Efficient Computations
in Tree-Like Graphs

Andrzej Proskurowski
Maciej M. Syslo

CIS-TR-89-16
September 23, 1089

Department of Computer and Information Science
University of Oregon

Efficient Computations in Tree-Like Graphs

Andrzej Proskurowski * Maciej M. Syslo
September 23, 1989

Abstract

Many discrete optimization problems are both very difficult and important
in a range of applications in engineering, computer science and operations re-
search. In recent years, a generally accepted measure of a problem’s difficulty
became a worst-case, asymptotic growth complexity characterization. Because
of the anticipated at least exponential complexity of any solution algorithm for
members in the class of A'P-hard problems, restricted domains of problems’ jn-
stances are being studied, with hopes that some such modified problems would
admit efficient (polynomially bounded) solution algorithms. We survey investi-
gations of the complexity behavior of A"P-hard discrete optimization problems
on graphs restricted to different generalizations of trees (cycle-free, connected
graphs.) The scope of this survey includes definitions and algorithmic char-
acterization of families of graphs with tree-like structures that may guide the
development of efficient solution algorithms for difficult optimization problems
and the development of such solution algorithms.

1 Motivation

The framework in which we are interested in tree-like graphs consists of finding re-
stricted classes of graphs on which many generally difficult decision and optimization
problems are efficiently solvable (in the worst case). These graphs often exhibit some
decomposability properties. Qur own research has concentrated recently on algorith-
mic aspects of graph representations of orders and on partial k-trees, also known as

"Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403,
USA. Research supported in part by the Office of Naval Research Contract N00014-86-K-0419.

'FB 3-Mathematik, TU Berlin. On leave from Institute of Computer Science, University of
Wroclaw, Przesmyckiego 20, 51151 Wroclaw, Poland. Research supported by the grant RP.1.09
from the Institute of Informatics, University of Warsaw and by a grant from the Alexander von
Humboldt-Stiftung.

graphs with tree-width k. Those graphs are all partial subgraphs of chordal graphs
with the maximum clique size bounded by k. We will discuss alternative views of
these graphs and also other families of graphs, classes of problems efficietly solvable
on these graphs, and the relevant algorithm design paradigms.

Application domain problems often translate into optimization problems on the
graphs representing the application; these combinatorial problems are often very dif-
ficult. A measure of complexity of a combinatorial problem is the worst-case, asymp-
totic behavior of the time to compute a solution as a function of the problem size. A
class of problems notorious for their difficulty is that of A/P-complete problems.

Let us first state our vocabulary for discussing discrete optimization problems
defined on combinatorial graphs. A (combinatorial) graph G = (V, E)) consists of the
set V of vertices and the set E of edges, each edge incident with its two end-vertices
(which are thus adjacent). A subgraph of a given graph G = (V, E) induced by a
subset of vertices V' C V consists of all edges from E that are not adjacent to any
vertex from V —V'. A partial subgraph on the same set of vertices involves a subset of
edges. A sequence of different vertices vg, vy, ...,v, such that v;_; and v; (0<i<n)
are adjacent is called a path of length n; if vy and v, are identical (n > 2), we have
a cycle. A graph with n vertices and edges between all pairs of distinct vertices is
called complete and denoted by K,. A graph in which there exists a path between
any two of its vertices is said to be connected; a set S C V such that the subgraph
of a graph G = (V, E) induced by V — § is not connected is called a separator of G.
A tree is a connected graph without any cycles (it is easy to see that any minimal
separator in a tree consists of exactly one vertex).

2 Definitions of Some Tree-Like Graphs

We first present definitions of several classes of graphs by their generative descriptions.
Often they also have analytical descriptions based on a process of decomposition. Such
a description gives a parse tree in which each node corresponds to a subgraph of the
original graph.

2.1 Generative definitions of classes of graphs

Many families of graphs admiting recursive descriptions that invoke some kind of
decomposability can be described by their iterative construction, often expressible by
a recursive (hierarchical) construction rules as well. The former consists of primitive
graphs and composition rules, the latter takes often a formal linguistic form.

The grammatical approach to defining families of graphs is exemplified by context-
free hyper edge replacement grammars [76], [41], [39] [40], [49], [50}, [51]. A grammar
consists of a finite set of non-terminal labels N with a distinguished start label s € N
and a finite set of rules, each having the left-hand side, a hyperedge with a label
a € N, and the right-hand side, a labeled hypergraph H. During an application
of the rule, a hyperedge labeled a is replaced by the hypergraph H in such a way
that some distinguished nodes of H (‘terminals’, ‘sources’) are identified with the
corresponding nodes of the replaced hyperedge. The righ-hand side of a terminal rule
has only unlabeled two-edges, so that the language of such grammar contains only
combinatorial graphs. Below, we list some other formalisms following this approach
in defining tree-like classes of graphs.

k-trees are defined recursively as either K41, the completely connected graph on
k + 1 vertices, or two k-trees ‘glued’ along K subgraphs. Iterative definition
includes K41 as the primitive graph and defines an n + 1-vertex k-tree (n > k)
as an n-vertex k-tree T augmented by an extra vertex adjacent to all vertices
of a K subgraph of T (see {12]).

hook-up graphs generalize k-trees by allowing any base graph A and any subgraph
B of a Hook-up(A, B) graph to which a new vertex is made adjacent. (Thus,
k-trees are Hook-up(K4y, Ki) graphs, see [47].)

