Algorithms for
Permutation Groups
and Cayley Networks

Kenneth D. Blaha

CIS-TR-89-14
September 6, 1989

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

APPROVED:

Dr. Eugene M. Luks

- iv

We use subgroup towers and SGSs to construct Cayley networks with “failsoft”

routing algorithms, and we adapt Valiant’s permutation routing algorithm to run on the

directed Cayley networks. Normal towers are used to define Cayley graphs and routing

algorithms that perform well, as long no more than d— 1 processors fail (d the degree of the

graph). For several Cayley network families we exhibit 2 universal broadcast algorithm
that runs in optimal time.

These same techniques are used to analyze nonsymmetric networks. In particular,

we prove that Leland and Solomon’s moebius graph is isomorphic to a quotient Cayley

graph. This information is used to efficiently compute minimum routes and determine the

diameter of the moebius graph.

§

vi

AWARDS AND HONORS:

Tektronix Fellowship Award, 1988-89

PUBLICATIONS:

BranA, K. Minimum bases for permutation groups: The greedy approximation.
Tech. Rep. CIS-TR-86-16, University of Oregon, 1986.

BragA, K. Finding a minimum base for permutation groups is NP- ha.rd
In Congressus Numerantium (1987), vol. 58, pp. 141-150,

"

DEDICATION

To my family

viii

The Diameter of the Moebius Graph

VIII. SUMMARY AND FUTURE WORK. s o . o P

BIBLIOGRAPHY

.....................................

CHAPTER I

INTRODUCTION

Motivation and Overview

Over the last thirty years there has been considerable effort focused on the devel-
opment of algorithms for permutation groups. Since the size of a permutation group G
on n points can be exponential in n, it is usually necessary to -specify the group by a
set of generators. Fortunately, a generating set of size O(n) exists for -every permutation
group G < Sym(n). Given such a succinct representation for G' the question arises as to
whether we can find efficient solutions to basic queries about the group. Using a base and

strong generating set (SGS) Sims devised a method of storing the group that satisfies the

following properties:

(a) it uses no more than 2 poly(n) (polynomial in n) space
(b) given any g € Sym(n) we can determine in poly(n) time if g € G

(c) we can run through the elements of G one at a time without repetitions

The base is used to define a subgroup tower G=G® > G! > G% > ... > G* = {id},
and the subgroup tower is used to define an SGS [41]. Once an SGS:for the group is known
membership can be determined easily by “sifting” through the “coset representatives (a
complete description of the sifting process is given in the next section). Although Sims
described a 1;ra;&tical' algorithm for computing an SGS, it was not until 1980 [20] that a
version of Sims’ algorithm was proved to run in polynomial time O(n8), .

Shortly after that, Knuth suggested a clever implementation d;f Sims’ algorithm
that he analyzed to run in O(n® loglog n) time [26). Using Babai’s result 3], which gives a
linear limit on the length of subgroup chains in Sym(n), this bound was later improved to

O(n®). Subsequently, Jerrum described an algorithm for computing a base and SGS with

in polynomial time, but not by the Greedy algorithm.

Under the assumption that P#NP we know that there is no-polynomial time solution
to the minimum base problem. It is natural to ask if the Greedy algorithm is a good
approximation heuristic. In Chapter III we answer this question by comparing the size of
a Greedy base to the size of a largest nonredundant base, and to the size of a minimum
base. We also compare the Greedy algorithm to another heuristic that has been suggested
for finding small bases.

So far our discussion has focused on sequential algorithms for permutation groups.
McKenzie and Cook were among the first to study parallel algorithms for permutation
groups {37). They showed that for abelian groups, the fundamental problem of group
membership (Is g € G?) is in NC. They also conjectured that the membership problem
is P-complete (complete for P with respect to logspace reductions) for arbitrary groups,
and hence not likely to be in NC.

This conjecture was based on the following observations. First, the sifting process
used in membership testing seems inherently sequential. Second, the tower of subgroups
generated by a base may have length linear in n. It was later shown through a series
of papers, [35], [34] and [4], that membership is, in fact, in NC. However, the tower of
subgroups used to perform the sifting was quite different from the tower produced by a
base.

As a consequence of this work it was shown that a base and SGS could be constructed
in NC, but the parallel sifting problem remained open [4]. In_Cha,;nlter IV we address this
problem. We show that there exists a base and SGS for which the sifting problem is
P-hard. In contrast to this result, we show that for solvable groups and polynomial
subgroui) towers one can always find an SGS for which sifting is in NC. In this chapter we
also answer the following question, “ Is there a parallel algorithm for computing Greedy
bases?” We show that it is highly unlikely that such an algorithm exists by proving that
the deterministic Greedy base problem is P-complete. _"

In the second part of this dissertation we show how towers of ;ubg;'oups and SGSs

can be used to study parallel processing networks. The interconnection topology of a

5

Since then it has been noted that many of the families of regular graphs mentioned
above may be viewed as Cayley graphs [11]. Thus there was'a common thread that
linked these networks together. Carlsson, Cruthirds, Sexton and Wright used the algebraic
structure of the Cayley graph to generalize the CCC and produce new graphs that were
more dense then any known to date. Not only were these graphs dense, but since they were
Cayley graphs, they were symmetric and the authors believed they would have the same
desirable properties that the other networks possessed. Although the authors believed
that a good routing algorithm for these graphs should exist, none was presented. The
question is, how does one take advantage of the underlying group structure to find good
routing algorithms? . '

The problem of finding a minimum route on a Cayley graph is related to the problem
of finding a minimal length generating sequence (MLGS) (smallest word in the generators)
of an arbitrary group element. Goldreich and Even showed that MLGS is NP-hard [17].
Since then Jerrum has shown that it is PSPACE-complete [24]. Consequently, it would
be unreasonable to attempt to solve the routing problem for an arbitrary group and an
arbitrary set of generators.

Thus not only is the choice of the group important when constructing Cayley graphs,
but the choice of generators is a critical consideration. In Chapter V we show how SGSs
can be used to construct Cayley graphs with failsoft routing algerithms, and how Valiant’s
permutation routing algorithm [44] can be adapted to run on the directed Cayley networks.
We also show how normal towers can be used to define Cayley graphs and routing algo-
rithms that perform well, as long as no more than d — 1 processofs fail. We conclude this
section with several examples of Cayley networks. In one of the examples the underlying
group is a S_yiov;r'-2 subgroup of the symmetric group on n elements (n a power of two). In
this case the generators are chosen with great care so that sifting could be applied. Also,
techniques from Jerrum [25] are used to reduce the size of the generating set without
significantly increasing the diameter of the Cayley graph. . -) .
In Chapter VI we extend Faber’s work on universal broadcast schemes [18]. In

particular, we show how certain Cayley networks constructed from SGSs can perform uni-

7

If H < G, then we define an equivalence relation on G in which two elements g,k € G
are equivalent if and only if gh~! € H. The equivalence classes of G under this relation
are called the cosets of H in G. We say that g is a coset representative of the (right) coset

Hg = {hglh € H}. A set U C G of size |G : H| is a complete set of coset representatives

of H in G if every element in G is equivalent to a (unique) element in the set. We say
that 7 is pormal in G, H 9 G,if Hg=gH forall g € G.

By the degree of G # {id} we mean the number of points moved by G. Let w € Q,
then we call {w?|g €G} the G-orbit of w. We say that A C @ is fixed by G if A9 = A for
all ¢ € G. Each ¢ € G induces a permutation on A, which we denote by g®. We call the
totality of the g2’s formed for all ¢ € G the constituent, G4, of G on A.

For A C (1, we define the set G4 = {g € G|Va € A, a* = a}, called the

point-wise set stabilizer of A. If A consists of a single point, a, then we write G4 = G,.

For any abstract group H, we define the homomorphism R : H — Sym(H) such that
R(h) acts on H via right multiplication. That is, for each “point” z € H, zR”() = zh. We
call R(H) the right regular representation of H. For additional background information

on permutation groups see either [36], or [47].

The following definitions are due to Sims and may be found in [42]. A base for G
is a sequence of points B = by, b,,...,b, b; € £, such that the only element in & fixing
all of the b; is the identity. We say that base B has gize k, and we denote the size of a
smallest base for G by M(G). The tower of subgroups

) —

G=G"2G'2...>GF={id}, -

where G =Gby,..bi}» 1 < 1 < kis called the chain of stabilizers of G relative to B. We
call a base nonredundant if each of the inclusions G*~! > G¥ is proper.

This tower has three characteristics that are essential for computational purposes.
First, the tower has length no more than n — 1. Second, |G*~! : G%| i§_polynomial in n
for 1 £ i <k (infact, |G : G| <n—i+ 1). Any subgroup tower sé.ti.sfy'ing this second
condition is called polynomial. Third, given ¢ € G we can determine in linear time if

9

Fact 1.3 If G < Sym(R), and B = by,bs,...,b; is a base for G, then (by Lagrange’s
Theorem) |G| = |G°: G|G? : G?|--- |G*-! : G¥|.

Lemma 1.4 Giver G = {¢) < Sym(n) and base B = by,b,,...,b;, define r; to be the size
of the G-orbit (cycle of &) containing b;. Then G™ = (¢") where r = lem{ry,r2,...,™m},
1<m<k.

Proof: G™ = {07) 4 j is the smallest positive integer such that o7 fixes by,..., by,.
But o/ fixes b; & r; divides j. 0

We shall use the following construction in Chapters II, III and IV. Let X be a fixed
finite set, and {o-|z € X} 2 fixed set of generators for the gro-up (Zz)lxl.- For ¥ cX
define G(Y') = {oz|z € Y).

The right regular action R : G(Y') —=Sym(G(Y)) is extended to an action Ry :
G(X) =Sym(G(Y)) in which {oz|z € X \ Y} act trivially. Suppose now that C is a
collection of subsets of X. Let Q¢ =Uyec G(Y) (the disjoint union of the sets G(Y),
Y € C). Then the Ry for Y € C, induce an action Re : G(X) —Sym(f¢), where
whel®) = ,R¥(@) if 4y € G(Y). Note that, if X = Uyec Y, then Re is faithful. The reader
may wish to examine the example given at the end of this chapter.

Now, given Z C X we let G¢(Z) denote the permutation group Re(G(Z)). We use

the next two lemmas to analyze bases of G¢{Z).

Lemma 1.5 Let ZC X,Y €C and w € G(Y), then G¢(2)w = Ge(Z\Y).

Proof: Ge(Z), = R({o € G(2)wRel) = w} = R((ozlz € Z\ Y)).
- The first equality follows from the definition of point stabilizer and the second from
Fact12.0 ' = a2

Lemma 1.6 Let W =Y N Z, where Z C X, and Y € C. Then the set G(Y) has |G(Y) :
G(W)| Ge(Z)-orbits each of size |G(W)). :

Proof: Let H < L, and R : H — Sym(L) be a homomorphism such that H acts on
L via right multiplication (i.e., I”(%) = [h). Then the R(H)-orbits are the left cosets (1H)

11

1)i=1
(2) While G*~! # id do begin
(2.1) Pick a point b; from a largest G*~'-orbit
(2.2) Using generators for G*~! compute a set of coset representatives
for G in G*-1
(2.3) Update the data structure
(2.4) Compute a set of O(n?) Schreier generators for G*
(2.5) Reduce the Schreier generators to a set of O(n) generators
for G*
(26)i=i+1

The running time of this algorithm is dominated by step (2.5). Thus, Jerrum’s algo-
rithm may be modified to include the Greedy heuristic without increasing the asymptotic
running time of the algorithm.

