Algebraic Transformations
in Systolic Array
Synthesis: A Case Study

Sanjay V. Rajopadhye
Computer Science Department
University of Oregon
Eugene, OR 97403
sanjay@cs.uoregon.edu

CIS-TR-89-12
September 6, 1989

Abstract

We describe the use of a guided, transformational approach to systolic
array synthesis, using algebraic properties of the operators, such as
associativity and commutativity of operands. While there are well known,
constructive methods for systolic array synthesis, they do not typically permit
the kinds of transformations that we illustrate. We thus expand the design
space, to the point of deriving implementations where the standard
techniques fail to find any. Obviously, our method needs user guidance, but
we develop a characterization that enables us to avoid arbitrary program
restructuring.
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1 Introduction

It has now become widely accepted that with the growing complexity of VLSI circuits, it is
imperative that the design be based on a formal basis that enables the user to reason about
the system in an abstract manner. Within such a framework (such as the HOL system
[Gor87]), a design specification may be expressed as a theorem regarding the expected
behavior of the design in a formal logical theory. An implementation can be derived from
it by a sequence of correciness preserving transformations, i.e., a sequence of deductions
in the theory. Such a formal approach is essential not only for the derivation of such a
priori correct designs, but also for the a posteriori verification of completed designs as
was done for the VIPER microprocessors [Coh87]. The advantage is that both approaches
may be pursued in the same framework. In automating this process, we are faced with
conflicting requirements. If we want the problem of determining the equivalence of any
two formulee in the theory to be decidable, we must sacrifice the expressive power of the
theory. Since this is too restrictive, one usually sacrifices decidabilitiy for expressive power.
As a result, a large number of transformations are applicable at any stage in the design,
and it is necessary to use heuristics or user input to guide the synthesis process. In many
instances however, there are more direct methods for deriving the final implementation. In
software design, for example, such formal methods may be used to derive a provably correct
program, which is then compiled to produce the final executable code. Although compilers
are (hopefully) based on a formal semantics of the language and the translation to ob ject
code may be viewed as a sequence of transformations, this sequence is deterministic. There
is thus, a well defined point beyond which no user input is required. By the same token,
when we design CAD tools, we must be able to use constructive techniques whenever
thay are available, i.e., the formal, theorem-proving approach must be used to design the

specification itself, and should then interface to a “silicon compiler.”

In the this paper we present a case study of an attempt to achieve this marriage within
a unified framework. We are interested in hardware design (in particular, systolic array

design) where the initial specifications is expressed as a program in a (declarative) language



[RF88]. We shall describe the derivation of a family of systolic arrays for ARMA (Auto
Regressive Moving Average) filtering. During the design, we shall employ two distinct
classes of transformations for obtaining the final implementations. The first set corresponds
to a method that is now well known among the researchers in systolic array synthesis
(such as [Raj89]), and the second one uses algebraic properties of the operators of the
computation. The first set is based on a constructive theory, and may hence be automated,
while the latter requires user input. Our intention here is to clearly delineate the bounds
of the consiructive methods and present a few transformations that are currently beyond
them. This is of necessity a preliminary document that reports on work in progress, since

our catalog of transformations is by no means complete.

As is well known, systolic arrays are a class of parallel architectures that consist of
simple processors connected locally in a regular, tessellating pattern. Based on the early
work of a number of researchers such as Cappello [C584], Fortes [For83], Quinton [Qui83],
and Rao [Rao85] (and many others), a theory for deriving such arrays automatically from
algorithmic specifications has emerged. However, the main restriction in these methods has
been that the initial algorithm was required to have what are called uniform dependencies.
As a result, a large part of the design effort was spent in obtaining the problem specification
itself. There was therefore, a move towards the development of techniques so that systolic
arrays could be derived from a more general class of algorithms. Such techniques have been
developed by Fortes and Moldovan [FM84], Quinton and Van Dongen [QV89], Rajopadhye
[RF88,Raj89], Roychowdhury et al. [RTRKSg], Yaacoby and Cappello [YC88] and others.
They typically focus on initial specifications that have affine dependencies, and a common
characteristic of these thechniques is that each of them attempts to perform a localization
of the data dependencies of the initial algorithm. In this paper we refer to such localization
techniques as pipelining transformations. Such a step is essential, since it has been shown
that all systolic arrays can be described by algorithms that have uniform dependencies. The
transformation from AREs to UREs is thus based on a well developed, constructive theory
and we shall merely illustrate its use in this paper. Our thrust will be on transformations
that are needed when the constructive theory is inapplicable. The rest of this paper is

organized as follows. In the following section, we present an overview of the synthesis



techniques. Then in Sec 3 we describe the problem definition, and develop an ARE that
we shall use as our initial specification. In Secs 4, 5 and 6 we present three classes of
transformations and the systolic implementations that can be derived for the problem.