k-terminal graphs are closed with respect to a finite number of composition oper-
ations, where two graphs G; and G with terminal’s label sets {1..k} each are
composed either by identifying terminals in G4 and G, that induce isomorphic
subgraphs, or by adding edges between terminals in G and terminals in G,.
The composition is completed by determination of terminal vertices in the new
graph. A k-terminal family contains also basis graphs with all vertices terminal

[82], (83], [84].

k-terminal recursive family involves recursive operations on graphs with at most
k terminal vertices labeled 1...|T|. An operation is determined by a connection
matrix that indicates which of the input graphs’ terminal vertices are identified
to create a vertex of the resulting graph; some of these vertices are labeled
terminals of the new graph. There is also a set of k-terminal base graphs with
no non-terminal vertices, and a set of operations [18].

Any graph family defined by a context-free hyperedge replacement grammar (or
an equivalent formalism) has bounded tree-width. For any given k, there is a context-
free hyperedge replacement grammar generating all partial k-trees. Specifically, such

3

a grammar would have N = {a}, the only label of a hyperedge with k vertices and

the replacement rule set that consists of (terminal) rules substituting each of the 2(3)
edge combinations for the hyperedge and of the rule replacing such a hyperedge with
a hypergraph consisting of £+ 1 hyperedges spanned on k+1 vertices (including the &
original vertices). Similarly, all graphs generated by any k-terminal recursive family
of graphs have bounded tree-width. It is also possible to generate all partial k-trees
using that formalism but we will not show it here for the large size of rules. Actually,
the formalisms of hyperedge replacement and that of k-terminal recursive family are
equivalent.

2.2 Decomposability
2.2.1 Undirected graphs

k-trees are alternatively defined as connected graphs with no K, subgraphs and
with all minimal separators inducing K [68]. This property of the existence of
small (constantly bounded) separators is inherited by their subgraphs, partial k-trees.
Namely, partial subgraphs of k-trees are exactly the k-decomposable graphs: a graph
G is k-decomposable if and only if it either has at most k+1 vertices, or has a separator
S with at most k vertices (G — S has m > 2 connected components Cy,Cy, ..., Ci)
such that each graph G; obtained from the component C; (1 < i < m) extended by §
with its vertices completely connected is k-decomposable (Arnborg and Proskurowski
[5]). This motivates a closer look at partial k-trees, their recognition and embedding
algorithms, as well as efficient algorithms solving A/P-hard optimization problems
restricted to partial k-trees (for fixed k).

The tree-width of a graph G ([67]) is defined as one less than the maximum size of
vertex sets V3, Va,..., V,, into which one can pack vertices of G (one vertex belonging
possibly to more than one set) such that

e NU...UV, =V(G),
e edges are only between vertices in the same sets,

¢ G is representable by a tree T which has V; as nodes and, for V;,V;,V; € V(T),
if there is a path in T between V; and V] containing V; then VNV, C V..

It is not too difficult to see that partial k-trees are exactly graphs with tree-width
k (assuming that the definition calls for the minimum value of the parameter k): In
one direction, given a partial k-tree, take an embedding k-tree and its (k + 1)-cliques
as Vi’s. In the other direction, since V;'s intersect on at most k vertices, complete

each V; by adding edges between all pairs of its vertices, and then increase the cliques’
sizes to k + 1 by adding edges between some vertices of neighboring cliques.

By a similar construction, one can see that graphs generated by the other for-
malisms mentioned above have bounded tree-width, as well.

Hochberg and Reischuk, [43], define (k, #)-decomposable graphs for which any
decomposition into k-connected components yields p as the maximum size of a com-
ponent. It is again easy to see that these graphs have constantly bounded tree-width.

Lauteman [49,50} defines s-decomposition trees similarly to the parse trees of the
above k-terminal graphs. He gives a finite set of rewrite rules, where left-hand-side
graphs have distinguished terminal vertices to be identified with the corresponding
terminal vertices of the right-hand-side graphs. The constant bound s is equal to the
maximal size of the right-hand-side graphs of the rewrite rules.

2.2.2 Directed decomposable graphs

In the past decade, there has been very active research in the area of a general the-
ory of set decomposition and in particular directed graph (digraph) decomposition.
Cunningham and Edmonds, [29], discuss general decomposition of sets, followed by
(28] who discusses digraph decomposition. A composition of two diagraphs G, and
G: is defined as the digraph with the vertex set equal to union of their vertices
(with the exception of a special vertex v repeated in both). The arcs of the result-
ing digraph reflect transitivity of arcs through v (i.e., (u3,u;) € E if and only if
((u1,v) € By A (v,u3) € By) V ((u1,v) € By A (v,u,) € E,). Each strongly con-
nected digraph has a unique minimal decomposition into components that can be
‘prime’ (non-decomposable), ‘brittle’ (every partition is a split), or ‘semi-brittle’ (cir-
cular splits). Furthermore, the decomposition of semibrittle digraphs can proceed
into distars and ‘circles of transitive tournaments’.