We conclude this section with an example that serves two functions. First, it gives
the reader a concrete example of how the set X and the collection C of subsets of X
are used to construct the permutation group G¢(X). Second, it shows that the Greedy

algorithm fails to find a minimum base for the group Ge{X).

Example 1.1 Let X = {a,d,¢,d,e,f}, Y1 = {a,b}, Y2 = {c,d}, ¥5 = {e,f}, and ¥y =
{a,c,e}. Let € = {11,Y,,Y5,Y,}. Following the construction outlined above we define the
following elementary abelian 2-groups: G(X) = (oz|z € X}, G(f’;) = {¢q,0), G(Y2) =
(oc,04), G(Y3) = (0c,04), G(Ya) = (04, 0¢, 0¢).

~ Recall that Q¢ is the disjoint union of the G(¥;) i = 1,2,3,4, and

Ge(X) < Sym(G(11)) x Sym(G(Y2)) x Sym(G(Y3)) x Sym(G(¥4)).

The monomorphism R : G(X) — Sym(Sc) maps the generators of G(X) to genera-
tors of Ge(X): Re(da) = (0a,id,id,0,), Re(ay) = (o4, id, id, id), Re(o.) = (id, 0., id, oc),
Re(oq) = (id, 04,id, id), Re(o.) = (id,id, 0., 0.), Re(oy) = (id, id, oy, id).

13

CHAPTER II

MINIMUM BASES FOR PERMUTATION GROUPS

We demonstrated, in Example 1.1, that the Greedy algorithm fails to find a mini-
mum base. In the first section of this chapter we prove that the minimum base problem
is, in fact, NP-hard. The corresponding decision problem of de.termining whether there
exists a base of size at most N (for a given positive integer N) is NP-comple;te. Moreover,
the problem remains NP-complete even if we restrict G to be either a cyclic group or an
elementary abelian group with orbits size no more than 8.

We prove, in the next section, that for abelian groups this bound on the size of the
orbits is sharp. That is, if G is an abelian group with orbits of size less than 8, then we can
find a minimum base for G in polynomial time. Our algorithm uses Lovdsz’s result [31],
in which a maximum matching of a linear 2-polymatroid is found, in polynomial time, to

handle abelian semisimple groups with orbits of size 4 and 6.
E. 1.] I. - : B L] IiB-.] l

We prove that the minimum base problem is NP-hard by showing that the cor-
respondipg decision problem is NP-complete. The decision proglém small base (SB} is

defined as follows:

SB Inputr - G.< Sym(n) given by generators and a positive integer N < n.

Question: Does there exist a base for G of size no more than N?

We show that even when the group G is restricted to cyclic groups or elementary
abelian groups, the SB problem is NP-complete. It is not difficult 0 show that the SB
problem is in NP. Guess a base for G, B = by, b,,...,bs, and check that k < N. Then use

your favorite algorithm (Sims, Knuth, or Jerrum) to verify that B is a base for G.

15

Example 2.2 Let (Y, M) be an instance of Exact Two Cover where Y = {a,b,¢,d} and M
contains the 2-sets: {b,d},{b,c} and {a,d}. If we mimic the construction in the proof of
Theorem 2.1 and map a,b,c,d to the primes 2,3,5,7 reépectively, then the permutation o
will have cycle decomposition consisting of 3 disjoint cycles of sizes 21, 15 and 14.

Using Lemma 1.4 one checks that a minimum base for G = (o) is comprised of
one point from the cycle of size 15 and one point from the cycle of size 14. The Greedy
algorithm starts by fixing a point b in the G-orbit of size 21. The group G; = {o*!) has
10 nontrivial orbits, 3 of size 5 and 7 of size 2. The Greedy algorithm selects two more
points; first, a point in an orbit of size 5 is fixed, and then a point in an orbit of size 2.

Thus, the Greedy algorithm will always produces a base of size 3.-

Of course it is quite easy to construct cyclic groups of smaller order and degree for
which the Greedy algorithm fails. In fact, we can find examples that involve only two

primes.

Example 2.3 Let G be the cyclic group generated by
o =(1,2,...,8)(9,10,...,17)(18,19,...,29).

The Greedy algorithm first fixes a point, say b = 18, in the G-orbit of size 12. By Lemma
14 Gy = (012). Now G} has 4 orbits of size 2 and 3 orbits of size 3. Next the Greedy
algorithm fixes a point in a 3-orbit, and then a point in an orbit-.p_f size 2 resulting in a

Greedy base of size 3. A minimum base for G has size 2 (e.g., B=1,9).

In_the above reduction of X3C to SB the size of the orbits of the cyclic group
increased, as the proinlem size of X3C increased.- One might wonder if it is possible to
solve the SB prablem efficiently for groups that are restricted to have bounded orbits.
Theorem 2.2 suggests that this is not the case. '

Theorem 2.2 SB is NP-complete even if G is constrained to be an elementary abelian

2-group with orbits of size 8.

17

Algorithm AM By:
(1) Find a minimum base By for the subgroup of G that
fixes all the points in orbits of size 5 and 7
(2) Find a minimum base B, for the Frattini subgroup of Gg,
(3) Find a minimum base Bj for (Gg,5,)2, where A
is the union of all Gp, p,-orbits of size 4 and 6

(4) Find a minimum base for Gg, p,5,

The following proposition describes how step (1) of the algorithm is accomplished,

and proves that the base we find can be extended to a minimum’ base for G.

Proposition 2.4 In polynomial time we may reduce any instance of AM B7 to the problem
of finding 2 minimum base for an abelian permutation group G', where all of the G'-orbits

have size 2,3,4 or 6.

Proof: Let G = (®) be an instance of AMB;. Let A, be the union of all the
G-orbits of size 7, let Ay be the union of all the G-orbits of size 5, and let A3 be the
union of the remaining G-orbits. Then by the fundamental theorem of abelian groups,

G = G®1 x G%2 x G%s, By raising the generators of G to the appropriate power we find
generators for the groups G4¢,i=1,2,3.

G = (¢¥|p € &)

G4 = (¢%2|$ € @)
. G =(¢¥|p e D)

Observe that B is a minimum base for G if and only if BN A; is 2 minimum base
for GARi1<i<3. Thus, to compute a minimum base for G it will suffice to compute a
minimum base for each G4/, i =1,2, 3. .

The groups GA* and G2 are elementary abelian p-groups (p a prime) with orbits

of size p. By Facts 1.1 and 1.3 any nonredundant base for these groups is a minimum

19

all the remaining G-orbits. By the fundamental theorem of abelian groups we know that
there exists integers r,s and t such that G =~ (Z,)" x (Z2)* x (Z3)*.

The function F : G — G defined by F(h) = h® is a homomorphism since G is
abelian. The group F(G) is called the Frattini subgroup of G. Note that F(G) < G%1,
and F(G) ~ (Z;)".

Any minimum base for G must contain r points from A, that constitute a base for
F(G). The first step of the reduction is to find r points B = by,bs,...b, such that Bis a
base for F(G). This can be accomplished by running the Greedy algorithm on F(G), or
by running the Greedy algorithm on the group G and selecting the first r points that
are fixed by the algorithm. The base B that we obtain for F(G‘). is by no means unique.
To finish the proof we must prove that any minimum base for F(G) can be extended to a
minimum base for G.

It will suffice to show that if B and B’ are two minimum bases for F(G), then
M(Gp) = M(Gpr). The groups Gg and Gpr are abelian semisimple (since they con-
tain no elements of order 4), and both groups have order 2?3!. Hence, each group
is isomorphic to (Z;)° x (Z3). If we could prove that Gg = Gp we would be
done. Unfortunately this statement is not true. Consider, for example, the group
{((1,2,3,4)(5,6,7,8) , (1,2,3,4)(5,8,7,6)) and let B = 1 and B’ = 5. Instead we prove a
weaker statement that is sufficient to imply that M(Gpg) = M(Gp:).

By the proof of Proposition 2.5 we know that M(Gpg) is completely determined by
the action of the group on the Gp-orbits of size 4 and 6. All_of the-Gg-orbits in A; have
size 2 or less. Thus M(Gp) is determined by the action of Gp on Aj. A similar argument
holds foI Gp:. To finish the proof we need only show that G52 = Gg?

Note that both F(G)n Gp and F(G) N Gp are trivial. Thus, we may conclude
that both K = F(G) x Gp and K’ = F(G) x Ggr are subgroups of G. Both groups are
elementary abelian and [K| = |K’'| = 27+*3". Thus it follows that I¢ = ker(F) = K'.
Finally F(G) < G implies that G§? = ker(F)A? = G&7, as desired. O

Proposition 2.4 and proposition 2.6 describe the first two steps of the algorithm.

Moreover, they prove that any partial base constructed by the execution of the first two

21

circuit in (S,r), then there is a vector » € L, v # 0 which is contained in the linear
span of each circuit X — X;. Projecting everything onto a liyperplane complementary
to p, we get a projection compressing X. Lovéasz points out that the only step of the
maximum matching algorithm for linear 2-polymatroids that does not generalize to all
2-polymatroids is the construction of the projection described above [32, page 212).

To perform step (3) of the minimum base algorithm we construct a 2-polymatroid
(S, f), where S is a collection of subsets taken from a direct product of two linear spaces.
The following lemma proves that we can find a maximum matching for (S, f) in polynomial

time using Lovdsz’s algorithm.

Lemma 2.7 Let L = (Z;)" x (Z3)". Let f be the integer valued function defined on the
subsets of L such that, f(X) = r{ + 8 if and ouly if (X} ~ (Z2)"* x (Z3)".
Let S be a collection of two element subsets of L such that f(z) = 2, foreach z € §.

Then (S, f) is 2 2-polymatroid, and a maximum matching for (S, f) can be found using
Lovasz’s algorithm.

Proof: It may be convenient to think of L as the direct product of two vector spaces
and to view the elements of L as (s + r)-tuples. It is a simple exercise to check that (S, f)
is a 2-palymatroid. Let D C S be a nontrivial double circuit with principal partition
{D1,D,,...,Dp} and define X; = D — D; for 1 < i < m.

To verify that a maximum matching can be found using Lovész’s algorithm we must
prove that we can find a nontrivial element of Ky N K3 N --- N 1;5;;1 in polynomial time.
Using the principal partition for D, we can compute in polynomiai time a set of generators
for K; n_Kin N K.

To com_pl;te the proof we'must guarantee that the intersection is nontrivial whenever
the double circuit is nontrivial. Lovész uses an induction argument to prove that Kin
K2 N---N Ky is nonempty when the 2-polymatroid is linear [33, Leama 11.3.3). This

same proof may be used for (S, f) by simply replacing each occurrence of the word, “dim”
with the letter “f”. O

23

Remark 2.9 Let G be an abelian permutation group for which all the orbits have size a
prime or a product of two primes; then we can find a minimum base for & in polynomial

time.