Finally, we conclude by indicating directions for future work.

2 Overview of the Constructive Methodology

In some sense, all the approaches to systolic array synthesis are based on an analysis of the
data dependencies of an algorithmic specification. In a typical scenario for synthesizing
systolic arrays one starts with an initial algorithm that consists of the computation of
a function at all points in an indez-space (viz the integer lattice points in a subset of

Euclidean space). A mathematical description of such an algorithm is given by the following
definition.

Definition 1 A Recurrence Equation over a domain D is defined to be an equation of the

form
f(@) = g(f(@1), f(a2) ... f(ax))
where ? € D; D is a convex hull subset of Z*,
gg€EDfori=1...k
and g is a single-valued function, strictly dependent on each of its argu-
ments,

A system of recurrence equations is a set of m such equations, defining the functions

fr: f2,- - fm. In any equation defining say f;, any of the f’s (i.e., not restricted to f; itself)
may occur on the right hand side.

A Recurrence Equation of the form defined above is called a Uniform Recurrence Equa-
tion (URE)if ¢; = p+by, fori = 1,..., %k, where the b;’s are constant n-dimensional vectors.
It is said to be an Affine Recurrence Equation (ARE) if for i = 1,...,k, ¢; = Aip+ by,
where the A;’s are constant n x n matrices, and b;’s are constant n x 1 vectors.

Note that since g is a strict single-valued function, a system of recurrence equations

is equivalent to a purely applicative program. Also, AREs properly include UREs since
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the the latter are simply AREs with A; matrices being the identity matrix. The function
¢ is used to implicitly define the computation performed by a single processor, and thus

defines the granularity of the computation.

The early work on systolic array synthesis due to Cappello and Steiglitz [CS84] and
Miranker and Winkler [MW84] viewed the computation as a lattice in an index-space. The
synthesis problem then consists of affine projections of this lattice on a space-time domain.
Fortes and Moldovan used techniques of linear transformations on the dependency vec-
tors of nested-loop algorithms [For83,Mol83]. Another similar approach was presented by
Quinton [Qui83] where the problem is expressed as a URE. Li and Wah [LW85] address
the question of optimality of the derived arrays. The notation used in each of these papers
was completely different, and each of them introduced many subtleties. As a result, the
underlying assumption of constant vector data-dependencies was not immediately clear.
Rao’s dissertation [Rao85] provided a unifying theme among all these approaches. He in-
vestigated the relationship between systolic arrays and a class of algorithms called Regular
Iterative Algorithms (RIAs, which are very similar to UREs in that they have constant
dependencies). The main idea in the synthesis of systolic arrays is that once we have an
algorithm expressed as a recurrence, we assume that the function ¢ can be computed in
constant time by a processor. The synthesis then simply consists of mapping the indez-
space of the original recurrence to a space-time domain, i.e., assigning a place and a time
to each point in the domain of the recurrence. It has been shown (by a number of re-
searchers, see [RF88], [Rao85] for example) that such a mapping must necessarily be an

affine transformation of the indez space (i.e., independent of the function g)-

As mentioned above, many researchers have investigated the problem when the initial
recurrence is an ARE, and the field has now converged to a point where AREs (and sys-
tems of AREs) have been accepted as the de-facto initial specification. There is now a well
developed theory for scheduling such recurrences (i.e., determining a timing function for
them). While there exist AREs that do not admit an affine timing functions, this class
of schedules are precisely what is needed for systolic array design. Even after one obtains

an affine schedule for the ARE, the arrays that can be derived are not systolic, but have



non-local and time-dependent interconnections. Thus, an essential step is to localize the
dependencies of the algorithm. It has been shown that this can be achieved by a technique
called date pipelining, which can be viewed as a source-to-source transformation on the
input algorithm characterized by the null space of the dependency matrix. While, the
existence of a rank-deficient dependency matrix is a necessary condition for data pipelin-
ing, it is not sufficient. It is also important to ensure that the pipeline can be correctly
initialized, i.e., the required data is made available to the first processor in the pipeline,
and there are constructive techniques that enable us to derive the transformed recurrences
automatically. We shall next illustrate these techniques and the conditions that determine
when they are applicable, and then discuss the class of transformations that are required

when the constructive methods are not applicable.

