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Abstract

We exhibit the fine structure of graphs of path-width k as partial graphs of
restricted k-trees that are a generalization of caterpillars.

1 Motivation

For a fixed value of the integer parameter k, partial k-trees are exactly subgraphs of
those chordal graphs that have at most k+1 completely interconnected vertices (see,
for instance, {1,7,12]). Thus, partial 1-trees are the acyclic graphs (forests), and partial
9.trees are the series-parallel graphs (graphs with no K4 minors or homeomorphs).

The class of partial k-trees is identical to the class of graphs of tree-width k [9)].
Although replacing ‘tree’ by ‘path’ in the above statement does not carry through,
we exhibit a relationship between the notion of k-path and path-width k. A k-
path has exactly two k-leaves, and the path-width of a graph is defined by a similar
modification of the tree-width concept. The path-width can be shown to be one less
than the search number of the graph, defined through a variant of the graph searching
game (cf. [6]).

Partial k-trees have been in the focus of attention in recent years because of their
interesting algorithmic properties. Namely, for a large number of inherently difficult
(on general graphs) discrete optimization problems, partial k-trees admit a linear
time solution algorithm when the value of & is fixed and any partial k-tree is given
with its k-tree embedding, [2,11].



2 Definitions and terminology

We will use standard graph theory terminology, as found, for instance, in Bondy and
Murty {4]. First, we will define some basic concepts.

A walk is a sequence of vertices such that every two consecutive vertices are ad-
jacent. If all the vertices are different, we have a path. A walk forms a cycle if only
its first and last vertices are identical. A set of k vertices, every two of which are
adjacent, is called a k-clique. A (minimal) subset of vertices of a graph such that
their removal disconnects the graph is a (minimal) separator. A k-tree is a connected
graph such that every minimal separator is a &-clique [10). Equivalently, the complete
graph on k + 1 vertices (K1) is a k-tree, and any k-tree with more vertices, say n,
can be constructed from a k-tree with n — 1 vertices by adding a new vertex adjacent
to all vertices of a k-clique of that graph. In this new graph, the added vertex is a
k-leaf. A partial k-tree is any subgraph of a k-tree.

A k-path is a k-tree that has exactly two k-leaves. A partial k-path is a partial
subgraph of a k-path. A k-path has exactly k vertex-disjoint paths connecting the
two k-leaves.

A caterpillar is a tree that can be partitioned into two subgraphs: the body, which
is a path, and hairs, which are leaves adjacent to vertices of the body. Proskurowski
[8] generalized this notion to k-trees by defining a k-caterpillar as a k-tree that can
be likewise partitioned into the body, which is a k-path and hairs, which are k-leaves,
each adjacent to all & vertices of a minimal separator of the body. We have the
following relation between k-caterpillars and k-paths.

Theorem 1(Proskurowski [8]): The union of k-complete graphs induced by the min-
imal separators of a k-path is a k-caterpillar. »

The tree-width of a graph G is defined as the smallest width of a tree decomposition
of G. A tree-decomposition of a graph G = (V, E) is given by a family of vertex
subsets N = {V;,...,V,} and a tree T = (N, E’) such that end vertices of an
edge of E are in a common subset and if v € V; N V; then v occurs in every set
on the path from V; to V; in T. The width of the tree decomposition is one less
than the maximum cardinality of the Vis. Path decomposition and path-widih are
defined similarly to the tree decomposition and tree-width, with T restricted to a path
instead of a general tree. This parameter of a graph is closely related to the search
number of the graph defined as follows: Markers (‘searchers’) are being placed on and
removed from vertices of a graph. Initially, all edges are considered contaminated.
An edge is decontaminated if the markers are placed on its end vertices. It remains



decontaminated unless it becomes recontaminated when a marker is removed from
a common end vertex of an adjacent contaminated edge. The search number of a
graph is the minimum number of markers necessary to decontaminate all edges. This
definition is one of several variants of the search game, see for instance [6].

3 The main result

In an alternative view of the graph searching process, we can restrict markers to be
moved, coupling a removal of a marker with its immediately following placement.
This view defines sets of vertices of the same size, so that all edges are covered in a

manner prescribed by the path decomposition. Indeed, the following statement can
be inferred from [3].

Theorem 2: The path-width of a graph is one less than its search number.

Proof: Given a path decomposition of a graph G = {V, E) with the vertex sets
Vi, Vil £ k+1,1 <7 < m and path edges (V;, Vig1),1 £ ¢ < m, define the following
search strategy: Beginning with i = 1, place markers on vertices of V; decontam-
inating the induced edges of G. Removing markers from vertices not in Viy; does
not recontaminate any edges; iterate this step incrementing ¢ until all the edges are
decontaminated. No more than k& + 1 markers (the size of the largest set V;) will be
used.

For the proof in the other direction we have to invoke the existence of a search
strategy with & 4+ 1 markers without recontamination (cf. [3]). In this ‘monotone’
search, once a marker is removed from a vertex it will never be placed on this vertex
again to decontaminate an edge. During such a search of a graph G with search
number k + 1, define time instances 7,1 < ¢ < m, just after 2 marker is moved. Let
the marked vertex set at time instance i be W;. (Wj is defined as the initially marked
set of k + 1 vertices.) The sets W; define a path decomposition of G of width .
Indeed, each edge of G is between the vertices of some W; and for the path with
edges (W;,Wiy1),0 < i < m, the monotone search strategy ensures the intersection
property. =

We are now able to use the above concepts to exactly characterize the structure
of path-width k graphs (those searchable with k 4+ 1 guards).

Theorem 3: A graph has path-width <k if and only if it is a partial k-caterpillar.
We will prove this statement with the help of two lemmata.

Lemma 1: Any k-caterpillar has path-width k.
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Proof: Consider a k-caterpillar C' and its (k + 1)-cliques V; in the order from one
end of ‘the body’ to the other (the cliques involving hairs and sharing one k-clique
ordered arbitrarily). The graph T = (N, E') with N = {V;} and E' = {(V;, Vi41)} is
a path and represents path decomposition of C of width k. =

Lemma 2: Maximal graphs of path-width k are exactly k-caterpillars.

Proof: Consider the path T = (N, E'} that represents a path decomposition of
width k of a graph G = (V, E). Wlog., we can assume that the vertex sets V;,1 < <
m (the nodes of T') are all of order k + 1. We claim that the graph C = (V, E") is a
k-caterpillar, where E" = {(u,v) : Ji(u,v € V})}.

Let us order the vertices of G by defining {v;} = V. — Viy;,1 < i < m, and
{va} = Vi — Va_1. The remaining vertices of V;, can be numbered arbitrarily as
U ...,Un—1. Notice that the numbering is well defined since (V; — Vi) NV; = @
for j > ¢+ 1,1 < i < m. The construction of C from V,, by adding vertices in
order vp,_;...,v ensures that C is a k-tree, since each new vertex v; is adjacent
to all vertices (call this set W;) of a K subgraph of the existing k-tree. What
more, W; constitutes a minimal (v;,v.)-separator: By the intersection property of
path decomposition, W; contains some vertices of every path connecting vertices
{vn,+..,vi} — W; with {vi_y,...,1}. Thus, C is a caterpillar. =

4 Conclusions

Analysis of minimal separating subgraphs in a k-path lead us to a characterization of
graphs with bounded path-width. Since every such graph defines a (k + 1)-path via
its embedding in a k-caterpillar, we obtain an interesting relation between the param-
eters, possibly helpful in analysis of a graph’s connectivity (alternative description of
a set of vertex-disjoint connecting paths).
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