Proof: For any G-orbit O, we know that the constituent GO is abelian and transitive.
Thus, GO is regular and |GO| = |0|. We can modify Propositions 2.4 and 2.5 so that the
orbits of prime order can be ignored. Proposition 2.6 is essentially the same except that
F(G) is abelian semisimple (the F(G)-orbits have prime order). We generalize Lemma
2.7 to handle polymatroids (S, f), where S is a direct product of (possibly more than two)

linear spaces. O

-

Remark 2.10 The problem of finding 2 maximum matching of a linear 2-polymatroid over
the field GF(p) is polynomial time equivalent to the problem of finding a minimum base

for an abelian semisimple group G with orbits of size p?.

Proof: One direction of the remark is proved by Theorem 2.8. To prove the other
direction we assume, without loss of generality, that the linear 2-polymatroid (S5,f)is
specified by the columns of a m X 2r matrix M over the field GF(p). Mimicking the proof
of Theorem 2.8 we use the rows of matrix M to generate a group G with r orbits of size

p?. The remark follows from equation IL.1. O

25

o G has a nonredundant base of size at least 3M(G)logn.

Proof: Suppose that n > 8k?, and that r is the integer maximal with respect to
k2" + 2rk < n. Define X = {1,2,...,rk}, X; = {r(i — 1) +1,...,ir}, and ¥; = {j} for
1<i<k1<j<rk LetC={Xy,..., X1, ,...,¥si}.

Using the notation from Chapter I we define G = G¢(X) < Sym(Q¢). Then G ~
(Z2)"*, and || = k27 + 2rk.

Since a largest G-orbit has size 2" and |G| = 2*" it follows from Facts 1.1 and 1.3 that
a minimum base for G must have size at least k. Let A = ay,as,...a; where a; € G(X:),
then by Lemma 1.5 it follows that A is a minimum base for G. -

Now we show that the group G has a nonredundant base of size at least %k logn.
Let B = by,ba,...,brx where bj € G(Y;), and let G = G® > G > .- > G™ be the chain
of stabilizers of G relative to B. By Lemma 1.5 we have G' = G¢(X \ {1,2,...,i}), and
it follows that B is a nonredundant base for G. The size of B is vk > %k log n, since
k272 > n > 8k%. O

If B is any nonredundant base G < Sym(n), then M(G) < |B| < M(G)logn. We
know that there exist groups that have nonredundant bases as large as M(G)logn. In

the next section we show that if B is a greedy base for G, then |B| is closer to M(G) than
to M(G)logn.

A Sharp Bound for Greedy Bases

In contrast to the logn indeterminacy of an arbitrary-nonr;iunda.nt base we show

that a greedy base is within a loglog n factor of optimal.

Lemma 3.3 G <Sym(n) hasa base of size k, then there exists a G-orbit of size at least
|G|k,

Proof: Follows from Fact 1.1 and Fact 1.3. O

-

Theorem 3.4 If G <Sym(n), then any greedy base for G has size no more than
[M(G)loglog] + M(G).

27

Proof: Define sp = r and &; = si—1 — 2 — 1 for i > 1. By a straightforward
inductive argument, we have s; < r; and s; = (1 — 71:-)"1' - k(1-=(1- 71;)‘) for i > 0. Then

log(r + k) — log (k+ 1)
log 7;—

55218i< =

The result follows since £ < E‘;E. (m}

Theorem 3.6 Fix k > 2, then for any n > 24’ +7k+7 there exists G <Sym(n) such that
o M(G) =k, and
o Every greedy base for G has size at least 1 M(G)loglogn. "

Proof: Suppose that n > 24'+7+7 and that r is the largest: integer such that
k2r 427+k+1 < . Let X be a set of order rk. The set X is partitioned into k sets of order
Ty A10,A420,...,Aro. We now recursively define sets A;; for 1 <i < k,and 1 < i<
(7 defined later) as follows: A;; is a subset of A; ;.1 created by removing [_Mﬁfﬂj +1
elements from A;;_;. The elements removed from the k sets Ay 1,421y, A j—1 are
placed in a set Bj. Note that |B;| > |A;j-1]. Let v = [(k/2)(log(r + k) — log (k + 1))].
The value of ¥ was computed in Lemma 3.5 to insure that |Ai ;] 2 1 for all values of i and
j- Let C = {A1g,...,A40,By,..., B}

Once again we use the notation from Chapter I to define G = Ge(X) < Sym(fQe).
Recall that G ~ (Z,)", and |Q¢| = k2" + 2182} 4 2lBal & | 4 2lB4l,

Consider the sequence of points A = a;,a2,...,a; where-a. € G(Aig). Since

-U,_l Aip, it follows from Lemma 1.5 that A is a base for G. Moreover, any sub-
callection C’ of C that covers X (ie., X = Urec' Y) must contain all the A;p,1< i< k.

It follows that A is a minimum base for G.

Next we show that the Greedy Algorithm must select B = b1,b2,...,by as a partial
base for G, where b; € G(B;). It suffices to show that G‘(B) is the la.rgest G#—-orbit.
By Lemma 1.5 we have G¥~! = Ge(X\ UJ_I B)) = Gc(U,_l Aij)..

Now using Lemma 1.6 we see that the points in G(Aip) are partitioned into G7-1-

orbits of size 214ii—1l for 1 < i < k. The action of G/~ on points G(B;) is trivial if

29

Example 3.4 Let X = {z1,22,23,%1,¥2}, Y1 = {1,22,23}, Y2 = {p1,12}, and Ya = ¥y =
Ys = {z1,1}. Define C = {}},Y3,Y3,Y,Y5}, and let G = Ge(X). Recall that G ~ (Z;)5,
and that Q¢ =), G(¥;).

Since each G(Y;) is a G-orbit it follows from Fact 1.1 that any base for G must have
size at least 2. Using Lemma 1.5 and Lemma 1.6 we see that B = b1, b, where b; € G(Y;)
for ¢ = 1,2 is a Greedyl base for G.

On the other hand the Greedy2 algorithm will always start by fixing a point in
either G(Y3), G(Yy) or G(Y5), resulting in a base of size 3.

Example 3.5 Let X = {z1,22,23, 01, ¥2, 3}, Y1 = {z1,72,23}, and let Y2 = ... = V7 =
{z1,11}. Define Yz = Yp = Yio = {z3,11}, and Y31 = {za,3s}. Let C = {¥},%3,... Y1}
and let G = Ge(X). '

Then Q¢ =Uf=1 G(Y;), and each G(Y;) is 2 G-orbit. Using Lemma 1.5 one checks
that B = by, b3, b3 is a minimum base for G, where b; € G(¥2), b2 € G(Yg) and b3 € G(Y11)-
Moreover, the Greedy2 algorithm will always construct a base of size 3.

In contrast, the Greedyl algorithm will start by fixing a point in the G-orbit G(11),

and thus construct a base of size 4.

We know that specific examples cannot be used to compare the two greedy heuristics.
Instead, we shall use the worst case performance as a means of comparison. We already
have a sharp bound for the worst case performance of the Greedyl algorithm. What we
need now is a sharp bound for the worse case performance of t;_l‘}e Greedy2 algorithm.
Unfortun;.tely, we are unable to find such a bound. In lieu of & sharp bound, we show
tlja.t for n sufficiently large there exists G € Sym(n) such that, any Greedy?2 base for G
is arbitrarily close to-the upper. bound O(M(G)logn).

Theorem 3.8 Fix k > 2 and 0 < € < 1. Let NV be the smallest integer for which (log N)e >
loglog N. For any integer n > maz(N, 22“1) there exists G < Sym(n)'-,such that

o M(G) = k, and

.o Every Greedy?2 base for G has size at least 1M(G)(logn)!—=.

31
least |£].

‘To finish the proof we must prove that |Z] > 1 M(G)log n'~*. Note that r < logn <
2r implies that %(Iog n)(logn)!—¢ < r and that logr < loglogn. Now the result follows
from the fact that N < nand k <logr. O

Theorem 3.4 and Theorem 3.8 allow us to compare the worst case performance of

algorithms Greedyl and Greedy?2.

33

where 7,k < i.

Question: Does g, = 1?

In this chapter we prove that the two algebraic problems, deterministic greedy base
and factoring (both described later), are P-complete. This is done by reducing a restricted
version of the P-complete problem, greedy independent set (GIS), to our algebraic prob-
lems. We sketch Cook’s proof that GIS is P-complete, and point out why the restricted
version of the problem remains P-complete. We conclude the chapter with a PRAM
algorithm that proves that factoring is in NC for solvable groups.

Greedy Bases and Independent Sets
Let I'(V, E) be a graph with vertex set V and edge set E. A subéet W C V is called
an independent set of vertices in I'(V, E), if for all w;y,w; € W, (w1, wa) ¢ E.
There is a natural greedy algorithm for constructing a maximal independent set of
vertices in I'(V, E). Given a linear ordering of the vertex set V, the greedy algorithm

repeatedly picks the smallest vertex from V that is not adjacent to a previously selected

vertex. The corresponding decision problem, greedy independent set, is defined as follows:

GIS Input: Graph I'(V, F) where V is linearly ordered.
Question: Is the last vertex in the ordering part of the greedy maximal

independent set?
Proposition 4.1 [Cook] The GIS problem is P-complete. i

Proof:_The GIS problem is clearly in P. To prove the problem is complete we sketch
Cook’s logspace reduction .of I\;ICVP to GIS.

Let go,81,...9n be an instance of the MCVP. We construct a graph I'(V, E) with
vertex set V = {vg,v1,...,va} U {wp,w1,...,w,}. We order the vertice.s_ 50 that v; and w;
precede v; and w;, whenever { < j. The ordering of v; relative to w; is ‘determined by the

gate g;. Let wg precede vy and let v, precede wy. For any i, 2 £¢{ < n, w; precedes v; if

35

eligible point.
Let us call this the deterministic greedy (base) algoritim. With respect to this
algorithm we can talk about “the” greedy base for a group. Note that with respect to

the original Greedy Algorithm there could be an exponential number of greedy bases for
a group. We define the deterministic greedy base (DGB) problem as follows:

DGB Input: A generating set for G < Sym(2), a linear ordering of Q
and a fixed w € Q.
Question: Is w part of the greedy base for G?

Lemma 4.3 The DGB problem is P-complete. i

Proof: Since the deterministic greedy base is unique we know tha.f the DGB problem
is in P. To prove that the problem is P-complete it will suffice to show that there is a
logspace reduction of GIS to DGB.

Let I'(V, E) be an instance of GIS with linear ordering vp < v; < -++ < ,. By
Remark 4.2 we may assume, without loss of generality, that (vg,v;) € E and that each v;,
2 <t £ n, is connected to exactly two smaller vertices.

Let X = {vg,v1,...,va} U {wy,w2,... w,} and let W; = {w;,v;} for 1 < i < n.
Define Yo = ¥ = {vo,w1,t1} and for i, 2 < i < n, let ¥; = {v;,v;,v;}, where vj,V; are
the two unique vertices less than v; that are connected to v;.

LetC = {W,,Yj|1 < i< n,0<j < n}andlet G = Ge(X) £ Sym(Qc). Recall that
Qc is the disjoint union of the sets G(W;) and G(Y;), 1 <i < n,0 < j < n, and that G is
generated by the permutations {R¢{o:)|z € X}.

i Order-the elements in each set G(W;) and G(Y;), 1 £ i < n, 0 < j < n arbitrarily.

