OREGAMI: Tools for Mapping
Parallel Computations to
Parallel Architectures

Virginia Lo, Sanjay Rajopadhye, Samik Gupta,
David Keldsen, Moataz Mohamed, Bill Nitzberg,
Jan Telle, and Xiaoxiong Zhong

CIS-TR-89-18a
Revised April 1, 1992

Department of Computer and Information Science
University of Oregon

e

OREGAMI: Tools for Mapping Parallel Computations to Parallel
Architectures*

Virginia M. Lo} Sanjay Rajopadhye!

Samik Gupta, David Keldsen, Moataz A. Mohamed?
Bill Nitzberg, Jan Arne Telle, and Xiaoxiong Zhong
Dept. of Computer and Information Science
University of Oregon
Eugene, Oregon 97403-1202
503-686-4408
lo@cs.uoregon.edu

Keywords: mapping, routing, embedding, task assignment,
regular parallel computations, parallel programming environments

Abstract

The OREGAMI project involves the design, implementation, and testing of algorithms
for mapping parallel computations to message-passing parallel architectures. OREGAMI
addresses the mapping problem by exploiting regularity and by allowing the user to guide
and evaluate mapping decisions made by OREGAMU’s efficient combinatorial mapping al-
gorithms. OREGAMI's approach to mapping is based on a new graph theoretic mode] of
paralle] computation called the Temporal Communication Graph. The OREGAMI software
tools includes three components: (1) LaRCS is a graph description language which allows
the user to describe regularity in the communication topology as well as the temporal com-
munication behavior (the pattern of message-passing over time). (2) MAPPER is our library
of mapping algorithms which utilize information provided by LaRCS to perform contraction,
embedding, and routing. (3) METRICS is an interactive graphics tool for display and analy-
sis of mappings. This paper gives an overview of the OREGAMI project, the software tools,
and OREGAMI's mapping algorithms.

*This research was sponsored by Oregon Advanced Computing Institute, a consortium of academic, industrial,
and government agencies in the state of Oregon.

'Partially supported by NSF grant CCR-8808532

!Partially supported by NSF grant MIP-8802454

$Currently with MIPS Computer Systems, Sunnyvale, CA.

1 Introduction

The mapping problem in message-passing parallel processors involves the assignment of tasks in
a parallel computation to processors and the routing of inter-task messages along the links of the
interconnection network. Most commercial parallel processing systems today rely on manual task
assignment by the programmer and message routing that does not utilize information about the
communication patterns of the computation. The goal of our research is eutomatic and guided
mapping of parallel computations to parallel architectures in order to achieve portability and to
improve performance.

The OREGAMI! project involves the design, implementation, and testing of mapping al-
gorithms. OREGAMI’s approach to mapping is based on (1) its use of a new graph theoretic
model of parallel computation which we call the Temporal Communication Graph, and (2)
its exploitation of regularity found in the structure of parallel computations and of the target
architecture.

We are concerned with the mapping of parallel computations which are designed by the
programmer as a collection of communicating parallel processes. We note that many practical
parallel computations are characterized by regular communication patterns, This regularity
occurs both in the topological communication structure of the computation (which tasks send
messages to whom) and in the temporal communication behavior exhibited by the computation
(the patterns of message-passing phases over time). Furthermore, the programmer has explicit
knowledge of this regularity because it forms the basis of the logical design of her/his computa-
tion. While the general mapping problem in its many formulations is known to be NP-hard, it
has been shown that restriction of the problem to regular structures can yield optimal solutions
or good suboptimal heuristics for mapping.

OREGAMI addresses the mapping problem by exploiting regularity whenever possible, and
by allowing the user to guide and evaluate mapping decisions made by OREGAMI'’s mapping
algorithms. Qur mapping system balances the user’s knowledge and intuition with the compu-
tational power of efficient combinatorial mapping algorithms.

The contributions of the OREGAMI project include:

e The TCG model of parallel computation and the LaRCS graph description
language. The TCG model is a new graph theoretic model of parallel computation
designed for the purpose of mapping. The TCG can be seen as an augmented version of

1For University of OREGon’s techniques for elegant symmetric contractions which resemble the art of
oriGAMI paper folding.

Lamport’s process-time graphs. The TCG integrates the two dominant models currently
in use in the areas of mapping and scheduling: the static task graph and the DAG.
LaRCS (Language for Regular Communication Structures) is a graph description language
which provides the user with the ability to describe the parallel computation’s TCG in a
natural and compact representation. LaRCS provides the capability to identify logically
synchronous phases of communication, and to describe the temporal behavior of a parallel
computation in terms of these phases in a notation called phase expressions.