3 Problem Definition and Naive Derivation

The Auto-Regressive, Moving-Average filter problem may be stated (in the time domain)
as follows. Given an infinite sequence of input values, X;, X5,...X;... and two finite sets
of weights, A;, A,,... Ay and By, By, ... By, of equal length, & (the assumption about equal
lengths can be made without loss of generality, since the smaller set can always be padded
with enough zeroes to make them the same length), determine a sequence of output values,
Y1,Ys,...Y; ... defined by the following equation.

k k
Yi=) Aj*xXij+) Bj+Yi (1)

j=1 =1

In order to obtain an ARE for this computation, we first replace the summations in
the above definition by iterations, since the summations imply the use of hardware with
unbounded fan-in. As we shall soon see, there is no unigue way in which to do this, and
in fact, the algebraic properties will be used to derive other provably equivalent AREs.

We shall follow the convention that upper case variables refer to input/output values of
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Figure 1: Domain and Dependency Structure of the ARE of Eqn 8. For the sake of clarity,
the dependencies of only a few poinis in the domain are shown.

the program (and correspond directly to variables in the specification), while lower case
variables are internal variables that are used by the program. We shall therefore attempt
to introduce these variables in a systematic manner. In a naive approach, this is done by

index j itself as the iteration dimension, yielding the following algorithm.
y(&,7) =y(i,j — 1)+ 4; + Xij + B;* Vi (2)

where the boundary conditions are ¥; = y(i,k) and y(i,0) = 0. The domain of this
computation is D = {[i,j] | 0 < {,0 < j < k} and follows from the decision to use j as the
iteration dimension. At each point [4,j] € D, the computation requires the values of A;,

@X,_, and Y;_;, in addition to y(i — 1, 7). Of these, ¥;_; (and y(i — 1,7)) value must
be obtained from exactly the point where it is computed, i.e., [ — 7,k ([i = 1,7]). The
other three are input values that are not computed by the algorithm, and must therefore
be obtained from outside the domain, in particular, from points that are edjacent to the

domain boundary. Let us now explore the design choices that these facts present. Since
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the length of the A and B streams is k, we should assign them to the : = 1 boundary (this
is the only boundary of D of the correct length). Thus we will have A; and B; available
as* a(0, 7). Since the domain has two boundaries (namely = 1 and j = k) that can have
a direct correspondence with the X stream, we have two choices. Let us, for now, choose
the j = 1 boundary, and let X, be available as z(m,0). Eqn 2 can thus be reduced to the
following, which now has affine dependencies, and is thus an ARE.

y(6,7) = y(i,5 — 1) +a(0,7) * 2(i — 7,0) + 5(0,5) * y(i — 5, %) (3)

The boundary conditions are y(i,0) = 0, a(0,j) = A;, b0, j) = B; and z(¢,0) = X;. The
domain and the dependency structure for the ARE is shown in Fig 1.

We observe that the computation at any point [z, ] requires five arguments — an a
value, a b value, an z and two y values, from the points [0, j] (for doth a and b), [ — 7, 0],
[i—7, k] and [i — 1,7 — 1] respectively. Of these five points, only the last one is local (i.e., a
constant vector away from [z, j]). Hence the first step is to localize the four dependencies
by data pipelining. We see that for any point, [¢, 7], all points of the form [¢, j] require
the same a (and b) arguments. Conversely, all the points that require the same a (and
b) arguments as [z, j] lie on the horizontal line passing through [¢,]. This line intersects
the boundary of the domain at [1, ], and one can reach this point from any point on the
line by repeatedly adding the vector —1,0] (since [—1,0] is an integral basis for this line).
Also, the point that [1,j] depends on is {0, j] (since A; has been assigned as a(0, j)) which
is simply a constant vector from it. We therefore introduce an auxiliary function that
simply passes on the a (and b) values to its right neighbor, introducing a new pipelining
dependency, [—1,0]. The function is initialized at the j = 1 boundary from [0, j], using
the terminal dependency [~1,0]. We have thus pipelined the affine dependency for a(0, 7)
(and also b(0, 5)).