We will extend this to a linear ordering on)¢ by ordering the sets so that,

G(Yo) < G(Wh) < G(Wa) < - < G(Wa) < G(¥1) < G(¥3) < - +- < G(Ya).

Let b; be the smallest point in G(Y;). We define an instance of the DGB problem
where G = (Re¢(oz)|z € X}, and the ordering of the set is defined as above. We wish to

37

Let I'(V, E) be an instance of GIS, with linear ordering v; < v2 < --- < v,. We
may assume, without loss of generality, that (vy,v2) € F and that each v;, 2 < i < n,is
connected to exactly two vertices less than itself.

Let G < Sym(3n) generated by the 3-cycles {(3{—2,3i —1,3{)|1 < i < n}. We view
each element ¢ € G an an n-tuple g = (91,92, .-,9n), Where g; is equal to either 0,1 or 2
(i.e., g; is equal to either id, (3i — 2,3i — 1,3i) or (3i — 2,34,3i — 1)).

Let B = 3,6,...,3n and G; = {(0,...,0,0i+1,...,9n)lg; € {0,1,2},i+1 < j <n}).
Then G =G® > G! > ... > G™ = {id} is the chain of stabilizers of G relative to B.
We define a set of coset representatives U; = {a;,8;,%)} for G in G*1,1 < i< n,
as follows. Set o; = id, §; = (0,...,0,6;,0,...,0) gi=1 and v; -'(h1,h2,- --,hn), where
3 ifj=i
hij=49 1 i<jand(v,v;)eE

(=]

otherwise,

Clearly U = | Ji-; U; is an SGS for G relative to B, and the set U can be constructed
from I'(V, E) by an algorithm that uses no more than O(logn) space. To complete the
construction we define g = (2,2,...,2) € G and © = (9,0,...,0,2) € U,.

Let V' be the greedy maximal independent set for I'(V, E). It suffices to show that
vy €V’ if and only if ¢ = u uy—; - - vy, where u; € U; and ¢ = u,,.

Fix m,2 < m < n, and suppose that ¢ = v u,_y -+t and vj, vk are the two unique

vertices less than v,, that are connected to v,,. Let

- ; ? guptuzl--ugl) = (0,...,0,hm hemgr .. oy Bn),

then by the definition of the SGS, U, it follows that

hm =2 if and only if u; # 7;and up # % - (IV.4)

39

the commutator [b;,b;] satisfies ey = ez =---¢; =0
(c) for each integer i, 1 < ¢ < m, the canonical expression for the element

bf* also satisfies ey = ez =---=¢; =0

Theorem 4.7 Suppose G < Sym(n) is solvable and we are given generators for each sub-
group in the polynomial tower G = Go > Gy 2 -+ > Gy, = {id}, then we can find an
NC-efficient SGS for the tower.

Proof: Using machinery established in [35] we can compute, in NC, a PCB for a
normal tower G = No > Ny > --- > N = {id}, such that k is O((logn)?) and N;_;
modulo &; is abelian semisimple, 1 < j < k. .

Throughout this proof we view N;_;/N; as a direct product of vector spaces, and
we shall refer to the N;_;/N; as vector spaces.

Luks and McKenzie introduce the notion of a “structure forest” and develop linear

algebra techniques needed to find, in NC, the following:

(2} a homomorphism &; : N;_; — Sym(A), such that |A| is polynomial in n
and the ker®; = N;, 1< j<k
(b) (PCB) elements in Nj_; that map to 2 basis of &;(N;_;)

Using the vector space representation, ®;(Nj_1) = Nj-1/N;, we solve, in NC, the
factoring problem modulo Nj. The elements we find in &;(N;_;) are then pulled back to
inverse images in G. Next, we describe how the normal tower is_:iised to “slice up” the
groups in the tower G =Go > Gy 2 -+ 2> G, = {id}.

Using results from (4] generators for Hf = (G; N N;—_1)N; can be found in NC. Note
that this gives us a tower of subspaces for each Irl<ji<k,

®;(Nj—1) = @;(H7) > 8;(H]) 2 -+ 2 &;(H]") = {id}, (IV.5)

Moreover, we can find in NC sets I}, 1 < i < m, 1 < j < k, such that $;(fiv.--uTP)

is a basis for @,-(H}"l).

41

Proof: By [4] we can find, in NC, generators for each group in the chain of stabilizers
of G with respect to B. O '

43

I'(G,W’), includes all the inverses of W (i.e., W' = W{JW™1),

To compute a route from the vertex g; to the vertex gz in I'(G, W) we sift a7 lg,

through the SGS. This gives us the equation,
ULt = g2, u; € UL
From the equation it follows that there is a path from g, to ga of the form,

a3 au S gy 5. B,] . (V.6)

Note that some of the u;, 1 < i < k, could be the identity. In this case we ignore the edges
= (i.e., these edges do not exist in the graph). So the actual length of the path is & — |1],
where u; = id if and only if i € I.

If we sift g71g; we obtain the equation,

1

-1, -1 -1
Qv Yy et =g, v € Ug

For the undirected Cayley graph this gives us a second path from g; to g,

vt 1 v 1.-1% v
g1 = QU] S Givy vy S e S go. v.7)

Note that any sequence of edges labels wyw; - -+ w,, may b&interpreted as a path
in I'(G, W), starting at vertex g € G and ending at vertex gw,wy - - - w,,. Throughout the
remainder of this chapter paths are described as sequences of edge labels.

Theorem 5.2 Let I'(G, W) be the undirected Cayley graph constructed from an SGS for
the tower G = Gp £ Gy € --- £ Gy = {id}. Then there is an efficient algorithm for
computing two disjoint paths of length no more than k between any two vertices in the

graph.

45

If u € U;, then g5 lueies---ej-1 € Gi—y. We use this fact to define the one-to-one
function #; : U; — U;. For u; € U; define ¥;(u) to be the unique.elem_ent in U; satisfying
the equation,

uejer - - 6i1Gii(u) = 52Gi.

Define v; : U; — G so that v;(u) is the unique element in G; satisfying the equation,
uvi(u)eres - - -ei—19i(u) = ga.

Consider the following |W| equations, all of which are equal to g,

uyi(u)erez i vi(u), u € U;\ {id}, for1 <i < k. (V.8)

I we replace 7;(u) with the sift of 4;(t), then we can view the sequence of edges labels in
(V.8) as a path from g, to g2 (g1 = id). To complete the proof it will suffice to prove that
each path has length at most & + 1, and that all of the paths are disjoint.

First, let us observe that all of the paths have length no more than k + 1. Since
7i(n) € G; a sift of ;(u) produces a word in W of length at most k — i. Thus, all of these
paths described above have length no more than & 4 1.

Let P, be a prefix of the path uvi(u)ejes---ei—19i(u), and let P; be a prefix of
the path 7;(w)eyes - - - e;_19;(w), where u,w € W. As in the proof of Theorem 5.2 it will
suffice to show that P, = P, implies that P; = gs. . _

We start by proving that the two paths u'r-.'(u)e:;g -+ -ei—1¥i(u), and
vi(w)eres - - - €1 ¥i(w), are disjoint if u,w € U; \ {id} and « # w. First note that it
is impossible for.a prefix of _u'y.v(_u) to equal a prefix of wy;(w), because these elements are

in different G; cosets. Let s,t be minimal such that,

uyi(u)erez-- e, = wyi(u)ejen -« ey 3 (v.9)

47

congestion as possible. A vertex may transmit more than one message at a time, but only
one message may travel on an edge in a given time step. Collisions occur when two or
more messages wish to traverse the same edge at the same time. When this happens one
of the messages is sent, and the other messages are forced to wait on a queue.

An initialized scheme is a pair (T',IC), where T' is a regular directed graph. The
initial conditions, IC, specify how the packets and their destinations are distributed at
time zero. We assume that each processor sends k messages and receives h messages.

A routing scheme for (T, IC) is gblivious if the route of each message depends only
on the source and destination, and is not effected by the routes of the other messages. If
e is an edge in I" then traff(e) is the expected number of distinct l'nessages that pass along
e. We say that the routing scheme is symmetric if traff{e;)=traff(e;) for all edges e, e,
in I,

We say that a scheme is nonrepeating if whenever two messages take paths eye - - - e,
and eje} -+ ¢ in which e; = ¢} and ¢; = e, then it is the case that [— i = m — j and
forallp(i<p< e, = €,4j—i- In other words, once two routes diverge they remain
separated.

Valiant described a simple two-phase routing scheme for the 2-ary m-cube that with
high probability runs in O(m) time {44]. A more general proof of the algorithm, together
with a permutation routing scheme for shuffie graphs and grid graphs, was given by Valiant
and Brebner in [45]. In the first phase of the algorithm messages are sent to random vertices
in the grgph. In the second phase the messages are routed to their correct destination.
Their prc_:of that the algorithm is successful, with overwhelming probability, relies on the
fzi.hct that each phase of the algorithm is oblivious, nonrepeating, and symmetric.

We show 'that-Valiant’s -Touting scheme is an effective algorithm for solving the
partial h-relation problem on any directed Caylej-r network constructed from an SGS. To
accomplish the first phase of the algorithm we have each message in the_ network select- at
random u; € Uy, for1 < i< k. A message at node s is then sent to nc.fd'e SULUL_1.+-° U
along the path described by the edge labels u;. In the second pha-.se of the algorithm

we route each message to its final destination using the point-to-point routing algorithm

49

independent Poisson trials with respective probabilities py, p2,...,pny Where oN . pi = Np,
and if m > Np+ 1 is an integer, then the probability of at least m successes is at most
B(m, N, p).

Fact 5.6 If m > Np is an integer then,

B(m,N,p) < (X)yn(FARyN-m

N -
< (Tng)meN m

(e=2.71--).

Fact 5.4 follows from the observation that the routing scheme is nonrepeating.
Fact 5.5 is a Theorem of Hoeffding [22]). The first inequality in Fact 5.6 is due to Chernoff
[13), and the second follows from the inequality (1 + £)" < e°.

Theorem 5.7 Le-t T'(G,W) be the directed Cayley graph comstructed from an SGS for
the tower G = Gy € Gy < --- £ Gy = {id} where the coset representatives are U; for
1<i<k. Let a= (U] +|Uz2| +---+|Usl)1, and let (T, IC) be any initialized scheme.
Then the probability that some message is delayed by » or more, in one phase of the

permutation routing scheme described above, is
eha
(=-)hiGl,

provided that v > ha + 1.

-
- -

Proof: We say that a message M intersects some edge € in I'(G, W) in a run of the
scheme if its route co_nta.ins_the edge e. Consider some fixed route K : exex—; -+ €1, where
£(e;) € U;. Let Pps be the probability that message M intersects at least one edge of route
R. Let Pps, denote the probability that message M intersects edge e;. Then, %

EpPry < ZMPuy+IpmPrg, +---+ Ep Py, o
S Ef=1tra.ﬂ'(e.-)
< ha.