¢ Mapping algorithms which exploit regularity to yield high performance map-
pings. Qur mapping algorithms utilize the information provided by LaRCS to achieve
mappings that are an improvement over uninformed mapping in two ways: the mapping
algorithms themselves are efficient and the resultant mappings are optimal or near optimal
based on a variety of standard performance metrics.

s The OREGAMI software tools. The OREGAMI tools include the LaRCS compiler;
MAPPER, a library of mapping algorithms; and METRICS an interactive graphics tool
for display and analysis of OREGAMI mappings.

OREGAMI is designed for use as a front-end mapping tool in conjunction with parallel
programming languages that support explicit message-passing, such as OCCAM, C*, Dino
(34], Par [13], and C and Fortran with communication extensions. The underlying architec-
ture is assumed to consist of homogeneous processors connected by some regular network
topology, with current focus on the hypercube, mesh, and deBruijn topologies. Routing
technologies supported by OREGAMI include store-and-forward, virtual cut-through, and
wormhole routing. Systems such as the Intel iWarp, Intel iPSC machines, NCUBE hy-
percubes, and INMOS Transputer are candidates for use with OREGAMI. Note, however,
that OREGAMI is a front-end mapping interface and generates symbolic mapping direc-
tives only. Development of back-end software to transform OREGAMI mapping directives
to architecture dependent code is beyond the current scope of our work.

This paper provides an overview of the OREGAMI project and software tools. Section
2 discusses the formal foundations underlying OREGAMI’s approach to mapping and related
research. Section 3 describes the components of OREGAMI: LaRCS, MAPPER, and METRICS,
and traces its operation with an illustrative example. Section 4 briefly illustrates how the
individual mapping algorithms that we have developed for OREGAMI exploit regularity. Section
5 discusses areas of on-going and future work on this project.

2 Formal Foundations and Related Research

2.1 Formal Foundations: the Temporal Communication Graph

The foundations for the OREGAMI system lie in a new graph theoretic model of parallel compu-
tation we have developed called the Temporal Communication Graph and its ability to capture
regularity for purposes of mapping. Both the TCG and its forerunner, the classic static task
graph of Stone [42], are designed for systems in which the programmer designs his or her pro-
gram as a set of parallel processes that communicate through explicit message passing. The
identity of all of the processes is known at compile time, and all processes exist throughout the
lifetime of the parallel computation.

The TCG was designed to enrich the static task graph model and to provide a means for
describing regularity in the structure of the parallel computation for the purpose of mapping.
Specifically,

e The TCG integrates three important graph theoretic models of parallel com-
putation: Lamport’s process-time graphs, the static task graph, and the DAG.
The TCG combines the two predominant models currently in use in the areas of mapping,
task assignment, partitioning, and scheduling: the static task graph and the precedence-
constrainted DAG. The integration of these two models enables a wide spectrum of al-
gorithms to be used for mapping and scheduling which could not otherwise be invoked
because of incompatibilities in the underlying graph theoretic models. In addition, the
compatibility of the TCG with Lamport’s process-time graphs makes it useful as a unified
abstraction in parallel programming environments for program development, debugging,
and performance evaluation as well as for mapping and scheduling.

¢ The ability of the TCG and the LaRCS graph description language to describe
regularily facilitates the development and use of specialized mapping algorithms
which exploit regularity to yield improved performance. The TCG and LaRCS
are capable of representing regularity both in the communication topology and in the

temporal patterns of message passing over time.

2.1.1 Informal Description of the TCG

In this section, we give an intuitive description of the TCG. A formal definition of the TCG is
given in [24] which also defines the formal semantics of LaRCS in terms of the TCG. Consider
each individual process comprising the parallel computation. The activity of a given process

p; can be seen as a sequence of atomic events, where each event is either a computation event
or a communication event (sending a message/receiving a message). The TCG is a DAG in
which each atomic event (compute, send, or receive) is represented as a node. The sequence of
atomic events on p; is represented as a linear chain of nodes, with directed edges indicating the
precedence relationship between the events. A message-passing event from process p; to process
p; is represented with a directed edge from the send-event node on p; to the corresponding
receive-event node on p;.

The TCG can thus be seen as an unrolling of the static task graph over time. Conversely,
the projection of the TCG along the time axis yields the static task graph model. Weights
associated with the nodes and edges can be used to represent computation and communication
costs, respectively. Note that the TCG also can be viewed as a graph theoretic representation
of Lamport’s process-time diagrams [21] augmented with weights and colors. The coloring of
the Lamport process-time graph is described in [24] and involves the identification of logically
synchronous communication and computation phases as described in the next section.

Figure 1 shows the TCG for a parallel algorithm for the n-body problem which was designed
for the Cosmic Cube [38]. This algorithm will be used as an example later in the paper to
illustrate the use of the OREGAMI mapping tools.