A special case of the composition operation is the substitution, when G, = vGY is
a pointed graph, with vertex v adjacent to all the remaining vertices of Gs. Graphs
obtained by substitution can be described using the notion of ‘autonomous sets’:
A subgraph G of () is autonomous if and only if for every vertex u in G, either
Yo € V(G) : (u,v) € E(G) or Vv € V(G) : (u,v) ¢ E(G). This treatment allows
to include in the consideration graphs with disconnected components. There is also
a unique decomposition theorem for autonomous sets: Each graph has the compo-
sition tree whose nodes are blocks of partitions into autonomous sets of the graph,
each denoted by D (degenerate, disconnected, ‘parallel’), C (complete, ‘series’), or
P (prime, decomposable arbitrarily into C and D components). Fast algorithms for
finding decomposition of directed graphs into such subgraphs are presented in [19].

Decomposition often allows efficient solution algoritms for some discrete optimiza-

tion problems. However, the range of those problems is severely limited in the split
case requiring strong connectivity. Decomposition by substitution allows using the
divide and conquer algorithms parallelling a natural factorization of objective func-
tions in many discrete optimization problems. An excellent survey is given in [62]. A
subsequent work ([42]) treats problems on posets and uses decomposition with prime
elements of bounded size.

2.3 Other combinatorial structures with parse trees

Chordal graphs can be defined by a similar recursive construction (or decomposition)
description as the graph families from section 2.1: Starting with a single vertex, any
chordal graph (and only such graphs) can be constructed by adding a new vertex
adjacent to all vertices of any complete subgraph of a chordal graph ([30], [36], [75)).
Here, the generic definition of an infinite set of primitive graphs (K}, for any value of
k) makes the major difference. Nevertheless, chordal graphs can be represented by
their parse trees (clique trees) with help of which some algorithmic problems can be
solved efficiently. Chordal graphs constitute an example of graphs decomposable by
clique separators, however of unbounded size ([37,80]).

Chordal graphs can be interpreted as intersection graphs of subtrees in trees, see
for instance Golumbic [38]. An important subfamily of chordal graphs consists of
interval graphs, intersection graphs of intervals of a line. On the pther hand, class of
intersection graphs not properly contained in chordal graphs is the class of circular-arc
graphs, intersection graphs of intervals of a circle.

The existence of the unique parse tree (corresponding to the constructive definition
of this class of graphs) contributes to the design of many efficient algorithms for
complement reducible graphs. These are the graphs that can be reduced to single
vertices by recursively complementing all connected subgraphs (Corneil et al. [23]).

3 Complexity of parsing of tree-like graphs

The problem of recognition and embedding of a partial k-tree for a fixed value of &k
is polynomially solvable, see Arnborg, Corneil and Proskurowski [2]. The algorithm
recognizing a partial k-tree with n vertices has complexity O(n*+?); any lower bounds
result on the complexity of the problem might help to explain difficulties with finding
a system of confluent rewrite rules recognizing partial k-trees for & > 3. A related -
and very important from the applications point of view - problem is that of finding
the minimum value of k for which a given graph is k-decomposable (or, equivalently,
is a partial k-tree). This problem is A"P-hard, as shown by Arnborg et al. [2).

Any sequence of applications of rewrite rules that reduce a given partial 2-tree to
the empty graph determines also an embedding of the graph in a full 2-tree. This is
50, because the reduction ‘reverses’ a feasible generation process of the full 2-tree. An
application of a reduction rule can be thought of as ‘pruning’ of a 2-leaf (vertex of
degree 2) which is deleted, leaving as a trace an edge connecting its two neighbors. A
similar pruning of 3-leaves (completion of a triangle spanned on neighbors of a vertex
of degree 3, in a ‘star-triangle substitution’ process) in recognition of partial 3-trees
must be done with care, since not all vertices of degree 3 in a partial 3-tree can be
3-leaves of an embedding in a full 3-tree, and an indiscriminate pruning may lead to
irreducible graphs (Arnborg and Proskurowski [§}).

The system of confluent rewrite rules reducing any partial 3-tree (and only a
graph from this class) to the empty graph allows for an efficient (but not linear)
recognition of a partial 3-tree and construction of its embedding in a full 3-tree. One
could describe those rules reducing vertices of degree 3 as based on a combination
of ‘strength’ of their neighborhood (existing edges between their neighbors), and of
‘relation’ to other vertices of degree 3 (the nature of shared neighborhoods with those
vertices). The rewrite rules are given in Arnborg and Proskurowski [8]. Thus, one
could suspect that for a safe reduction of a vertex v of degree k in a partial k-tree G,
there seems to be required certain trade-off between the amount of mutual connection
among the k neighbors of v, the number of other vertices of degree % sharing their
neighborhood with v, and the strength of this sharing. For some general rules see
Arnborg and Proskurowski [6].

Attempts to generalize this approach to higher values of k have not brought any
success, so far. A reason might be that while the two abovementioned rules of thumb
are straightforward enough for k = 3 (although already the ‘cube rule’ is a strange
mixture of the two), the sheer number of combinations to consider for & > 3 is difficult
to handle. Another reason might be that such a complete system of confluent rewrite
rules does not exist for higher values of k.