51

(in one phase of the routing scheme) is no more than,
ex,,, Inn e(n-1)
—YI|G| £ (—= .
(Y1612 (ZR)

Example 5.7 Let G be the automorphism group of a complete binary tree of height h. La-
bel the internal nodes of the tree from top to bottom and from left to right, v1,v2,...,v9n_4
(i.e., vy is the root of the tree and v,s_, is the parent of the rightmost leaf). Let g; € G, be
the automorphism that flips the subtrees of node v;, and define G; = {gi41,° - gan_y) . Let
I'(Gh, W) be the directed Cayley graph constructed from an SGS for the subgroup tower,
Go > Gy > ---Gau_y = {id}. Note that U; = {id, ¢;} and the graph has d =k = 2% — 1,
and a = k%. If h =1 and v = ek, then by Theorem 5.7 the probability that a message is

delayed by at least v is no more than,
(Ere] < (T
v =G|

If we are only interested in point-to-point routing, then it is possible to create Cayley
networks that are more dense than the ones presented above. In fact, in many cases it
is possible to reduce the size of the SGS (and hence the degree of the network) by a
significant amount and still compute routes (via sift) of a reasonable length. For example,
if we replace the SGS in example 5.6 with Jerrum’s generators for Sym(n), then we can
reduce the degree of the graph by a factor of n and increase the routing diameter by only
a factor of 2. The same technique can be used to decrease the deg:r‘ée of the Cayley graph

constructed in Example 5.7.

E;xampl-é 58 Consider the tower Sym(n) = G° > G! > ... > G*! = {id}, where
G = G,2,-i)- Let U; be a set of coset repreéenta.tives for G; in G;_y, and let W =
{(1,2),(2,3),...,(n,n — 1)}. For any u € U; there exist w;,w; € W such that Gju =
Giwwz, 1 < { < n—1 Thus the Cayley graph I'(Sym(n), W) has _i'leg;r;:e d =n and
a routing diameter of k = 2(n — 2) + 1. Note that the routing is done via a sift where

elements of U; are realized as a product of no more than two elements from W.

53

CHAPTER VI

UNIVERSAL BROADCAST

This chapter is an extension of Faber’s work on universal broadcast schemes. The
first section contains the definitions and methodology used in [18} to obtain an optimal
unijversal broadcast in the d-cube. In the second section we moaiify several of the defini-
tions, and prove that it is possible to perform a universal broadcakt, in opti£n31 time, in a
number of Cayley networks. We also answer the question, asked in {18], as to whether or
not there exists an optimal universal broadcast scheme for every QCG. In the last section

we descibe an optimal universal broadcast in several Cayley networks whose groups are

wreath products.

Background and Methodology

A directed Cayley graph I'(G, W) models a multiprocessor network that in one time
step may:

(a) wuse all edges (lines) in parallel

(b) send at most one message per edge

- —_

(c) store, retrieve, and operate on data

. We say that a processor ¢ € G broadcasts a message in I'(G, W), if g sends the

message to all the other processors in the network.

Definition 6.1 A task graph T is a sequence of edges {e;|i € I} of a graph T, each witlran
associated direction, labeled by positive integers (called times) t(e;), satisfying:
(2) t(ei) < t(e;) implies that e; < e; (see below) or e;,e; incorﬁp-a.ré.ble

(b) t(e:) = t(e;) implies that i = j or e;,e; incomparable

55

The regular ordering is used to define a task graph, Ti4, with edges (gi;,gad+;) as
defined above in (c). The time assigned to edge (gi;, 9oa4;) i8 @ + 1. This task graph
defines a broadcast from processor id to the rest of the network.

The broadcast Tiq4 is used as a template to define a broadcast T}, for every g € G.
The graph automorphism A, : G — G, defined by A4,(¢") = g¢', is used in conjunction
with Ti4 to comstruct T,. Let T; = A, (Tiz) denote the subgraph of ['(G, W) with vertex
set G and edge set E1, = {(gv,gvw)|(v,vw) € Er,,}. The function %, is defined so that
t4((gv,99)) = tia((v, vu)).

Using condition (c) and the fact that the graph automorphism A, preserves edge
labels (i.e., #(e) = (A, (e)) and £(e) = £(4,(e))) Faber proves that C = {A,(Tia)lg € G}
is a universal broadcast in I'(G, W).

Lemma 6.6 [Faber] Let Ti4 be a task graph constructed from a regular ordering of (G, W)

and let C = {A,(Tig)lg € G}. Then C describes an optimal universal broadcast in
I(G,W).

Proof: Each T}, g € G, defines a broadcast from processor g to the rest of the Cayley
network, and each broadcast takes time [u-cl?-vlﬁll] To finish the proof we must show that
no edge in C is labeled with the same time more than once.

Suppose that there exists an edge e in both T, and T}, g,k € G, such that ¢,(e) =
tr(e). By the construction of 7, and T} we know that there exists edges (v, vw), (v, v'w’)

in Ty suEh that, s

- —

Ag((v,vw)) = e = Ap((v',v'w").

This implies that w = {(e) = w’, since Ay and Aj, preserve the edge label £(e). By
condition (c) of the regular. ordering and the fact that ty(e) = ty(e) it follows that v, = vy.
Thus, g = h and there is only one message passed along edge € at time tg(e). O -

Theorem 6.7 [Faber] The time for a universal broadcast in a d-cube is,:[f%_—u] .

Proof: A proof of this result may be found in [18]. We give an alternate proof in
the next section. O

5T

defines a universal broadcast on I if and only if £(e1) # l(ez) whenever t;4(e1) = tig(es)
(e1,ea distinct edges in T}y).

Proof: The proof of Lemma 6.6 shows that if £(e;) # £(e2) for all edges e;, ez in Tiq
with the same time label, then C is 2 universal broadcast in T.

To prove that this condition is necessary, let us assume that there exist distinct
edges e, ez in Tiy such that ;9(e;) = #4(ea) and £(e1) = £L(e2) = w. Then there exist
distinct vertices g,k € G, such that e; = (g,9w) and ez = (h,hw). The broadcast tree
Tpg—1 contains the edge e3 = Apy-1(e;) and t4,-1(e2) = tig(ez). This will cause a collision
on edge e; when the messages broadcast from processors id and h.g‘l both try to cross e,
at time #;4(ez). O

Let W = {wy,ws,...,wq}, G = (W) and {wg41) = Z,. Given a regular ordering,
{td, g1,...,91¢}-1}, for I'(G,W) we shall describe a regular ordering for I'(H,Y), where
H = G x{wg41) and Y = {(w,id)|w € W}U{(id,way1)}. This will be done by organizing
the elements of H into blocks, By, of size d + 1. A typical block will have the form,
B; = [a1,a3,...,8441], Where a; € H \ {id} and there exists b; €),; By with b;w; = a;,
for 1 <j < d+ 1. The first block is Bp = [(wy,id), (we,id), ..., (id, wys1)).

If we can partition H \ {id} into [FE 73] blocks (the last block may have less than
d + 1 elements in it), then we have defined a regular ordering for ['(H,Y).

The following notation will be used in our discussion. Let p = [LQI'—IJ and let
r = (|G| — 1) mod d. Note that |G| - 1= pd + r. We denote the element (g, d+1) EH
by ¢’,0<j<q—1. .

We describe a procedure, Level(s,m,t,z), that accepts as input the nonnegative
i-ﬁtegers‘ s, m, i, and z with 0 < p—s < dand i < ¢ — 1. The procedure Level will
construct blocks for the processors gid +1,g:d+2, ceny ng]_l and g,';'&lﬂ, gf,'l",},l_z,. cey gf&'l in
I'(H,Y). It is assumed that the processors (G X {id)wi,,,0<5< i—-1,4,9i.

and gi*',git1 ..., g1 have already been organized into blocks BD,B]::,. s Baoy.

oo ,_g; d

Procedure Level(s, m, i,z):

(*assume 0<p-s<d,0<mandi<g~1%)

59

lowing lines (1), (2.1) and (3.1) are satisfied, then procedure Level organizes processors

. - N i+l i+1 t1 -
Gedt1192d42:- - - 18]G}y aDd O 11 Goidsare+ -0y into blocks. -

Proof: We must show that for each new block B; = [ay,...a441)] defined by proce-
dure Level there exists b; EL'J,<,~ B, with bjw; = a;,1 < 7 £ d+ 1. The first d elements in
each block are organized with respect to the regular ordering given for I'(G,W). Thus, it
will suffice to show that there exists b EU,<,- By with bwyq1 = ag41. One checks that the
bounds on m and z given after lines (1), (2.1) and (3.1) insure that this requirement is

met. Note that n < p guarantees that the indices are defined (i.e., not too large). O

Lemma 6.12 Let W = {wn, ws,...,wa}, G = (W) and {wa1) = Z,. If {id, q1,...,9G1-1}
is a regular ordering for I'(G,W) and p—1 > d > 2, then we can construct a regular
ordering for I'(H,Y’), where H = G X (wqy41) and Y = {(w,id)jw € W} U {(id, ws41)}.

Proof: Let m = |&!]| and let s = md + 1. The first s blocks are B; =
[g?d+1,. .- ,g?d+d,9}], 0 < j < md. At this point we call Level(s, m,0, md + 1).
Recall that the following preconditions must be satisfied for procedure Level to

operate correctly:

(2) processors g9, ¢9,...,9%; and g}, gl,...,g},4 are organized into blocks
(b)oLp-s<d

()ifp—s=r—1lthens>mandn=m+1<p
(d)ifOSp—s<r—1thenm+r—1<pa.ndm+r+s$2pr

(e) ifr—1<p—s<dthens>m,d+m<pandd+;+s-im+1£2p

Condition (a) is satisfied by blocks By, ..., B4, and condition (b) follows from the
definitions of s and m. To prove that conditions (c), (d) and (e) hold it suffices to show
that p > d+m. Note that p(d—1) > d®—1, since p > d+1 (hypothesis). Thus, p > d+ ”ﬁl
and the result follows. When procedure Level is finished we will have organized into blo::ks
the elements g1, ¢3,...,9|6-1 and g3, 9},...,4L, . S

There are |G| — (nd + 1) elements left in H \ {id} that have not: bee;l processed into
blocks. Let p = |Gt [1y ; = 1814 5ng Jet y = (|G| — (nd + 1)) mod d + 1. We

61

{_(id, Wiyl)}

Proof: The proof is analogous to the proof of Lemma 6.12. One checks that before

each call to procedure Level the following preconditions are satisfied:

(a) elements (G x {id})wﬁ_}_l, 0<j<i—-1,4i,68,...,9%, and gf,"'l,g{'*'l,...,g:;ﬂ
are organized into blocks

b)o<p—s<d

(c)ifp—s=r—1lthens>mandn=m+1<p

(d)iffo<p-s<r—1thenm4r—1<pandm+r4s<2

(e)ifr—l(p—s<dthens>m,d+m<pa.ndd+r+s'+m+1§2pu

Lemma 6.14 Let wn = (e,id) and w; = (id, §) be generators for H = Zy X Z;. There is
2 regular ordering for the Cayley network I'(H, {w;, w2}).