As discussed earlier, the TCG can be seen as a hybrid of the two predominant models of
parallel computation: the static task graph model of Stone [42], and the precedence-constrained
(DAG) model [30] used in multiprocessor scheduling and in the parallelization of sequential
code. Task assignment and scheduling research utilizing these two models has more or less
followed disjoint paths over the past two decades, in that techniques and algorithms developed
for one model have not been applicable to the other. The TCG model is compatible with both
of these existing models. Thus algorithms for static task assignment such as [8] [6] [23], [36] and
scheduling algorithms for precedence-constrained graphs such as [30] [9] can be applied to the
TCG model. The contribution of the TCG is that it augments these two models with the ability
to explicitly capture regularity, allowing the development of specialized mapping and scheduling
algorithms to exploit this regularity.

The TCG is also capable of modeling computations of arbitrary granularity, characterized
by irregular and asynchronous communication. We note that the TCG does not model non-
deterministic computations and dynamically spawned tasks. More information about the TCG
model and its use in parallel programming environments can be found in [24].

— ring

—_— chordal

(a} 7-body static graph {b) TCG of 7-body

The n-body problem requires determining the equilibrium of n bodies in space (where
n is odd) under the action of a (gravitational, electrostatic, etc.) field. This is done
iteratively by computing the net force exerted on each body by the others (given their
“current” position), updating its location based on this force, and repeating this until
the forces are as close to zero as desired. The parallel algorithm presented by Seitz uses
Newton's third law of motion to aveid duplication of effort in the force computation. It
consists of n identical tasks, each one responsible for one body. The tasks are arranged
in a ring and pass information about their accumulated forces to its neighbor around the
ring. After (n — 1)/2 steps, each task will have received information from half of its
predecessors around the ring. Each task then acquires information about the remaining
bodies by receiving a message from its chordal neighbor halfway around the ring. This
is repeated to the desired degree of accuracy.

Figure 1: Temporal communication graph for the n-body algorithm

2.1.2 Describing Regularity in the TCG

We note that many practical parallel algorithms involve one or more phases of communication.
These phases are often characterized by regularity in the communication topology, i.e., the static
task graph is a known graph structure such as a mesh, a tree, etc. In addition, these algorithms
also exhibit regularity in the temporal communication behavior (the patterns of message passing
phases that are active over time).

A compute phase corresponds to a set of nodes in the TCG (compute events) that are involved
in logically synchronous computation. A communication phase corresponds to a set of edges
(sender/receiver pairs) in the TCG that are involved in logically synchronous communication.
By logically synchronous we mean that at run time the activities occur simultaneously from the
viewpoint of the programmer, i.e. from the logical structural design of the algorithm.2

These phases are identified using a node labeling scheme for each process. Each communi-
cation phase can then be described by a communication function whose domain and range are
process node labels. For example, a ring of communicating processes can be described as ring:
forall i in 0..n-1 = i4+1 mod n where we assume the processes are labeled sequentially from 0 to
n-1. In LaRCS, a notation called phase expressionsis used to describe the temporal behavior of
the parallel computation in terms of its compute phases and communication phases. In addition,
LaRCS allows the user to describe families of regular graphs in a parameterized notation whose
size is independent of the size of the task graph. The LaRCS description of the n-body algorithm
and further details about LaRCS are described in the next section.

2.2 Related Research

As an integrated set of tools for mapping, OREGAMI is similar in many respects to Francine
Berman’s Prep-P System [4] [6]. Both Prep-P and OREGAMI provide a graph description lan-
guage for describing the communication structure of the parallel computation. Prep-P's GDL
language is based on the static task graph model of parallel computation and is embedded within
the system’s parallel programming language XX. LaRCS is based on our TCG model, which aug-
ments the static task graph with temporal information. The LaRCS specification is independent
of any specific parallel programming language and is coded separately by the programmer. Prep-
P is a fully integrated system: Prep-P mappings are targeted for the CHiP reconfigurable parallel
architecture [39] and Prep-P currently generates code that runs on the CHiP simulator known

2n reality, when the program executes, the timing of logically synchronous activities may not be synchronous
with respect to real time, due to effects such as the hardware characteristics of the execution envirenment and
the multiplexing of processes on the processors.

as Poker. OREGAMI also is related to the TMAP mapping tool, a component of the TIPS
transputer-based interactive parallelizing system [45]. TMAP is an adaptation of Prep-P for the
transputer architecture. As discussed in the introduction, OREGAMI is currently a front-end
mapping tool and only generates symbolic mapping directives.

OREGAMI is also related to a number of mapping and scheduling systems that utilize
the classic DAG model of parallel computation such as CODE/ROPE [10], TaskGrapher [14],
Polychronopoulos [31] and Sakar [37]. These systems differ from OREGAMI, Prep-P, and TMAP
because they are designed for the purpose of parallelizing sequential code.