4 Problems with efficient solution algorithms on
tree-like graphs

Discrete optimization problems that do not involve counting and that are defined on
graphs, can be viewed simply as graph properties that a given graph has or does
not have. Typical examples are 2-colorability (‘Is a given graph 2-colorable?’) and
Hamiltonicity (‘Does a given graph have a Hamilton cycle?’). These properties can
be expressed as well-formed formulea in some formalism utilizing variable symbols,

7

relational symbols (over some domains), logical connectives, and quantifiers. Depend-
ing on the restrictions on the use of these symbols, one defines languages of varying
descriptive power. For instance, one could restrict relations to a single domain or use
many-sorted structures, allow only existential quantification, restrict the domains of
quantifiers, and so on. It is important to find formalisms that balance their power of
expression and the ease of analysis (the complexity of property recognition).

In [24], Courcelle presents an excellent survey of the interaction between logic
languages and graph properties, defining and analyzing the power of First Order
Logic, Second Order Logic, Monadic Second Order Logic, and their extensions.

First Order Logic: The domain: graph elements (vertices and edges).
Basic relations: V(z), E(z), R(z,y, z) denoting vertex set, edge set, and edge
with incident vertices, respectively.
Quantification: over domain variables.
Examples: A given graph labeling is a proper coloration. All vertices have
degree bounded by a given integer.

Second Order Logic: Variables: graph elements, relations over graph elements.
Quantification: over binary relation variables (and, consequently, over relational
variables of any arity).

Example: Two given graphs are isomorphic.

Monadic Second Order Logic: Restriction: relational variables denoting sets only
(relations on one variable).
Examples: A given graph is Hamiltonian. A given graph is m-colorable.

Although First Order Logic is a rather weak formalism as far as the expressive
power is concerned, it is in general undecidable whether a general graph has a property
described in this language. Thus, an interesting avenue of investigations is to consider
the status of problems defined in these formalisms but restricted to some narrower
classes of graphs. For instance, when applied to context-free hyperedge replacement
graphs, even Monadic Second Order Logic (MSOL) is decidable. When the class of
graphs is restricted to confluent Node Label Controled graphs, (NLC [70]), Monadic
Second Order Logic with quantification only over vertex sets (MSOL,) is decidable.
Thus, it makes sense to inquire about the computational complexity of such problems
on those graphs. An important connection between investigations of decidability of
logical theories and the tree-like graphs is established by the following statement:
‘For a property described by a Monadic Second Order Logic expression, one can
decide in polynomial time whether a given partial k-tree has this property.” ({27],

[3].) Similarly, if the property is expressed in MSOL, and the graph belongs to the
class of confluent NLC language, then there exist efficient decision algorithms, as well.

To be able to deal with discrete problems optimizing over some objective func-
tions, the MSOL formalism has been extended by Courcelle (26] and by Arnborg et
al. [3] allowing counting set cardinalities, and evaluating sums of functions of sets,
respectively. Thus, the properties in the above statement have to be extended to
those described by EMSOL and CMSOL expression, respectively.

The importance of the bounded tree-width is shown by the following theorem of
Seese [73]: Any class of graphs that has a decidable MSOL property has bounded
tree-width.

Arnborg et al. [3] present a detailed description of applications of MSOL to
partial k-trees. The authors’ main result is the efficient solvability of a number of
problems A/P-hard for general graphs. They prove it constructively by reducing
decidability of an EMSOL property for a partial k-tree G to the problem of deciding
the corresponding, linearly definable property of a binary tree representing parsing of
G (its ‘tree decomposition’). For the latter problem, they construct a tree automaton
that computes a solution in linear time. This tree automaton is found using results
about Decision Problems in SOL, obtained in the 1960’s (Doner [31], Thatcher and
Wright [81]). Since the transformation itself (the derived property) is linear and
the parse tree is assumed to be given with the input graph, a linear time solution
algorithm for the original problem is obtained.

An interesting exception to the spirit of the recent results on efficient algorithms
for problems on partial k-trees is the polynomial-time algorithm for the graph iso-
morphism problem (Bodlaender [16]), since that problem is not expressible by the
proposed extensions to MSOL.

We should mention other recent attempts to characterize problems solvable ef-
ficiently on partial k-trees, notably Bodlaender’s [17] and Scheffler’s [71]. Each of
those authors defines languages for some ‘locally verifiable’ properties, extends them
by conjuctions with some ‘non-local’ statements (designed mainly to deal with the
notion of connectivity), and designs a paradigm for constructing a solution algorithm
for a given property and a given bound % on the tree-width of the problem instance.

Scheffler [71] considers optimization problems that can be described by formulea
involving predicates expressing properties of a bounded neighborhood of a vertex.
These are existentially quantified over a fixed set of subgraphs and universally quan-
tified over all vertices of a graph. (The author follows the aproach introduced by Seese
[73].) She extends the class of properties by allowing conjuction with connectedness
and acyclicity, and presents algorithm paradigms for deciding the above properties

for a partial k-tree given together with an ordering of vertices corresponding to a
perfect elimination of an embedding chordal graph. These algorithms use the given
ordering of vertices and combine the properties of individual vertices (expressed by
values of the objective function) into the global answer. Assuming an additive objec-
tive function, the corresponding optimization problem is solved following the general
dynamic programming strategy.

The time complexity of these algorithms, while linear in the size of the input
graph, depends exponentially on the problem (the number of subgraphs defining the
property) and on the parameter k defining the class of input graphs.