*Note that this choice is also not unique: the points on the i = 0 line could be assigned eny permutation
of the A and B streams. However, as we shall see later, this does not yield any realistic design options — one
of the permutations will be exactly what is required.



Similarly for the (i — j,0) argument, the points that need the same value as [, j] have
the form [¢ 4,7 + I], and form a line of slope 1, which intersects the domain boundary
at [ —j+1,1] and [i — j + k,k]. Since we have decided to assign X, to be adjacent to
the ; = 1 boundary, we need to consider the former point. The value required at this
point is X;_;, which has been assigned to the point i — 7,0], and hence this pipeline too,
can be initialized with the terminal dependency, [-1,—1]. Based on the above discussion,
we have the following system of AREs which is provably equivalent to Eqn 3, and the

corresponding domain and dependency graph is shown in Fig 2.

¥(6,5) = y(i = 1,5)+ fa(i,5) * fo(1,5) + fu(G,5) » y(i — 5, k) (4)
o fali-15) i=1

LTS {ﬂ@—1J)omamm %)

_ {m(i—l,j—-l) ifj=1

fz(h]) fm(i -1,5 — 1) otherwise

(6)

bi—1,7) ifi=1
fi(i = 1,7) otherwise

fb(i’j) = { (7)

The procedure to pipeline the data dependencies of an ARE thus consists of the steps
outlined below. In the interests of clarity, we shall use an informal manner of presentation,

although it must be emphasized that these transformations are constructive and can be

automated.

o Identify the points that can potentially share their arguments. This can be done by
determining an integer basis for the null space of the dependency matrix. The basis

vectors may not be unique, so the following constraints are used to guide the choice.

o Determine the intersection of this null space with the domain boundary. Choose the
intersection point that is a constant vector fromn the desired point. The choice of

this point may guide the selection of the basis vector.

¢ Determine the terminal dependency.
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Figure 2: Domain and Dependency Siructure of the system of AREs of Eqns 4-7, showing
how all but one of the dependencies can be pipelined.

Let us see what happens when we try to pipeline the the ¥’ dependency. The main
point to note here is that ¥ is not an input, but a computed value and thus we do not
have the freedom of manipulating its location. Thus, points that need the Y values will
have to get them from where they are computed. These points (just like the z(i — j,0)
dependency, form the straight line of slope 1, which as we know intersects the domain at
[ = 5 4+ 1,1) and [ — j + k, k], neither of which is a constant vector from [i — 7, k] (see
Fig 2). As a result it is not possible to pipeline this dependency, and a CAD system based
on the standard design methods will not be able to proceed further. We must now step
away from these methods and apply other transformations that are based on the algebraic

properties of the computations.



4 Reversing Chains of Dependencies

The principal property of the computations that we shall use is the associativity (and
occasionally commutativity) of some of the operations. One of the simplest, and possibly
the most useful transformation that this permits us to perform is a reversal of some of the

dependencies. It is based on the following theorem, which is a generalization of a similar
result for UREs presented by Rajopadhye [Raj86] (Th. 2.2).

Lemma 1 Let f(p) = g(f(A1p + b1}, f(A2p + ba),... f(Aip + bi), ... F(Axp + by)) be an
ARE where the i-th dependency [A;,b;] s uniform (i.e., A; is the identity matriz). If g
satisfies the following property:

g($1,$2, ey iy .. )mk) = gl(mth(mhm% AERAPSUF B PR T N [ smk)

where g; i3 an associative and commutative binary function, and g, is an arbitrary (k=1)-
ary strict function, then the ARE is equivalent to the following one.

() = 9(f(A1p+b1), f(Aap + b2),... fF(p— by),... F(Axp + by))

Proof: The proof is along the same lines as that used in [Raj86] and is omitted for
brevity. i

Corollary 1 If the input value for the i-th dependency is an identity of ¢g,, it is not
necessary that ¢, be commutative.