The OREGAMI mapping algorithms take the approach of many researchers who have at-
tacked the mapping problem by exploiting the regularity found in the computation graph and/or
the interconnection network. A large body of theoretical work on graph embeddings has yielded
1:1 mappings tailored for specific regular graphs; some of the more recent results are given in {33].
Many of these algorithms have or will be included in the OREGAMI library. Edge grammars
[5] use formal language techniques to address the contraction of families of task graphs. Stone
and Bokhari [42], [8] use a variety of graph theoretic algorithms to address task assignment for
structures including trees, chains, and arbitrary task graphs. Work in the area of systolic arrays
has yielded elegant mapping techniques for computations whose data dependencies can be ex-
pressed as affine recurrences [32] [12). Related work in the area of application-dependent routing
includes [19] and [7]. Our mapping algorithms build on these foundations and utilize techniques
from group theory, graph theory, coding theory, and linear algebra. Other approaches to the
mapping problem include search algorithms, linear programming, and clustering algorithms.
These latter techniques typically do not exploit the regularity of the task graph.

The LaRCS language bears similarities to a number of graph description languages or config-
uration languages which have been developed for a variety of purposes in the area of parallel and
distributed computing. These include formal approaches such as edge grammars [5] and graph
grammars [20], [2], as well as more practical languages such as GDL [4], CONIC [28], GARP [20],
and ParaGraph {3]. Of these, LaRCS, edge grammars, and GDL were designed specifically to
address the mapping problem. LaRCS is unique in its ability to describe the temporal behavior
of parallel computations. A primitive form of phase expressions was introduced by [29).

From the viewpoint of support environments for parallel programming, OREGAMI belongs
to the family of systems which take a process-oriented view of parallel computation based on
explicit message-passing. Examples of such systems include Prep-P [4, 6], Poker [39, 41], ORCA
[40, 16], the Parallel Programming Environments Project [3], and TIPS [45]. OREGAMI and
Prep-P focus on the mapping problem. The other projects address the broader issues of program
design and development.

3 OREGAMI System Overview

This section describes the OREGAMI software tools and traces the use of these tools using the
n-body algorithm as an example. Figure 2 illustrates the three components of the OREGAMI
system.)

The user first describes his/her parallel computation in LaRCS, by specifying (a) the static
structure of the parallel computation graph using a node labeling scheme and simple communi-
cation functions, and (b) the temporal communication behavior of the computation using phase
expressions (notationally similar to regular expressions). The LaRCS specification is program-
independent, i.e., it can be used in conjunction with a variety of parallel programming languages
to provide information about regularity to be found in the communication structure of the com-
putation.

The LaRCS compiler translates the LaRCS code into an intermediate representation (an
abstract syntax tree). The intermediate code is translated into the form needed for specific
mapping algorithms, using OREGAMI utility functions to generate the desired data structures
for each algorithm, such as the TCG, the static task graph, static task graphs corresponding
to each communication phase, the individual communication functions, etc. The information is
used by the MAPPER and METRICS software to perform mapping and to display and analyze
the mapping, respectively.

The input to MAPPER includes the LaRCS description of the computation and a descrip-
tion of the target architecture which consists of the name plus parameters (e.g. hypercube of
dimension 4). MAPPER examines any regular properties specified in the LaRCS code and uses
one or more algorithms to do the mapping. These algorithms can be invoked automatically or
through user selection. Many parallel computations have well known communication structures
(such as trees, meshes, etc.) and the programmer may simply state this. OREGAMI has a
library of “canned” mappings for such computations, and generating it simply involves a lookup
in a library. Other algorithms may have a regular structure of a particular kind (such as node-
symmetric). For such computations, OREGAMI uses specialized algorithms which are often
extremely efficient. If no regularity can be exploited, efficient polynomial time algorithms are
used to perform the mapping in three steps - contraction, embedding, and routing.

Finally, the user may inspect the mapping using METRICS. METRICS is an interactive
graphics tool which displays the mapping along with a range of performance metrics reflecting
load balancing, communication contention, and communication overhead. METRICS also al-
lows the user to focus on specific processors or links and provides the opportunity for manual

modification of the mapping.

nbody{n, 5}

nodetype body
labels 0..n=1;

comtype ring_edge

v

PN AR AN AN AN
e NS S YA
LR RSO
F AL LaRCS PRV)
Walarn Compiler P
LSANENEN P LSRN
PN NN
AT R N N RN AN
AN N NN NN NN N INNN

/

PR T TR Y T T
P N A A e N NN A
NS TS
/"\I\ I\I\’\/
PN MAPPER |+ - ¢ -
WAl PE EUENEN
77 rAE I s
Vs RYENEN
PN AN N R R AN N
L Y ‘-\‘\)\’\J\J