Proof: Observe that there is a unique regular ordering for T'({w;),{w;}). If we
make two slight modifications to procedure Process, then the procedure can be used to
define a regular ordering for I'(H, {w:,w;}). First, we leave out line (2.4) (i.e., skip the
call to procedure Level). Stecond, we replace line (2.7) with “n:=m”. The procedure call,
Process(¢’ — 1,1, ¢), will result in a regular ordering of I'(H, {w1,we}). O

Lemma 6.15 Let L = (w,...,ws, wa41) be an abelian group. Let G = {w,.. .,wg) and
let L/G = Z,;, ¢ > 2. Let T} be a broadcast tree for pro_cessu:;_, id in I'(H,Y), where
H=aG x_.(a), Y = {(w,id)lw € {wy,...,w4}} U {(id,a)} and a is a generator for Z,. Let
T; be the broadcast tree obtained by replacing, edges of T; labeled o with edges labeled
w_d,].l and nodes labeled (g,0') with gw}, +2» 0 £ 1 < g. Then T} is a broadcast tree, in
I'(L,{wy,...,w4s1}), for processor id.

Proof: We need only check that all of the nodes in T; are distinct. K guh n=g w"; 19
then ¢ = j since ¢ is the smallest integer for which w +1 € G. Thus g = g’ and we are
done. O

63

construct Cayley networks that cannot be regularly ordered. This answers the question

posed by Faber as to whether or not every QCG can be regularly ordered.

Example 6.10 Let G = Z2, and let W = {1,n,n + 1}, then the Cayley network I'(G,W)
has diameter n — 1. Since a broadcast will need at least n — 1 time steps, there is no

regular ordering of the Cayley network when n > 5.

We conclude this section with a result that shows that an optimal universal broadcast
exists for any Cayley network, I'(G, W), where G is a cyclic group and each w € Wis a
generator for G.

We say that a path g

3333 2y,

in I(G,W) is a w-path if {{e;) =wfor 1 < i < s.

Lemma 6.19 Let I'(G, W) be a Cayley network where G is a cyclic group and each w € W
is a generator for G. f G = X UY, {r1,72,...,7m} = R C W and m < |V|, then there
exists z1,...,Zm € X and distinct 31,...,9m € Y, such that z;r; = y; for 1 < i < m.

Proof: We give a constructive proof that uses induction on m = |R| to find the z;
and y; for 1 < i < m. Since each w € W is a generator, the statement holds for |[R| = 1.
Suppose the lemma is true for |R| < m and we have found 21,...,z,n € X and distinct

Y1,---,¥m € Y, such that z;r; = y; for 1 < i < m. Let {y1,...,ym} =Y’ and let

- —

mﬂy,-l f—’&y,-: =R Yios 3y

-

be a ro-pa.ti -frolm XtoY \ Y"] where ro € W\ {r,...,7m}. If this path has length 1,
then we are done. If the path has length s > 1, then we replace the path with an ro-path
from X to Y \ Y’ of length at most s — 1. .

The procedure we describe for computing the new rp-path has the property that
after the k™ step either an rp-path of length at most s — 1 is found or the following

conditions are true:

65

TiTi = Ui with zIri =y,

Tj_gTj—2 = Yj—2 with =zjr; 2=1y;,

TaTo = ¥ with Zars = Yq.

Hence y; is unused and we have the ro-path zyrg = ¢ from X to Y \ Y.

Otherwise zjr;—-1 € Y'\ {y1,...¥;}, and we may order the elements, with indices
greater than j, so that z;r; 3 = y;41.

To finish the proof observe that for j = m condition (2) guarantees that zp,rp,_; ¢
Y. O

Corollary 6.20 Let G be a finite cyclic group and let W C G such that G = {w), for all
w € W. Then we can find a regular ordering for I'(G, W). Moreover, any separating set
for the graph must have size at least |W|.

iversal Broadcast Schemes and Wreath Products

Let G < Sym(A) generated by W = {w;,...,wz}, and let A U A; denote the
disjoint union of two copies of A. Let a be the permutation that interchanges each @ € A
with it counterpart in A;. We extend each w € W to a permutation on A U A;, such
that w acts trivially on A;. Then the wreath of G by Z,, G| Z;, is the subgroup of
Sym(A U 4,) generated by WU {a}.

Given a regular ordering for I'(G, W), we have shown- how=to construct a regular
ordering for T'(H,Y), where H = G x {w') and ¥ = {(w, id)|w € W} U {(id, v")}). In this
section we describe a process for constructing a regular ordering for ['(G 1 Z2, W U {a}).

The following“fz.l:cts about G| Z; are needed:

(@) G112 =|G|*2
(b) GxGdaGlZ
() GlZa=GxGUaGxG) -

Thus, each element in G| Z; can be written uniquely as a product a*(g1,92), where

67

(L1) Fori=0top—1do
(Di,id)
Step 2 If ' =1 then
(*complete the coset G x {id}*)
(2.1) (R,id)
(2:2) o R, 1)
Step 3
(*process the blocks of a(G x {id})*)
(31)Fori=0top—1do
a(D;, id)
Step 4 If v’ =1 then
(*complete the coset a(G x {id})*)
(4.1) o R,id)
(4.2) a(R', 92)
Step 5
(*allow generator « to finish {id} x G and «({id} x G)*)
(56.1) For j :=1 to pd do
(Do, 95)
(5.2) Forj:=1to |G|+ r—2p—2¢
(D1,95) -
Step 6 - _‘:
(*pracess cosets (id, gpa41)(G X {id}), ..., (id, gpa4r }(G x {id})*)
- .. (81 Forji=1tordo
-- . (6.i.1) Fori=0to p—1do
(Dis 9pa+3)
(6.1.2) (R,gpd...j)
(6.1.3) a(R', gj42r) "
Step 7

(*coincides with step 3 [i := 1 to p — 1] and step 4*)
(Bl)Forj=1top—141r'do |
(id, g;)
Step C
(*process the remaining elements in {id} X G and a({id} x G)*)
(*coincides with step 5%)
(Cl)Forj=p+r'to|Gl—1do
(id, ;)
(C2)Forj=p+r'+1to|G|-1do
a(id, g;)
Step D Ifr' =1 then
(*complete unfinished part of R’ blocks started in steps 2, 4 and 6*)
(*coincides with step 6%)
(DA)Forj=1tor+2do
(Da11)Fori:=1toerdo
a(gi, g5)
Step E Ifr' =1 then
(*process the last r elements in cosets a(id, g)(G x {id})*)
(*step 6 has started by this time*)
(E1)Forj=1to pd+r do
= (E.11) Fori:=pd+1to pd +rdo _
(g, 9;)
StepF. | Ifr'=1
(*process the last r elements in cosets (id, 9)(G x {id})*)
(*step 7 has started by this time *) *
(F.1) For j =1 to pd do .
(F.1.1) For i:= pd 4 1 to pd 4 r do -
(9i,95)

71

All the elements processed in step A meet this criterion. The elements processed
by a in Step B are part of a regular ordering, since step B is not started until the first
move of step 3 is finished. Step C presents no problem, since it is not started until after
the cosets G x {id} and (G x {id}) are processed.

Condition (b) gaurantees step (5.1) has finished, before step D is started. Step E
is not a problem, since step 6 starts processing elements by the time it begins. Likewise
step 7 has started processing elements by the time step F is started.

Condition (a) gaurantees that step F runs to completion. In step G we have forced
a to process the unordered elements of a(G x G) in the opposite order that the generators
wy,...,wy are working. Thus, at some point in time the two prc;cedures will converge on
a set of elements of G| Z; of size at most d. These can then be handled by a subset of the

generators wy,...,wg. O

Corollary 6.22 We can construct a regular ordering for I'(Z, | Z2, {w1,a}), where w, is a
generator for Z; and ¢ > 2.

Proof: Note that p=¢—1,r=0and d = 1. If ¢ > 3, then p > 2 and generator w;
can follow the steps outlined in procedure Accessl. Every element processed by w,, after

the first step, is multiplied by the generator . The case g = 2 is a simple exercise. O

Corollary 6.23 We can construct a regular ordering for ['(*Z2,{ai,...,ax}), where the

a;, 1 < i < k, are the canonical generators defined above. =

- _

Proof: We use Corollary 6.23 to define a regular ordering for I'(Z; Za, {1, a2}).
Then given a regular ordering for I'({'Z,, {ay,...,q;}), i > 2, Theorem 6.21 is used to
define a regular ordering for I'(}i+1Z,, {a1,...,a;41}). O

73 .

Notation:
o Let (Z2)" = {(2n-1,..-,%1,20)|z: € {0,1}}

Let 0= (0,0,...,0) and let 1= (1,1,...,1)

0

o

For v € (Z2)", let wi(v) = El g v

o

For v € (Z2)", let pr(v) = wi(v) mod 2

[+]

Let J C {0,2,...,n — 1}, then we call v € (Z;)" the characteristic vector for J if
vj=1ifand onlyif j € J

Definition 7.1 For any integer n > 2 let M,(V, E) denote the Moebius graph of order n.

The graph has V = (Z;)", and E = {(v,v*)|v € V and s € {p,p~1,6}}, where p and § are
defined by the equations,

(Zn-14.--,%1,%0)" = (Tn-2y-++ %0y Tn-1), and
(zp-1,..- ,zl,zo)5 = (Tn-1,...,22, %1, Z0).
A “path” vy, w1,...,vm starting at vertex vo and ending at vertex vy, is denoted by
a sequence of edge labels P = pyp;+--pm, p;i € {p,p™1,6}, such that, v; = v’ . Using

this notation, Leland and Solomon described a routing algorithm that constructed paths

of the form: -

(a) gopg1p++ gna

(b) pgorgs - - - Pgn—
where g; € {id,é}. - S

They proved that any two vertices in M,(V, E) could be connected by a path_of
type either (a) or (b) in which g; = id for at least 2| values of i. Thus, the diameter of
Mn(V, E) was bounded above by |2]. L

Their algorithm had two shortcomings. First, it could not find a path of length less

than n — 1. As a consequence, a message sent to an adjacent vertex would have to pass

75
of G.

Since p,6 € Sym(V) it follows from the proof of Lemmé. 7.3 that My(V, E) is iso-
morphic to I'(G", A", W), where W = {p, 6}, and H" = G%. We denote the isomorphism
between M,(V, E) and I'(G*, A", W) by the function &(v) = H"g, where 0=

The first thing we must do is decide on a reasonable representation for G™*. If we
were to represent a permutation g € G™ as a product of disjoint cyclics, we would need

O(n2") space to store g. Instead, we will view G™ as a subgroup of the Affine group A of
(Z2)", where

A = {(N,v)|N is an n X n invertible matrix, and v € (Z2)"}.

For (N,v) € A and z € (Z2)" the action of (N, v) on z is defined by the equation, (M) =
zN + v. The product of two elements (N,v),(L,w) € A is (N,v)(L,w) = (NL,vL + w).
This representation allows us to store each g € G™ in O(n) space.

If we let I be the n X n identity matrix and let

(000 -~ 0 1)
100 - 00
M=|010--00 |,

\0 00 .10/ o

then the permutations p, p~1, and § can be viewed as elements of A, where
—— p=(M,(0,---,0,1)),
= (M,(1,0,--,0)), and
§ = (I,(0,---,0,1,1)).

Definition 7.5 For 0 < i < n — 1 let § = p~*§p'. Then §; = (I,w) wli'ere w; = 0 unless
J=1+1mod n or j =i mod n. Note that § = §, and - .