Borie et al. [18] define regular properties of graphs based on the existence of a
homomorphism between members of a given k-terminal, recursive family of graphs
and some finite set. These properties are preserved under the homomorphism and
the integrity of composition operators is maintained. (Their definition follows that
of Bern et al. [11].) They prove constructively that the recognition, optimization,
and enumeration of solutions for a given regular property are linearly solvable on
recursively consructed graph families.

Monien et al. [60] use the notion of tree-width to investigate completeness for
the class of languages that are acceptable by non-deterministic auxiliary push-down
automata in polynomial time and logarithmic space {equal to LOGCFL complexity
class). They define the tree-width of a conjunctive form of a prepositional formula
as the tree-width of the corresponding hypergraph and show that many algorithms
reducing 3-SAT with bounded tree-width preserve this bound for the instances of
problems to which 3-SAT is reduced. This allows them to show these problems to be
LOGCFL-complete when restricted to instances with tree-width bounded by log .

5 Algorithm design paradigm

Already 19th century physicists knew that certain difficult problems, hopeless in gen-
eral can be solved in som ‘tree-like graphs’: the series-parallel reduction computing
the equivalent resistance of a ladder circuit, or the star-triangle replacement in other
electrical networks. However, the theory of these operations had to wait until 1980’s.
Slisenko [76] observed that the Hamilton cycle problem can be efficiently (in time
polynomial in the size of the graph) solved on graphs obtained by the context-free re-
placement of hyperedges by hypergraphs, with terminal replacements of a hyperedges
by edges between some of its vertices. Takamizawa et al. [79] developed a methodol-
ogy for solving many such hard problems (A'P-hard) in linear time on series-parallel
graphs. Intuitively, this ‘good’ algorithmic behavior of partial 2-trees can be explained

10

by their bounded decomposability property that follows from a separation property
of (‘full’) 2-trees: every minimal separator consists of both end-vertices of an edge.

The approach taken by Arnborg and Proskurowski in (5] to attack hard discrete
optimization problems restricted to partial k-trees given with their embedding follows
the general dynamic programming strategy. In a k-decomposable graph, the decom-
posability structure (an embedding in a full k-tree) is followed in solving pertinent
subproblems. Solutions to these subproblems mutually interact only through the
bounded interface of a minimal separator. Assuming that in the instances of discrete
optimization problems of interest there are many partial k-trees for relatively small
values of k (say, about 10), the following algorithm paradigm for solving optimization
problems on partial k-trees is of practical interest (Arnborg and Proskurowski [5]):

Depending on the problem being solved for partial k-tree G, each minimal sep-
arator S of a full k-tree embedding G is assigned a number of ‘states’. Each such
state represents constraints on a subproblem of optimization on the graph G; (cf. the
definition of decomposability), where feasible solutions agree on the graph induced in
G by S. A solution to the problem corresponding to a state of S associates with the
state the optimal value of the objective function. The algorithm requires successive
‘pruning’ of the k-leaves of the embedding k-tree (and of the resulting k-trees). In
each pruning step, it solves the corresponding subproblems and updates the values of
states of the corresponding minimal separator. When pruning a k-leaf v, this state
update of the separator S (the remaining neighbors of v) involves combination of
solutions to k subproblems (represented by the k separators of G consisting of v and
k — 1 vertices of S). To find a solution to the overall problem, the eventual ‘root
optimization’ is necessary, whereby the states of the & minimal separators constitut-
ing the definitional K.4; root of the embedding full k-tree are combined to yield the
solution. If the problem being solved admits a constant (in n) time pruning steps
and a constant time ‘root optimization’, the resulting algorithm is linear in the size
of the input graph. (So do for instance, Independent Set, Vertex Cover, Chromatic
Number, Graph Reliability, ¢f. Arnborg and Proskurowski [5].) This follows from
the fact that the number of states is independent of the size of the graph (although
it can grow quite rapidly with &), and the number of minimal separators to consider
is only linear with the size of the graph. It is important to realize, that the low order
polynomial time complexity of the algorithm is achieved when the input consists of a
suitable embedding of the given graph in a full k-tree. Otherwise, the complexity of
the exact optimization algorithm is likely to be dominated by the complexity of an
embedding algorithm.

A similar idea of combining states of components of a k-terminal graph according
to its parse tree has been expressed by Wimer et al. [84] who list a score of families of

11

k-terminal graphs and several dozens of problems to which their methodology applies.

Although the approach of [5] was the first attempt to describe efficient algorithms
on partial k-trees by a common paradigm, it did not address the question of mechan-
ical derivation of an efficient algorithm solving a difficult problem on those graphs
from the problem description. It took several more years for some of those problems
to be identified.

The important results of Arnborg et al. [3] have been mentioned in the preceding
section. The efficient algorithm solving a given EMSOL problem is constructed as a
tree automaton following the formal description of the corresponding property.

Borie et al. {18] describe an algorithm design paradigm based on their definition
of k-terminal, recursive family of graphs and of regular properties. Following the
decomposition tree of the graph in the problem’s instance and using the "states”
indicated by the homomorphism classes (by definition, there is only a finite number
of those), the dynamic programming technique is used to compute a solution to the
problem in linear time.

6 Graph minors and existence of polynomial time
algorithms

Major progress has been made possible by the results of Robertson and Seymour
[67]. Their results on minor containment gave rise to a new non-constructive tools
for establishing polynomial-time solvability [67] and a new interest in forbidden sub-
structures characterization of classes of graphs [4], [33).