LaRCS
+ Compact description
»+ Temporal behavior

* Regularity

MAPPER
+ Contraction
» Embedding
+ Routing

METRICS
- Graphical display
» Performance metrics

+ Fine Tuning by user

R R AL AN
LA S YL N T T TR T T T T]
s PR AP AT AT AP]
\I\I\l\ I\I\I\I
A S ME I R" S LA Y
LS LA
N NN ALY
LS £
AT Y ATATATATATA] AT
FAF I S I AT A R SR ST S A
LN NVl W Y T T . R

Figure 2: OREGANMII System Overview

The OREGAMI software tools are implemented in C for Sun workstations using Xlib, XtIn-
trinsic and the MIT Athena widget set. A new topology widget has been defined to display and
manipulate various architecture types and mappings to them.

OREGAMI has been tested with a wide variety of parallel algorithms including several
algorithms for matrix multiplication, fast Fourier transform, topological sort, divide and conquer
using binary tree, divide and conquer using binomial tree, simulated annealing, Jacobi iterative
method for solving Laplace equations on a rectangle, successive-over-relaxation iterative method,
perfect broadcast distributed voting, numeric integration, distributed dot product, five point
difference operation, Gaussian elimination with partial pivoting, matrix row rotation, and the
simplex algorithm.

The performance of the QREGAMI mapping algorithms was evaluated through analytic
proofs and through simulations. Simulations were performed using a library of C programs we
have developed which generate task graphs derived from actual parallel programs as well as
random task graphs and a non-backtracking branch and bound program to compute optimal

mappings.

3.1 LaRCS

A LaRCS program consists of the following major components: (a) the LaRCS nodetype decla-
ration which describes the processes, (b) the LaRCS comtype and comphase declarations which
are used as templates to describe the communication structure of the parallel program, and
(c) the LaRCS phase expression which describes the entire parallel program in terms of its
temporal computation and communication behavior. A comtype declaration describes a single
communication edge; a comphase describes a set of synchronous communication edges. A phase
expression instantiates all the edges of a parallel computation using the comtype and comphase
declarations, and describes the message-passing behavior of the computation over time. We note
that there is a distinction between “temporal communication behavior” (as used here) and dy-
namically evolving task graphs. In our model the entire graph is known statically. We describe
temporal behavior by identifying collections of edges that are “active” simultaneously, and by
the pattern of this activity.

Fig. 3 gives the LaRCS code for the n-body algorithm. The line numbers in the LaRCS code
are used for reference purposes only in the following commentary:

1. Name of algorithm and parameters. The parameters specify the size of this instance
of the parallel algorithm. The parameters for the n-body algorithm are n, the number of

10

LaRCS code for the n-body algorithm

N

nbedy(n,s)
attributes nodesymmetric;
nodatype body
labels 0..(n-1);
comtype ring_edge(i) body(i) => body((i+1) mod n);
volume = MSGSIZE;
comtype chordal_edge(i) body(i) => body((i+(n+1)/2) mod n);
volume = MSGSIZE;
comphase ring
forall i in 0..(n-1) {ring_edge(i)};
comphase chordal
forall i in 0..(n-1) {chordal_edge(i)};
phase_expr
{{ring |> compute}**(n-1)/2 |> chordal |> computel**s;

Figure 3: LaRCS code for the n-body algorithm

11

bodies, and s, the number of iterationsS.

2. Attributes. The programmer may specify global characteristics of the task graph, such

as nodesymmetric or planar.

3. Nodetype declaration. A nodetype is defined by giving it a name, specifying the
number of nodes, and specifying the node labeling. Node labels can be multi-dimensional
and parameterized. For the n-body algorithm there is one nodetype declaration of type
body. The nodes are labeled from 0 to n-1. If there is only one nodetype, the explicit

declaration may be omitted.

4. Comtype declaration. A .comtype specifies a single potential edge and can be parame-
terized. In both comtype and comphase declarations the symbol => denotes unidirectional
message passing and <=> denotes bidirectional message passing. In Fig. 3, there are two
comtype declarations: ring_edge and chordal_edge. The volume field of the comtype
declaration is an expression which specifies the message volume (typically in bytes) of a

single message transfer.

5. Comphase declaration. A comphase identifies a potential set of edges involved in
synchronous message passing, usually by specifying a set of values for the parameter(s) of
one or more comtypes. The comphase declaration may itself be parameterized and these
parameters are later instantiated within the phase expression. In the n-body algorithm
there are two comphase declarations: ring and chordal.

6. Phase expression. The phase expression describes the temporal behavior of the com-
putation in terms of its communication phases. Phase expressions are defined recursively

below where r and s are phase expressions.