Intuitively, the above theorem enables us to reverse the direction of some of the de-
pendencies in the original ARE (provided they are originally uniform or have already been
pipelined). The conditions for this are that the argument corresponding to this depen-
dency must be used “exactly once” in an associative and commutative binary function. In

Eqn 3 this is true (with g, being addition, g5(a,b,z,y) = azx + by ), and we therefore have
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Figure 3: Domain and Dependency Siructure of the ARE with reversed dependency (Eqn 8)
the following ARE that is equivalent to the original. Its domain and dependency structure

is shown in Fig 3.
y(i7) = y(i, 7 + 1) +a(0,5) » =(i — 5,0) + 5(0,5) *y(i ~ 5,1) (8)

The boundary conditions must now be changed to y(i, k +1) = 0, and the results are now
available as Y; = y(i,1) at the j = 1 boundary (other boundary conditions remain the

same as before).

4.1 Deriving the Final Architecture

For this ARE, the a, b and = dependencies may be pipelined exactly as before. Moreover,
we may now also pipeline the Y;_; dependency as follows. As before, the set of points that
may share the same value consists of the 45° line, which intersects the domain boundary

at [{ —j+ 1,1 and [i —j+ &, k]. This time, however, the required value is computed at
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[¢ — j, 1] which yields a pipeline with [—1, 0] as the terminal dependency. We are therefore
able to derive the following system of UREs.

y(1,7) = y(i,J = 1)+ fuld,5) * fa(4,5) + fu5, 5) * (5, 5) (9)
folij) = {;(Zz_-—lljj)) ft;:v;lise (10)
s = (T ()
ses) = { T a2

We may now proceed with the constructive methods to derive a systolic implementation
for this system of UREs. This is achieved by selecting appropriate timing and allocation
functions. Of these, the allocation function is really straightforward. Since our domain
is infinite, with [1,0] defining its ray, the allocation function must be orthogonal to it,
ie., a(i,j) = j. This is the only allocation function that yields a finite array. In order
to derive a timing function (in particular, the optimal one) we proceed as follows. Let

t(i,j) = li + mj + n denote the timing function. In order to satisfy causality of the
computation, the following must hold.

li+mj+n > Ii-1)+mj+n = I >0
i4+mj+n > li+m(j+1)+n = m < 0
i+mj+n > l(i-1)+mGi-D+n = I4+m > 0

Solving these constraints is an integer programming problem, and the optimal timing
function corresponds to the smallest integer solution, which yields I = 2 and m = —1.
We must choose n such that #(i,j) > 0V[i, j] € D, which yields n = 0. Thus the optimal

timing function is (¢, j) = 2i — j. The timing and allocation function now yield a systolic
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architecture. Because of space constraints we shall not show the final implementations,

and neither will we so much so much detail for the remaining arrays that we derive.

5 Selective Reversal

We may observe from Eqn 3 that, at each point in the domain, there are two add oper-
ations. This gives us some additional flexibility in manipulating the ARE, permitting us
to re-order only a part of the ARE. The general approach is as follows. We first identify
that calculating g(z4,...,%.) requires two applications of an associative and commutative
operator, (i.e., three operands are involved), one of them being a single, uniform depen-
dency, and the other two using disjoint sets of arguments. Next, we determine the straight
line for which the uniform dependency is a basis vector. We then determine a geometric
(renaming) transformation that reverses the points on this line, and apply it to only one

of the operands. Let us now discuss each of these steps in more detail.

Let f(p) = g(f(Ap + b1), f(A2p + ba),... f(Aip + 1), ... f(Axp + bi)) be an ARE.
Assume that one of the dependencies (without loss of generality, the first one) is uniform

(A is the identity matrix). Assume that g can be expressed as follows:

9(21,- -+, 2) = i(z1, 1g2(2, . . 2:), g3(@ita, - -, 20)))

where g; is associative and commutative. Consider the “output” points of the domain
(points such that f(p) is an output value), and the line parallel to b, passing through
them. If the ARE is well formed, this line must intersect another domain boundary,
and thus form a line segment. We consider the transformation, 7 that reverses this line

segment, i.e., R(p) maps p to its mirror image p’. We then have the following proposition.