P8iti = bip'. (VIL12)

77

H*(I,v) ifn>3andodd
®(v) =4 H*I,v) nevenandpr(v)=0
H*(M,v) neven and pr(v)=1

Viewing the Moebius graph as an QCG has already given us some valuable infor-
mation about the family of Moebius graphs. In particular, it points cut the we are really
dealing with two separate families, one for odd values of n, and one for even values of n.

An Optimal Routing Aleorithm for the Moebius Grap}

-

In this section we reduce the problem of routing on the Moebius graph to the problem
of finding a minimum generating sequence (with respect to {p,p™1,6}) for g € G*. Let
1,v2 be two vertices from the Moebius graph M,(V,E). Recall that a sequence of edge
labels P = pyp2-+-pm, pi € {p,p~1,8}, describes a path from v, to vy if and only if
v P"P™ = v, Since 62 = 1 we may assume that every path in M,(V, E) has the form
peetibp®e§---6p°t, where the e; are integers and nonzero if 2 < i < a. The length of the
path is a + Z2H[e;|. Note that a corresponds to the number of & edges traversed and
T%tlei| to the number of p and p=! traversed.

Let OP(v1,vz) denote an optimal path from v, to v in Mu(V, E), and let MG S(g)
denote a minimum generating sequence for g € G™. The algorithm OptimalRoute reduces
the problem of computing an optimal route to the problem of findifig minimum generating
sequence.r The input to the algorithm is a pair of vertices from the Moebius graph and the

order, n, of the graph. The algorithm returns O P, an optimal path between the vertices.

Procedurelz Opfima.lPé.th(vl ,v2,n,0P)
(1) Compute g, such that H"g, = ®(v;)
(2) Compute g; such that H"g, = &(v,)
(3) OP := MGS(gign) .
(4) For he H*\ {1} do

79

(@ die{l,-1},and 0<th < <...<Hyyy) <M
(b) v, = 1if and only if for some 1 < ¢; < wt(u),-E?: d; = s modn
(c) L di=d

(d) if D’ and T’ are two sequences satisfying properties 1-3, then |D| < | D'|

Informally, we may think of v as a circular queue of size n, where cell s of the queue
is “marked” if and only if v, = 1.. A “walk” on the queue consists of a sequence of steps
in either the clockwise (positive) direction, or the counterclockwise (negative) direction.
The procedure QueueWalk finds a shortest walk, D = dy,ds,...,dn, that starts at cell
zero, visits every marked cell of the queue, and terminates a distance |d| away from the
start position in the direction I%l. The length of the walk is m, and the t; indicate the
time at which a marked cell is visited. Note that once a walk is descﬁbed it is a simple

exercise to compute the sequence T in time m.

Procedure QueueWalk(v,d,D,T) :
(1) If |d| 2 n, then
(11) di==Y for1<i<|d
(*m = |d]*)
(1.2) Compute T satisfying condition (b) above
(1.3) Return(D,T).
(2) f0<d<mn,then .
. (2.1) Find a largest block of zeros, (s,1), between:{d +1,n—-1)
(*the block of zeros has size E =t — s — 1*-)
> (22) sy:=n—ts:=s5—4d
(23) dii=—1for1<i< s
di:=1fors;+1<i< 28 +s
- di:=—1for2s; +s8+1<i< 28 +5+ 37
(*m=d+2(n—d-1-E)*¥)
(2.4) Compute T satisfying condition (b) above
(2.5) Return(D,T).

g1

and this implies that (s,t) is not a largest block of zeros.
Case III (—n < d < 0) The proof of this case is analogous to the proof of Case II.O
The following claim constructs a generating sequence for g € G using the procedure
QueueWalk. The claim proves that with the appropriate input QueueWalk can be used

to find a minimum generating sequence for g.

Claim 7.10 Let ¢ € G", and suppose ¢ = p%k. Let v be a characteristic vector for k
and let D = dy,dy,...,dp, T = t3,12,...,8, (wi(v) = a) be the result of a call to
QueueWalk(v,d, D,T). Define py =dy + -+ dy,, piy1 = de; g1+ -+ +dy,, forl1<i<a,
and poq1 =di, + -+ dpn, then pPotifpPef ... ot is a generating. sequence for g.
Moreover, if MGS(g) = p*e+16p°6-.-§p°t, where d = Title;, and v, = 1 if and
only if there exist j such that Ti_ e; = s mod n, then pPe+1§pPag .- §pP! is a minimum

generating sequence for g.

Proof: First, observe that Ef:=1p.- = s mod n if and only if v, = 1. Now using
identity (VIL.12) we have pfk = pPe+1§pPe§...§pP1, To finish the proof it will suffice to
show that Z31]|p;| = T2]|e;]. Since pt+18p%a6 .-+ §p™ is a minimum generating sequence
for g it follows that ¢t |e;| < B24!|p;|. Just suppose & ;| > T2+ |e;l; then we could

use the the ¢; to define a walk of length £2¥!le;| < m for v and d. But by Claim 7.9 such

i=1

a walk cannot exist. O

Corollary 7.11 (a) If g = p?k, and v is the characteristic vector of k, then there exists a

generating sequence for g of size

- [e+ ifd| > n
wt(v)+¢i+2(n—d—1—E) ifo<d<n
wi(v)+ |d|+2(n-|d|-1-E) -n<d<0.

Recall that E =1 — s — 1 (F is defined in QueueWalk).)

(b) If MGS(g) = pte+16p%8--.6p%, then —n < T¥tle; < n. This follows from the
fact that p?" = (I ,E)

83

Claim 7.10, then statement (8) takes time O(n).

To finish the proof we must prove that the algorithm computes a minimum gener-
ating sequence for g. Suppose MGS(g) = p®=+:6p®=6.--6p°, and ¢j = Ef_:l e; mod n, for
1 < j < a. By Corollary 7.11 and Claim 7.7 we have d = £%X1¢;, and it follows that either
v or ¢ is the characteristic vector for k = II3.,6,;. The proof follows from Claim 7.10. O

The procedure for computing 2 minimum generating sequence for g € G* when n

is even is analogous to the previous procedure. The only difference is that now there are

two possible choices for d (Claim 7.7).

Procedure MinGenSeqEven{g = (M*,v),n,mgs):
(*We shall assume that n is even, and 0 € i < n — 1%)
(1) ki:=p""g (9= p'k1)
(2) k2:=p"""g (9 =p""k2)
(3) Compute v, and v}, the characteristic vectors for k&,
(4) Compute vy and v}, the characteristic vectors for &,
(5) QueneWalk(vy,i,D,,T1)
(6) QueueWalk(v},i, D, T})
(7) QueueWalk(vg,i — n, D;,T)
(8) QueueWalk(v},i — n, D}, T%)
(9) U {Djl+ITql < |Dal + T4
then set Dy := D] and T} := T
(10) I | D] +IT) < |Dal + T3]
then set D; := Dj and T3 := T}
XY I Dy A+ |Ti) < |Ds| 4 (T2
then use D; and T to compute MG S(g)
else use Dy and T to compute MG S(g)
(12) Return (mgs := MGS(g))

Theorem 7.13 Procedure MinGenSeqEven computes a minimum generating sequence for

g = (M',v) € G™ in O(n) time for even values of n.

Table 3: For n Odd and pr(v,) = pr(vs)

For n Odd and pr(v;) = pr(va)

p KDk,

n

Elements in G™ Dependencies

gi_l(Iv 0)22 = poko

(M 0);m = Pk 80k @kq = K

(M4 0)e = plk 82k kg kq

ML 00 = p ey | Encsk Iy = kg

gri(ML0)e = PR | R DEL, k1

iM% 0)2 = P ks | 6kDE = ks

gl_l(Mﬂ—41 _E__)gz e p_4kn—4 Jn-sk(n—s)kﬂ—ﬁ = Iku—4

T M™2,0)02 = p2kng | Gncak® kg = kK,

Table 4: For n Odd and pr(v;) # pr(v;)
For n Odd and pr(v1) # pr(vs)
_Elements in G" Dependencies

G (I 1)ez Py

at(M>0)e2 = ks [6KOK ks

g (MP,0)2 = ks 83k ks = ks

gl-l(M:_z’E)gz = p“-zkn—Z 6n—4k(“-4)kn—4 = kp-2
1o 0)2 = pke bucak®=DE. o = Ky

M ME) = PR | 6ok@ko ks

gl_l(M"-?», E)gz e P-Skn—ti 6n—5k("-5)kn—5 = .{cﬂ—:i

grl(Mn_l’ 0)92 = P-lkn-l 6n—3k(ﬂ-3)kn—3 'kn-l

85

87

Lemma 7.15 If n is odd and v; and v, are two vertices from the M,(V, E), then there

exists a path between the vertices of length no more than [3£] - 2.

Proof: Let &(v;) = H™g, and $(v;) = H"gy. By the definition of & we have
g1 = (I,v1) and g2 = (I,v;). It will suffice (by claim 7.8) to prove that there exists
h € H™ such that g hg, has a generating sequence of length no more than f3] —2.

Case I (pr(v1) = pr(vs)) Let g7 (M™?,0)g2 = p" 'k, (notation from Table 3).
By Remark 7.6 we know that there exists a characteristic vector, v, for k,_; such that

wi(v) < [4] — 1. Now, by Corollary 7.11 we have,
3
IMGS(p" kaa)| < wit(v) + 1 - 14+2(0) < [- 2.

Casell(pr(v1) # pr(v2)) Let g7 1 (M "—2,3)92 = p"2kn—3. By Remark 7.6 we know
that there exists a characteristic vector, v for kn—_3, such that v,_; = 0. If the wi(v) < [%],

then
|MGS(p™2kn2)| < wi(v) +n—2+42(0) < |'—'| 2.

On the other hand if wi{v) > [3], then let o' be the complement of v. We know

that v’ is a characteristic vector of kn—2 and wit(v') < [3] — 2. Thus,
[MGS(p" 2kn-2)| < wt(v') + n—24+2(1) < [—] -2.
o . - =

Theorem 7.16 If n is odd then the diameter of Ma(V, E) is [3] — 2.

Proof: Let v; = (0,1,0,1,0,...,0,1,0) and let v; = (1,0,1,0,1,...,1,0,1,0,0). If
®(v) = H"g, and ®(vy) = H"gy, theri by the definition of ®, 91 =(I,v1) and g2 = (I, 12)-
By Lemma 7.15 and Claim 7.8 it suffices to show that [MGS(gl'lhgz)[> [32] — 2, for all
heH "

-

Since pr(v1) = pr(vz) we have for 0 < i < n—1, (I, v (M, H)(I, vg) = p%ky, where

d=1iifiis even, and d = i — n if i is odd (d must be even). Solving for kg we find

89

On the other hand if wt(v) = &, then consider g7(Z, 0)g2 = p*~"k1_n. By Table 5
we have, -

Fi—n = bqa kD, ;.