¢ compute is a keyword phase expression denoting a computational phase of activity.
¢ a single comphase is a phase expression.

e sequence: r |> s is a phase expressions which denotes sequential execution of the

phases.

e sequential repetition: r ** expr is a phase expression denoting repeated execution of
r a number of times specified by arithmetic expression expr.

3Gince LaRCS is intended for static mapping, we require an estimate of the run-time parameter, s.

12

o sequential loop: for var = range { r } is a phase expression denoting repeated
execution of r a number of times specified by range, where var is a formal parameter
in ».

¢ parallelism: » || s is a phase expression denoting parallel execution of phases r and

S.

¢ parameterized parallelism: forall var in range { r } is a phase expression denoting
parallel execution of phases in r, where var appears as a parameter in r.

Only expressions derived by a finite application of these rules are phase expressions. A
precise definition of the semantics of phase expressions is given in [24].

3.1.1 The Benefits of LaRCS for Mapping

LaRCS plays a critical role in QREGAMI by (1) providing information about the regular struc-
ture of the parallel computation through the comphase declarations and the phase expression;
and (2) by serving as an efficient representation of families of regular computation graphs whose
size is independent of the size of the actual instantiated grapl. The LaRCS compiler translates
the LaRCS code into intermediate code (an abstract syntax tree) representation of the compu-
tation to be mapped. This intermediate representation can then be translated into the form
needed for specific OREGAMI mapping algorithms such as the TCG, the static task graph for
the whole computation, or the static task graph for a single comphase. OREGAMI provides a
set of utility functions to generate specific data structures for these graphs such as an adjacency
matrix, given the parameters that instantiate the size of the problem instance.

An example of the use of the LaRCS phase expression in mapping is described below.
Further examples of the benefits of LaRCS for mapping are described in Section 4.

Most existing mapping algorithms, including several in OREGAMI, utilize the static task
graph and require an estimate of communication volume (edge weights.) Current techniques
for computation of edge weights include profiling, user estimates, and compiler analysis of the
program code. In OREGAMI, the phase expression can be used to derive an arithmetic formula
for calculation of communication volumes given the unit volume associated with a single message.

The LaRCS comtype-declaration’s volume field is typically initialized to the number of bytes
sent in a single message of that comtype. I'or example, based on the code for the n-body algorithm,
the volume for the comtype ring is 108 bytes. This value would be specified by the user in the
LaRCS code. The phase expression can be used to compute the total communication volume
for each communication edge in the static task graph by multiplying the unit volume times the
number of iterations derived from the phase expression. Thus, the total communication overhead

13

for a ring edge of the n-body algorithm is equal to 108 x n x s, where n and s are parameters
instantiated at compile time.

At this stage in OREGAMI's development, the unit volume and all parameters must be
expressed as integer constants; the phase expression then drives the calculation of the total
communication volume for each comphase and for the complete static task graph. In the future,
we will be expanding our system to accept volume declarations in terms of imported variables
from the host language. This extension relieves the programmer of the burden of counting up the
number of bytes in a message involving complex data structures and/or multiple data structures.
In addition, we will examine the feasibility of mapping which utilizes volume ezpressions with

uninstantiated variables.

3.2 MAPPER

In OREGAMI, mapping is usually achieved in three steps: contraction of the task graph to a
smaller graph (in cases where the number of tasks exceeds the number of processors), embedding,
assignment of the contracted clusters of tasks to processors, and routing of the messages through
the interconnection network in order to minimize contention. Our mapping algorithms fall into

three groups.

¢ Class I: Canned mapping algorithms for computations whose communication topology
matches well-known graph families such as binary trees, binomial trees, rings, etc. Map-
pings for these computation structures for the hypercube, mesh, and deBruijn networks
have been developed a priori using human ingenuity. Canned mappings are stored in a
library and retrieved given the name and parameters of the computation graph and the
network graph.

s Class II: Mapping algorithms for computations for which the regularity is expressed in
LaRCS code. The mapping algorithms use techniques tailored for the specific regular
properties captured by LaRCS.

o Class III: Mapping algorithms for arbitrary computations. Heuristic algorithms are used
to compute the mapping in cases when no regularity can be exploited.

Figure 4 shows the organization of MAPPER and Table II summarizes the mapping al-
gorithms we have developed, giving the general approach used, the performance results, and
references to the relevant papers. These algorithms are describe in more detail in Section 4.
OREGAMI is periodically updated with new mapping algorithms, including those developed by

other researchers as well.