13



Remark 1 Given the conditions above, the following ARE is equivalent to the original.

f(p) = g(f(A1p+bi), f(Azp+bs),... f(Aip + b;),
F(AinaR(P) + bisa), . .. F(AKR(D) + b))

Proof: Omited for brevity. The intuition underlying the proof is that because of as-
sociativity and commutativity of the operation, we may reorder the computations
arbitrarily. In particular, we are permitted to pair the g; part from point R(p)
together with the g, part of p. I

Let us see how this transformation may be applied to our filtering ARE (Eqn 3). We see
that the first dependency is uniform [-1, 0], ¢, is addition, g, is az and g3 is by, and they use
disjoint sets of arguments, as required. The line parallel to [~1, 0] intersects the domain at
[£,1] and [i, k] and thus yields a vertical line segment. The geometric transformation that
reverses the points on this line is given by R([3,7]) = [¢, k—j +1], i.e., simply a replacement
of j by & — 7 + 1. This yields the following equivalent ARE for the computation.

y("'::j) = y("'::j - 1)+a(0!j) *.’B(i—j,O) +b(0sk "_j + 1) *y(i +.7 — k- l!k) (14)

We now see that two dependencies have been changed. To pipeline the y(: +j —k—1, k)
dependency, we see that the points that require the same value form the line of slope —1,
and this line intersects the domain boundary at [i +j — k, k] and [i4j —1,1]. Of these, the
former is adjacent to [i 4+ 7 — &k — 1, k] and we may therefore initialize the pipeline correctly.
However, there is now a problem with the (0, k — j + 1) dependency. Its pipeline consists
of the points parallel to the i-axis, and intersects the domain boundary at [1,7]. However,
the value required here is Bj_;+1 which has been assigned to b(0,k — j + 1). However,
remember that B is an input, and we had a number of choices when we assigned it to the
boundary. Hence we may simply reverse the B vector, and obtain a correctly initialized
pipeline. We will thus have the following system of UREs, whose dependency structure is
shown in Fig 4. Following the standard synthesis methods, final array may be obtained
for it. For complete details of the derivation, the reader is referred to [RMIK89]

14
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Figure 4: Dependency Structure for the System of AREs of Eqns 15-19. The z-pipeline
will have a 45° slope and the y-pipeline will have a —45° slope.

y(i,§) = (6,7 — 1)+ fa(i, 3) * f(3,5) + fili, 5) * fu(8r ) (15)

.. a(i—1,7) ifi=1
fa(@:4) { Jo(i—1,7) otherwise (16)

z(i—1,7j—-1) ifj=1
f(i—1,7 — 1) otherwise

f:(3,7) = {
G = {a(i-—l,j) fi=1 (18)

(17)

fi(i —1,7) otherwise

Wi-1,7)  ii=k

1,7) =
f(3,9) f,(i—1,7 +1) otherwise

(19)
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6 A Folding Transformation

We shall now present another transformation that uses similar algebraic properties of
the computations. We proceed as before, and detect whether an associative-commutative
function g, is applied at the topmost level (in ¢) and that one of its operands is an argument
that is propagated along a dependency (wlog, the first one, A;,by) that is already uniform.
The second operand of ¢, should be a function g, of the remaining arguments. Thus,

g’(I], P ,.'En) = gl(ml,gg(mg, . ,:L',;))

We also determine the dependency chain corresponding to the uniform dependency (i.e.,
the line segment that has the dependency as a basis vector). Now, instead of reversing the
points on this chain, we shall fold the chain onto itself, thus obtaining a smaller, denser
domain. Once again, the transformation is a geometric one that maps, in this case, two
points, say p and p' in the original domain to a single point, s, in the target domain. One
of these, say, p, is identical to s, and the other one is a function of P, by and the original

domain. Let us denote this function by F(p). We then have the following remark.