Let w be the characteristic vector for k;_n and recall that & = (I, vy + v M?). Using Fact
7.17 we conclude that the wi(w) # 3. Without loss of generality we may assume that
wi(v) < % and

IMGS(0*"k1—n)| < g —1+n-1.

o

Lemma 7.19 Let n be even, and let v; and v, be two vertices in the Moebius graph
Mn(V, E). If pr(1) = pr(v2), then there exists a path between the vertices of length no

more than 3% — 1,

Proof: Let II(v;) = H"g; and II(v;) = H%g2. If pr(vy) = pr(v2) = 0, then g; =
(Z,m) and g2 = (I,v3). If pr(v1) = pr(vz) = 1, then g; = (M, v;) and g5 = (M,v2). 1t
will suffice to show that there exists h € H", such that g; 'hgs has a generating sequence
of length no more than ‘%" ~ 1. Let g7Y({, E)gg = p~"k_,,, and let v be a characteristic

vector of k_n, such that wi(v) < §. If wi(v) # § then we have,

IMGS(p™"k_,)| < % -1+n.

I the wt(v) = %, then we consider the element g;° l(llt-[2,359_2 = p?>~"kqe_,, and let
w be a characteristic vector of k;_,,. As before, we use Table 6 and Fact 7.17 to prove
that wi{w)y# 3 (k2—n = Jo_k(o)_k_n). So we may assume that wt(w) < 3 —1; and it follows
that,

IMGS(p*"ka_,)| < g —14|2-n|+2(1). >

a

-

Theorem 7.20 Let n be an even integer greater than 10. Then the diameter of M.(V, E)
is 3¢ ~ 1.

91

Table 8: Characteristic Vectors for n = 14

k; | Characteristic vector for k;
k_14 01011010110100
k_y2 01011110110100
k-10 01001110110100
k_s 00001110110100
k_g 00001110110101
k-4 00001110110001
k_2 00001110100001
ko 00001111100001
ka 00001021100001
ks 00011011100001
kg 01011011100001
ks 01011011100000
k1o 01011011100100
k1o 01011011110100

(a) wi(v;) 2 3 -1

(b) no string of digits in v; has length more than 5

By Corollary 7.11 we conclude that [MGS(p'k;)| > 3 — 1 whenever |j| < n — 12.
Thus, we need only check (by hand) that |[MGS(pik;)| > £ —1for j = n — 10,n —
8....n=-2,n,2-n,...,10 — n.

Case III (n = 16 4 4m} Let v; = 0*51%, and let v; = 00101100{1010)™11011100.
Note that k = 8ofs, kj42 = k;fg4;, and the characteristic ve_-_rLtor for k_, is k_,, =
1011000;(0011)”‘01001011. It is a simple (but tedious) task to check that proper-
ties (a) and (b) hold. Now Corollary 7.11 and Table 9 may be used to check that
|IMGS(pk;)| > 2% for the.remaining 11 values in question.

Case IV (n = 18 + 4m) Let v; = 0818, and let v, = 001011001100(1010)™101100.
Note that k¥ = 6,-af, kj42 = k;j6j—s, and the characteristic vector for k_,,- is
010011101011(1001)™100100. Now Corollary 7.11 and Table 10 may b:e used to to finish
the proof. O o

93

CHAPTER VIII

SUMMARY AND FUTURE WORK

In this dissertation we have focused our attention on bases, SGSs and subgroup
towers for permutation groups. We investigated both the sequential and parallel com-
plexity of several algebraic problems involving bases and SGSs. We have also shown how
subgroup towers and SGSs can be used to design dense interconnection networks that are
accompanied by efficient routing algorithms.

In Chapter II we answered in the negative the question asked by Finkelstein as to
whether or not the Greedyl algorithm always computes a minimum base. In fact, we
proved that the problem of computing 2 minimum base for G < Sym(n) is NP-hard.
Moreover, the problem remains NP-hard even if we restrict G to be an abelian group with
orbits of size no more than 8.

For abelian groups with orbits of size 7 or less we described a polynomial time
algorithm for computing minimum bases. Thus, for abelian groups this bound on the size
of the orbits is sharp. The computational complexity of computing minimum bases for
arbitrary groups with orbits of size less than 8 remains open. We have preliminary results
that reduce this problem to the cases where the orbits have gize %}6 and 7,

In Chapter III we examined the problem of approximating minimum bases for per-
mrutation groups. We observed that it was possible for G < Sym(n) to have a nonre-
dundant base of size %M(G) log n. In contrast, the Greedyl algorithm always produces a
base of size no more than [M(G)loglogn] 4+ M(G). We went on to prove that, up to a
constant, this bound on the size of a Greedy1 base is sharp. That is, for.any n sufficiently
large there exists G < Sym(n), such that every Greedyl base for-G .has size at least
FM(G)loglog n.

We examined a second greedy algorithm, Greedy?2, for constructing small bases.

95

adapted to run on directed SGS Cayley networks. In fact, the algorithm solves the partial
permutation routing problem. This is one of three subroutines needed in the simulation
of idealistic (PRAM) computers by realistic (multiprocessor network) computers [43, page
227]. The other two subroutines are sorting and distribution. One of the problems we are
working on now is an efficient sorting algorithm for SGS Cayley networks. We hope to
show that the SGS Cayley networks can use a modified version of odd-even merge sort.
There are two other questions concerning permutation routing that warrant further
investigation. First, Pippenger has described a network in which a variant of Valiant’s
algorithm performs permutation routing and uses bounded queues [38]. Can this algorithm
be adapted to SGS Cayley networks? Second, Leighton, Maggs ;amd Rao have described
an off-line algorithm that eliminates the probabilistic component of permutation routing
[28]. Is there an on-line version of this algorithm that will run on SGS Cayley networks?
In Chapter VI we extended Faber’s work on universal broadcast schemes. We proved
that it is possible to find an optimal universal broadcast algorithm for a number of Cayley
networks. In particular, we showed that if there is an optimal universal broadcast for
I'(G,W) and [L‘f—“ﬁlj — 1 > |W| > 2, then there is an optimal universal broadcast for
I(#,Y), where H = G X (wgy1) and Y = {(w, id)lw € W} U {(id, wg31)} ([(was1)f > 2).
As a consequence of this result we proved that if G is an abelian group and W =
{w1,w2,...,wi} is a generating set for G such that w; ¢ {wy,wa,...wi_1), 1 < i <k, then
the time needed for a universal broadcast in I'(G, W) is [l-?-‘!,,:ll] This yields an alternate
proof of Vaber’s result that the time for a universal broadcast in a=d-cube is [I#T_l)-] .
We also proved that an optimal universal broadcast can be found for the Cayley
network T'(G,W), where G = 1*Z; and W is the canonical set of minimal generators
defined in ﬁ:éa..niple 5.9. Recently we described a universal broadcast that runs in time
[L?—Hlﬁl"[on the Cayley network I'(G,W’), where G = 1¥*Z, and W' is the canonical set
of generators defined in Example 5.7. We would like to extend thesl? results to other

nonabelian Cayley networks.

-

In Chapter VII we used QCGs to analyze nonsymmetric networks. Our first result

was a useful characterization of QCGs. We proved that a connected directed graph is

a7

BIBLIOGRAPHY

[1] ArDEN, B., AND LEE, H. Analysis of Chordal Ring networks. IEEE Trans. Electron.
Comput. C-30 (Apr. 1981), 291-301.

[2] BABAL, L. On the order of uniprimitive permutation groups. Annals of Math. 113
(1981), 553-568.

[3] BaBal, L. On the length of subgroup chains in the symmetricgroup. Communications
in Algebra 14 (1986), 1729-1736.

[4] BaBAL, L., Luks, E., AND SERESS, A. Permutation groups in NC. In Proceedings of
the 19th Annual ACM Symposium on Theory of Computing (1987), vol. 19, pp. 409
420.

[5] BANNAIL, E., AND ITO, T. On finite Moore graphs. Journal of Fac. Sei. Univ. Tokyo
20 (1973), 191-208.

[6] Brown, C., FiNKELSTEIN, L., AND PurDOM, P. Efficient implementation of Jer-
rum’s algorithm for permutation groups. Pre-print.

{7] Brown, C., FINKELSTEIN, L., AND PurDOM, P. Backtrack searching in the pres-
ence of symmetry. Tech. Rep. NU-CCS-87-2, Northeastern University, 1987.

[8] CAMERON, P. Personal correspondence to K. D. Blaha.

[9] CanNoN, J. A computational toolkit for finite permutation-groups. In Proceedings
of Rutgers Group Theory, 1983-1984 (1984), pp. 1-18. _ -

——

[10] CArLssOoN, G., CRUTHIRDS, J., SEXTON, H., AND Wmchr, C. Interconnection
networks based on a generalization of Cube-connected cycles. IEEE Trans. on Com-
put: C-8{ No. 8 (Aug. 1985), 769-722.

[11] CarLssoN, G., FELLows, M., SEXToN, H., AND WRIGHT, C. Group theory as an
organizing principle in parallel processing. Pre-print.

[12] CaRrLssoN, G., SExToN, H., AND WRiGHT, C. Cayley networks and generalized
Cube-connected cycles. Pre-prmt

-

[13] CuerNoFF, H. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Math. Stat. 28 (1952), 493-507.

99

[31] LovAsz, L. The matroid matching problem. In Proceedmgs of the Conference on
Algebraic Methods in Graph Theory (1978).

[32] LovAsz, L. Matroid matching and some applications. Jaumal of Combin. Theory
Ser. B 28 (1980), 208-236.

[33] LovAsz, L., AND PLUMMER, M. Maiching Theory. North-Holland, Amsterdam,
1986.

[34] Luks, E. Parallel algorithms for permutation groups and graph isomorphism. In
Proceedings 27th Annual Symposium on Foundations of Computer Science (1986),
vol. 27, pp. 292-302.

[35] Luks, E., AND McKENZIE, P. Fast parallel computation with permutation groups.
In Proceedmgs 26th Annual Symposium on Foundations of Gamputer Science (1985),
vol. 26, pp. 505-514.

[36] HALL, M., JrR. The Theory of Groups. Macmillan, New York, 1959.

(37) McKEnNzIE, P., AND Co0OK, S. The parallel complexity of abelian permutation
group problems. Tech. Rep. No. 181-85, Dept. of Computer Science, University of
Toronto, 1985.

[38] P1PPENGER, N. Parallel communication with limited buffers. Tech. Rep., IBM
Research Laboratory, San Jose, Calif., 1984.

{39) PREPARATA, F., AND VUILLEMIN, J. The Cube-connected cycles: A versatile net-
work for parallel computation. Commun. Ass. Comput. Mach. 24 (1980), 300-309.

[40] SEiTZ, C. The CosmicCube. Commun. of the ACM 28 (1985), 22-33.

[41] Sims, C. Computational methods in the study of permutation groups. In Computa-
tional Problems in Abstract Algebra (1970), J. Leech, Ed., Pergamon Press, pp. 169-
183. o

- = —

[42] SiMs, C. Determining the conjugacy classes of a permutation group. In Computers
in Algebra and Number Theory (1970), G. Birkhoff and J. M. Hall, Eds., vol. 4,
= PP. 191-195.

[43] ULLman, J. Compuiatit;nal Aspects of VLSI. Computer Science Press, Rockville,
Maryland, 1984.

[44] VALIANT, L. A scheme for fast parallel communication. SIAM Journal of Comput.
11 (1982), 350-361. :

[45] VALIANT, L., AND BREBNER, G. Universal schemes for parallel communication. In
Proceedings of the 13th Annual ACM Symposium on Theory of Computing (1981),
vol. 13, pp. 263-277.