A graph H is a minor of a graph G if it can be obtained from a subgraph of
G by contracting edges (contracting an edge introduces a new vertex replacing the
two end vertices of the contracted edge and inheriting their adjacencies). Robertson
and Seymour proved that every class of graphs closed under minor-taking has a finite
number of minimal forbidden minors (graphs not in the class with all minors belonging
to the class). Because every such class of graphs has constantly bounded tree-width,
the membership of a graph in the class can be decided in time growing at most with
the cube of the graph size, but with astronomical multiplicative constants. Similarly,
many problems are now known to be decidable in low-degree polynomial time, based
on the knowledge of the finite set of forbidden minors for a given class of graphs.
However, but for a very few exceptions, there is no indication of how those graphs

12

can be efficiently found, and even if they are known, the complexity of solution
algorithms exhibit multiplicative constants of astronomical magnitude.

The class of graphs with path-width 2 has been characterized in [33] by 110 mini-
mal forbidden minors. The class of partial 3-trees has a small set of minimal forbidden
minors characterizing it [4). The completeness of this set was proved using the knowl-
edge of a small complete set of confluent reduction rules for this class of graphs. For
higher values of k, this approach will not yield results as long as such rules are not
known.

7 Parallel computation

Recent research on parallel algorithms shows that trees are amenable to the combina-
tion of the dynamic programming techniques (pruning of tree leaves) and the standard
parallel techniques of contraction of long branches resulting in efficient parallel algo-
rithms [58]. This discovery seems to generalize to graphs of tree-like structure, prime
example of which are the partial k-trees. Bodlaender [15] uses it arguing the exis-
tence of poly-log algorithms for partial k-trees. Very recently, first efficient parallel
algorithms for chordal graphs have been designed (Chandrasekhran and Iyengar [22],
Naor et al. [63], Klein {48]). Chandrasekhran and Hedetniemi [20] describe an efficient
parallel algorithm for the partial &-tree embedding problem.

13

8 Bibliography

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with
bounded decomposability ~ a survey, BIT 25 (1985), 2-23;

[2] S. Arnborg, D.G. Corneil, and A. Proskurowski, Complexity of finding embed-
dings in k-trees, SIAM Journal of Algebraic and Discrete Methods 8 (1987),
277-284;

[3] S. Arnborg, J. Lagergren, and D. Seese, Problems easy for decomposable graphs,
Proceedings of ICALP 88, Springer-Verlag Lecture Notes in Computer Science
317 (1988), 38-51;

[4] S. Arnborg, A. Proskurowski, and D.G. Corneil, Forbidden minors characteriza-
tion of partial 3-trees, UO-CIS-TR-86-07, University of Oregon (1986), to appear
in Discrete Mathematics (1989);

{5] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees, TRITA-NA-8404, The Royal Institute of Technology
(1984), Discrete Applied Mathematics 23 (1989), 11-24;

[6] S. Arnborg and A. Proskurowski, Recognition of partial k-trees, Proceedings of
the 16th South-FEastern International Conference on Combinatorics, Graph The-
ory and Computing, Utilitas Mathematica, Winnipeg, Congressus Numerantium
47 (1985), 69-75;

(7] S. Arnborg and A. Proskurowski, Problems on graphs with bounded decompos-
ability, Bull. EATCS(1985);

[8] S. Arnborg and A. Proskurowski, Characterization and recognition of partial
3-trees, SIAM Journal of Algebraic and Discrete Methods 7 (1986), 305-314;

[9] B. Baker, Approximation algorithms for NP-complete problems on planar graphs,
Proceedings FOCS 24 (1983), 105-118;

[10] M. Bauderon and B. Courcelle, Graph expressions and graph rewritings, Math-
ematical Systems Theory 20 (1987), 83-127;

[11] M.W. Bern, E.L. Lawler, and A.L. Wong, Linear Time Computation of Optimal
Subgraphs of Decomposable Graphs, Journal of Algorithms 8 (1987), 216-235;

14

[12] L.W. Bineke and R.E. Pippert, Properties and characterizations of k-trees, Math-
ematica 18 (1971), 141-151;

[13}] H.L. Bodlaender, Classes of graphs with bounded tree-width, RUU-CS-86-22
(1986);

[14] H.L. Bodlaender, Planar graphs with bounded tree-width, Bull. EATCS (1988);

[15] H.L. Bodlaender, NC-algorithms for graphs with small tree-width, Proceedings
of the Workshop on Graph-Theoretic Concepts in Computer Science WG-88,
Springer-Verlag Lecture Notes in Computer Science 344 (1988), 1-10;

[16] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, Proceedings of the Scandinavian Workshop on Algorithm

Theory, Springer-Verlag, Lecture Notes in Computer Science 318 (1988), 223-
232;

[17) H.L. Bodlaender, Dynamic programming on graphs with bounded tree-width,
RUU-CS-87-22, Proceedings of ICALP’88, Springer-Verlag Lecture Notes in
Computer Science 317 (1988), 105-118;

[18] R.B. Borie, R.G. Parker, and C.A. Tovey, Automatic generation of linear al-
gorithms from predicate calculus descriptions of problems on recursively con-
structed graph families, manuscript (July 1988);

[19] H. Buer and R.H. Méhring, A fast algorithm for decomposition of graphs and
posets, Math. Oper. Res. 8 (1983), 170-184;