14

MAPPER ALGORITHMS
Pael CONtraction
embedding
routing

grouping the tasks into clusters such that
the number of clusters <= number of processors

assignment of clusters to processors

assignment of communication edges in the
task graph to links in the network

B mapping contraction + embedding + routing
Class |l Class Il
regular task graph 7 arbitrary task graph
1222222222000 1222222000000
¢ €64 4 ¢
- ¢ o
9@ specialized &4 graph
>4 2| algorithms theoretic
.20 & algorithms (&8
16990 ¢4 000 & ¢ 900040400
reessasane2 >000000000¢
Class |

named task graph

canned
nearest

neighbor
gready

mappings

\\\\\\{\\\ﬁ
\

NEIN
N

routing
algorithms

Figure i: MAPPER contraction. embedding, routing

15

3.3 METRICS

The METRICS software allows the user to view and modify the mapping and routing produced
by OREGAMI, while computing a wide range of performance metrics (see table below). MET-
RICS is designed to display the mapping in a clear, logical, and intuitive format so that the user
can evaluate it quantitatively (through well-known empirical performance metrics) as well as
visually (through the use of colors and spatial layout, particularly when the computation graph
exhibits regularity). METRICS is also designed to be interactive to allow the user to manually
modify the mapping produced by the OREGAMI software. The target architectures currently
supported by METRICS include the mesh and hypercube. METRICS supports analysis for
three routing schemes: store-and-forward, virtual cut-through, and wormhole routing.

3.3.1 METRICS Displays

METRICS uses multiple windows to organize information into three selectable objects: the
computation object, the architecture object, and the mapping object. Additionally, three subviews
of the mapping object allow the user to focus on a specific processor, a specific link, or a single
communication phase. Information from each of these objects and subviews is presented through
three windows: text window, graphics window, and metrics window. (See Figure 5.)

The computation object corresponds to the parallel computation before mapping. The LaRCS
program code is displayed in the text window. If the user selects the spatial perspective, the
graphics window displays the computation’s TCG as a static task graph. By default, the processes
of the static task graph are laid out as a ring, but if a predefined computational structure, such
as a tree, was specified by the LaRCS code, the graph will be displayed using the display
semantics specific to that structure. The user may also view the computation as a DAG by
selecting the temporal perspective. Communication phases are distinguished by color. The
metrics window displays performance metrics such as the number of processes, the number of
phases, the communication matrix with estimated message volume between processes (per phase
and for the entire computation), and the execution matrix with estimated execution time of the
processes.

The architecture object corresponds to the target machine. topology. The text window shows
the name of the architecture, size parameters, routing scheme (store-and-forward, virtual cut-
through, or wormhole), including values for channel bandwidth, message startup time, and
message switching time. The graphics window displays a graphic representation of the bare
The metrics window shows an adjacency matrix representation of the network topology, network
metrics such as diameter and degree, and architecture characteristics such as channel bandwidth

16

METRICS Mapping Graphics

(‘Fie) (Mode) (ovject)

[Compmallon
—] Architeciure
A Mapping oo
Processor
Link

Selecti Phase

Hypercube Display of

e Full Mapping
Textual Description
of Mapping
Zoom Dimension Mask
T
L - [o [+ |

Mapping Metrics

Metrics of Mapping

Figure 5: METRICS overview

17

and message-startup time.

The mapping object corresponds to the full computation as it is mapped onto the complete
architecture. The text window identifies whicli processor each process is assigned to and enu-
merates each message routing as a list of processor elements. The graphics window displays
the topology, with each process displayed in the appropriate processor element and messages
rendered as edges, color-coded by phase. This view allows the user to rearrange the mapping by
clicking on and dragging processes onto other processor elements. Selectable mapping metrics
include processor task load, processor execution load, message dilation, link contention, and link
communication volume, and latest finishing time (see Table I). Metrics are displayed as bar
graphs, color-coded communication matrices, and color-coded topology views (see Figure 6).

The processor subview allows the user to examine a single processor and the set of processes
mapped to it in detail. These windows show a graphic representation of the processor element, as
well as the following metrics: task load, execution load, and comparisons to the global average.

The link subview focuses on a single architecture link connecting two adjacent processors,
displaying the messages routed over that link. The link metrics include the total contention in
messages and in communication volume, and a comparision to global averages.

The phase subview allows the user to examine a single communication phase in detail. The
text window displays the LaRCS code for the communication phase, while the graphics window
shows the topology and the mapped computation for the specified phase. Performance metrics
for phases include those displayed for a complete mapping object.

The phase expression drives the calculation of completion time in a manner similar to the
calculation of communication volume described above. Our current definition of completion
time presumes barrier synchronization between phases in order lo simplify the calculation of
this metric. However, neither the architecture nor the the parallel computation are constrained
to execute with global synchronization between phases. The calculation of completion time of
each phase on each processor takes into account the multiplexing of processes and the overhead
of message passing including dilation, and contention. The computation of dilation and con-
tention are based on the specific communication technology used for message-passing, taking into
account message startup and switching times. METRICS currently models store-and-forward

and wormbhole routing.