Remark 2 Given the conditions above, the following ARE is equivalent to the original.

f(®) = a1(f(p+1b1),01(02(F(A2p + b2), . .. F(Axp + by)),
g2(f(A1F(p) + br), ... f(AF(P) + b))

Let us now apply this transformation to the ARE of Eqn 8. We see that the trans-
formation must once again be applied to the vertical line segment [Z,1] to [1,k]. We may
easily determine that the function F([,;]) = [i,k — j + 1]. Hence, the following ARE is
equivalent to the original specification.

y(i,7) = y(&7+ 1)+ a(0,5) * 2(i — j,0) + (0,5} * y(i — j,1) +
a0k —j+ D) *z(i+j—k—1,0)4+b(0,k—j+1)+
y(i+35—k—1,1) (20)

16
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Figure 5: The dependency structure of the folded ARE: Eqn 20

However, the domain is reduced to half (see Fig 5), and thus [0, k—j+1] is no longer on the
boundary. In fact, it is necessary to also fold the input arrays, and so there should be two
a-values (as well as two b-values) input at each boundary point. The above equation reflects
this, and the boundary conditions are now a(0,7) = A;, ¢'(0,7) = Ai—j+1, b(0,3) = B;j,
¥(0,7) = Bi—j1, y(i,k/2) = 0 and z(i, 0) = X —i. and the output, ¥; is computed as
y(i,0). The domain and dependency structure of this ARE is shown in Fig 5, and once
again, a new array is obtained for the system of recurrences. This derivation uses another
constructive technique called multistage pipelining [Raj89], and the final array has the
z-values recycled into the array from one end. As before, once the system of UREs is

derived, the final array is obtained automatically.

7 Conclusions and Future Work

We have presented a case study of the application of a number of semantics preserving

transformations to the systematic design of systolic arrays. The transformations all use
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only a simple algebraic property — associativity and commutativity of the operators. In
spite of this, the transformations that we have do not form a complete set by any means:
many other transformations are possible. They are more thoroughly explored in [RMIK89],
where a number of new systolic implementations are derived by the use of these and similar

transformations.

We note that the transformation used in Sec 4 is actually a special case of the selective
reversal transformation (Sec 5). In fact, this may be verified by applying the selective
transformations, successively to the ARE of Eqn 3. The first application should be exactly
as in Sec 5, and the second one to the az product term. This will cause the z-pipeline to
consist of the line with slope —1, and this intersects the domain boundary at [ — , k]. It
is therefore necessary to reassign the z input to the j = k boundary in order to correctly
initialize this pipeline. This is easy to since X is an input stream. It should be easy to verify
that this yields an ARE that is merely an a-substitution for Eqn 8. Another interesting
observation is that although the transformations are based on algebraic properties of the

operators in g, they are eventually expressed as simple geometric manipulations of the
domain of the original ARE.

Once we have identified t}:=1é' allgebra.ic properties that serve as the basis of our transfor-
mations, there are two crucial issues that must be addressed if such transformations are
to be included in a CAD tool framework. The first question is whether these are general
transformations, or they are simply a “bag of tricks” that work for the example that was
used to illustrate them. We feel that since associativity and commutativity are fairly uni-

versal algebraic properties that may be found in many algebraic varieties, this is not the

case.

The second issue deals with automation. It should be intuitively clear that since the
operator is associative and commutative, any permutation of the sequence should yield
a valid computation (as well as other rearrangements that do not correspond to just a
permutation, such as trees, etc.). However, having such a large catalog of transformations

will make any system either very inefficient, or else, put too much burden on the user.
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It is therefore imperative that the set of applicable transformations be pruned to those
that are useful in the context of systolic array design. But we know that the consiructive
methods for designing systolic arrays require AREs as their initial specifications. Hence
the transformations that we provide in our catalog must maintain an affine dependency
structure. We see that both R and F do this. The primary reason is that R and F are affine
functions. Since the transformations can be reduced to purely geometric manipulations
of the domain of computation, the new dependency will be of the form A;(T(p)) + by if
T is the transformation. For this to be affine, it is suffficient for 7 itself to be an affine
function. Hence we have a powerful characterization of the transformations that we should
permit in our catalog. It rules out structures like broadcast trees, etc., which is precisely

what we desire.

The open problems that remain to be addressed are firstly to develop a fairly complete
catalog of such transformations. Moreover, we would like to investigate properties that are
not simply associativity and commutativity, but other general algebraic properties of the
programs. One specific example of this is the case when there are two “top-level” operators
in the program. We wil therefore not be able to perform the kind of arbitrary restructuring
that was possible here. We are investigating the conditions that such functions must satisfy

so that afffine restructuring is possible.
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