[20] N. Chandrasekharan and S.T. Hedetniemi, Fast parallel algorithms for tree de-
composing and parsing partial k-trees, Proceedings of 26 Annual Allerton Con-
ference in Communications, Control, and Computing (1988),;

[21] N. Chandrasekharan, S.T. Hedetniemi, and T.V. Wimer, A method for obtaining
difference equations for the number of vertex subsets having a given property in
restricted k-terminal families of graphs, manuscript (October 1988);

[22] N. Chandrasekharan and S.S. Iyengar, NC algorithms fr recognizing chordal
graphs and k-trees, IEEE Trans. on Computers 37 (1988), 1170-1183;

[23] D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible
graphs, Discrete Applied Mathematics 3 (1981), 163-174;

15

[24] B. Courcelle, Some applications of logic of universal algebra, and of category
theory to the theory of graph transformations, Bull. EAT'CS (1988), 161-213;

[25] B. Courcelle, Recognizabilty and second-order definabilty for sets of finite graphs,
I-8634, Université de Bordeaux, (1987);

[26] B. Courcelle, The monadic second order logic of graphs I: recognizable sets of
finite graphs, I-8837, Université de Bordeaux (1988);

[27] B. Courcelle, The monadic second order logic of graphs I1I: tree-width, forbidden
minors and complexity issues, I-8852, Université de Bordeaux (1988);

[28] W.M. Cunningham, Decomposition of directed graphs, SIAM Journal of Alge-
braic and Discrete Methods 3 (1982), 214-228;

[29] W.M. Cunningham and J. Edmonds, A combinatorial decomposition theory,
Canadian J. Mathematics 32 (1980), 734-765;

[30] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961),
71-76;

[31] J.E. Doner, Decidability of the weak second-order theory of two succesors, No-
tices of the American Mathematical Society 12 (1966), 513;

[32] E.S. ElMallah, Decomposition and Embedding Problems for Restricted Net-
works, PhD. Thesis, University of Waterloo (1987);

[33] M.R.Fellows, N.G. Kinnersley, and M.A. Langston, Finite-basis theorems and a
computational-integrated approach to obstruction set isolation, Proceedings of
Computers and Mathematics Conference (1989);

[34] M.R.Fellows and M.A. Langston, Non-constructive advances in polynomial-time
complexity, Information Processing Letters 26 (1987), 157-162;

[35] M.R.Fellows and M.A. Langston, Non-constructive tools for proving polynomial-
time decidability, Journal of the ACM 35 (1988), 727-739;

[36] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific
Journal of Mathematics 15 (1965), 835-855;

[37) F. Gavril, Algorithms on clique separable graphs, Discrete Math. 19 (1977), 159-
165.

16

[38] M.C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press
(1980).

[39] A. Habel, Graph-theoretic properties compatible with graph derivations, Pro-
ceedings of WG-88, Springer-Verlag Lecture Notes in Computer Science 344
(1988), ;

[40] A. Habel, Hyperedge replacement: grammars and languages, Phd. Dissertation,
Bremen 1989;

[41] A. Habel and H.J. Kreowski, May we introduce to you: hyperedge replacement,
Proceedings of the 3rd International Workshop on Graph Grammars and their
Applications to Computer Science, Springer-Verlag Lecture Notes in Computer
Science 291 (1987), 15-26;

[42] M. Habib and R.H. Méhring, On some complexity properties of N-free posets and
posets with bounded decomposition diameter, Discrete Mathematics 63 (1987),
157-182;

[43] W. Hochberg and R. Reischuk, Decomposition graphs — a uniform approach

for the design of fast sequential and parallel algorithms on graphs, manuscript
(1989);

[44] D.S.Johnson, The NP-Completness column: an ongoing guide, Journal of Algo-
rithms 6 (1985), 434-451;

[45] D. Johnson, The NP-completeness column: an ongoing guide; Journal of Algo-
rithms 8 (1987), 285-303;

[46] Y .Kajitani, A.Ishizuka, and S.Ueno, A Characterization of the Partial k-tree in
Terms of Certain Structures, Proceedings of ISCAS ’85 (1985), 1179-1182;

[47] M. Klawe, D.G. Corneil, and A. Proskurowski, Isomorphism testing in hook-up
graphs, STAM Journal of Algebraic and Discrete Methods 3 (1982), 260-274;

[48] P.N. Klein, Efficient parallel algorithms for chordal graphs, Proceedings of the
29th Symposium on FoCS (1988), 150-161;

[49] C. Lauteman, Decomposition trees: structured graph representation and effi-
cient algorithms, Proceedings of CAAP’88, Springer-Verlag Lecture Notes in
Computer Science 299 (1988), 217-244;

L

[50] C. Lauteman, Efficient algorithms on context-iree graph languages, Proceedings
of ICALP’88, Springer-Verlag Lecture Notes in Computer Science 317 (1988),
362-378;

[51) T. Lengauer and E. Wanke, Efficient analysis of graph properties on context-free
graph languages, Proceedings of ICALP’88, Springer-Verlag Lecture Notes in
Computer Science 317 (1988), 379-393;

[62] A. Lingas and A. Proskurowski, Fast parallel algorithms for the subgraph homeo-
morphism and the subgraph isomorphism problems for classes of planar graphs,
UO-CIS-TR-87-12, University of Oregon, to appear in Theoretical Computer
Science (1989);

