987);

[22) Y. SHILOAH, A fast equivalence-checking algorithm for circular lists, Information
Processing Letters 8 (1979), 236-238;

[23] M.M. SYSLO, Linear Time Algorithm for Coding Outerplanar Graphs, TRN-20
1977, Institute of Computer Science, Wroclaw University.

21

[24] A. WALD AND C.J. COLBOURN, Steiner Trees, Partial 2-trees, and Minimum
IFI Networks, Networks 13 (1983), 159-167.

[25] T.V. WIMER, PhD. dissertation, Clemson University (1988);

2
b2