[53] A. Lingas and M.M. Syslo, A polynomial-time algorithm for subgraph iso-
morphism of two-connected series-parallel graphs, Proceedings of ICALP’SS,
Springer-Verlag Lecture Notes in Computer Science 317 (1988), 394-409;

[54] G.S. Lueker and K.S. Booth, A linear time algorithm for deciding interval graphs
isomorphism, Journal of the ACM 26 (1979), 183-195;

[55) S. Mahajan and J.G. Peters, Algorithms for regular properties in recursive
graphs, Proceedings of 25 Annual Allerton Conference in Communications, Con-
trol, and Computing (1987), 14-23;

[56] J. Matousek and R. Thomas, On the complexity of finding iso- and other mor-
phisms for partial k-trees, manuscript, (May 1988);

[57] J. Matousek and R. Thomas, Algorithms finding tree decompositions of graphs,
manuscript (May 1988);

[58] G.L.Miller and J.H.Reif, Parallel Tree Contraction and its Applications, Pro-
ceedings of the 26th FoCS (1985), 478-489;

[59] B. Monien and L.H. Sudborough, Bandwidth constrained NP-complete problems,
Proceedings of the 13th STOC (1981), 207-217;

[60] B. Monien, LH. Sudborough, and M. Wiegers, Complexity results for graphs
with treewidth O(logn), manuscript (1989);

(61) J.H. Muller and J. Spinrad, Incremental modular decomposition, Journal of the
ACM 36 (1989), 1-19;

18

[62] R.H. Méhring and F.J. Radermacher, Substitution decomposition for discrete
structures and connections with combinatorial optimization, Annals of Discrete
Mathematics 19 (1984), 257-356;

[63] J. Naor, M. Naor, and A.A. Schiffer, Fast parallel algorithms for chordal graphs,
SIAM Journal on Computing (1989);

[64] T.Politof, A~Y Reducible Graphs, Concordia University, Montreal, manuscript
(1985);

[65] A.Proskurowski, Centers of 2-Trees, Proceedings of the 2nd Combinatorial Con-
ference France-Canada, Annals of Discrete Mathematics 9 (1980), 1-5;

[66] A.Proskurowski, Separating subgraphs in k-trees: cables and caterpillars, Dis-
crete Mathematics 49 (1984), 275-285;

[67] N. Robertson and P.D. Seymour, Graph Minors, (series of 23 papers in varying
stages of editorial process, 1983-1988);

[68] D.J. Rose, On simple characterization of k-trees, Discrete Mathematics 7 (1974),
317-322;

[69] A. Rosenthal and J.A. Pino, A generalized algorithm for centrality problems on
trees, Journal of the ACM 36 (1989), 349-361;

[70] G. Rozenberg and E. Welzl, Boundary NLC grammars: basic definitions, normal
forms, and complexity, Information and Control 69 (1986), 136-167;

[71] P. Schefller, Linear time algorithms for NP-complete problems for partial k-trees,
R-MATH-03/87 (1987);

[72] P. Schefler and D. Seese, Tree-width and polynomial-time solvable graph prob-
lems, manuscript (1986);

[73] D. Seese, The structure of the models of decidable monadic theories of graphs,
Journal of Pure and Applied Logic (198x), ;

[74] D. Seese, Tree-partite graphs and the complexity of algorithms, Proceedings of
FCT-85, Springer-Verlag Lecture Notes in Computer Science 199 (1985), 412-
421;

[75] Y. Shibata, On the tree representation of chordal graphs, Journal of Graph
Theory 12 (1988), 421-428;

19

[76] A.O. Slisenko, Context-free grammars as a tool for describing polynomial sub-
classes of hard problems, Information Processing Letters 14 (1982), 52-56;

[77] M.M. Syslo, NP-complete problems on some tree-structured graphs: a review,
Proceedings of WG-83, Trauer Verlag (1984), 342-353;

[78] M.M. Syslo, A graph-theoretic approach to the jump number problem, in Graphs
and Orders, L.Rival, Ed., Reidel Dodrecht (1985), 185-215.

[79] K. Takamizawa, T. Nishizeki, and N. Saito, Linear-time Computability of Com-
binatorial Problems on Series-parallel Graphs, Journal of the ACM 29 (1982),
623-641;

[80] R.E. Tarjan, Decomposition by clique separators, Discrete Mathematics 55
(1985), 221-232;

(81} J.W. Thatcher and J.B. Wright, Generalized finite automata theory with an

application to a decision problem in second-order logic, Mathematical Systems
Theory 2 (1968), 57-81;

{82] T.V. Wimer, Linear algorithms on k-terminal graphs, PhD. Dissertation, Clem-
son University (August 1988);

[83] T.V. Wimer and S.T. Hedetniemi, k-terminal recursive families of graphs, Pro-
ceedings of 25th Anual Conference on Graph Theory, Utilitas Mathematica,
Winnipeg, Congressus Numerantium 63 (1988), 161-176;

[84] T.V. Wimer, S.T. Hedetniemi, and R. Laskar, A methodology for constructing
linear graph algorithms, Clemson University, TR-85-SEP-11, (September 1985);

[85] P. Winter, Steiner problem in networks: a survey, Networks 17 (1987), 129-167;

20