18

OREGAMI METRICS Performance Metrics

Metric

Description

Processor Task Load

Number of tasks per processor
Non-zero-avg, avg, max, non-zero-min, min

Processor Execution Load

Sum of execution costs (node weights) per processor
NOon-zero-avg, avg, max, non-zero-min, min

Dilation Number of hops spanned by a communication edge
NoN-zero-avg, avg, max, non-zero-min, min
Contention Sum of communication costs (edge weights) per link

non-zero-avg, avg, max, non-zero-min, min

Kandlur/Shin metric

Weighted sum combining dilation and contention

T(R) = ZeéE(EmEAJ,cER(m) ”{(m))Z

where, T(R) is the cost of the routing function R, F is the set
of links in the architecture, Af is the set of messages, and
W(z) is the weight of a message z, R(z) represents the

set of edges on which R routes the message =.

Total IPC

Sum of communication costs (edge weights)
for all inter-processor communication

Total Completion Time

1 .2 m
ZpEphuacs mam{cm Cp’ O00r Cp }
where phases includes all instances of both compute phases
and comphases, m is the number of processors,

¢l is the completion time of phase p on processor j.

Table I: METRICS performance metrics

19

Elm|

A=
[ioet [rapnaes [motrie= |

|m.—. te Mtetrlcal

IRl bl ol R g

=3

R P P30 i 92 3 ©

A R D
BT R WNN -

!Qu-m'na Meice]|
e

MESSGE DILATION (fessage Cort)

3
]
7
I l
—
[} 1 H 3

Mmbor of Han

Pessage Dllation: 3
in Messsge Sllation: @
oge Bessage Dilatlea; 1,12
Nerr-2are Bverage Pescage Ollatlen: 1,56

Figure 6: METRICS windows displaying the 15 body algorithm mapped to the 3-dim hypercube

20

4 OREGAMI Mapping Algorithms

In this section we describe the mapping algorithms we have developed for OREGAMI. These
algorithms are summarized in Table II. Our algorithms perform contraction, embedding, and
routing for both regular and arbitrary task graphs, utilizing a variety of mathematical techniques.
The purpose of this discussion is to give the general flavor behind each of the algorithms and to
show how information provided by LaRCS is utilized. A formal treatment of these algorithms
and extensive performance evaluation is found in the referenced papers.

4.1 Canned mapping of binomial tree divide and conquer algorithms

Our contribution to the library of canned mappings is a set of mappings of the binomial tree
[43] to the mesh and the deBruijn networks. As stated earlier, the input to OREGAMI for
these canned mappings is simply the name of the computation graph and the architecture, plus
parameters to instantiate the sizes of the graphs.

The binomial tree is a highly efficient structure for parallel divide and conquer algorithms,
as an alternative to the full binary tree. Our mappings are illustrated in Figure 7. These
mappings have constant time complexity because they are precomputed. They are proven to be
optimal with respect to contention and we prove bounds on the average dilation (see Table IL)
Space limitations prevents us from discussing the mappings in this paper; a formal treatment
can be found in [25] and [49].

4.2 Contraction of Cayley Node Symmetric Task Graphs

We have developed a contraction algorithm for a subset of node symmetric task graphs called
Cayley graphs which is made feasible by the information contained in the LaRCS comphase
declarations. The algorithm is rooted in group theory [46] and yields a symmetric contraction in
which there are an identical number of nodes per cluster and with each cluster having exactly one
incoming and one outgoing ’contracted edge’ for each communication phase. Each contracted
edge represents an identical number of messages, thus the contraction is perfectly load balanced
with respect to both computation and communication.

Our strategy requires that we detect whether the task graph T is a Cayley graph, defined
as follows: For G a finite group and 5 a set of generators for G, Cayley(G, §) is a graph where
the nodes are the elements of G, and there is an edge with 'color’ ¢ from « to b if and only if
there is a generator ¢ € S such that under the group operation ac = b. No polynomial-time

21

Class | Mapping Technique Complexity Performance
I binomial tree Gray code 0(1) no contention
to hypercube labeling avg. dilation <1
[18] [25]
I binomial tree Gray code 0(1) no contention
to mesh reflection avg. dilation < 1.2
[25]
I binomial tree combinatorial/ 0(1) no contention
to deBruijn shift register avg. dilation < 2
[49] sequences
I ring to enumeration of 0(1) gives precise no.
deBruijn necklaces/shift necklaces
[35] register sequences
II algorithms expressible | recurrences 0(1) optimal
as affine recurrences theory
[32]
(work in progress)
I Cayley/node symm. group theory O(VE) optimal
contraction (Cayley graphs) load balancing
[27)
III arbitrary maximum weight O(EViogV) minimizes IPC
contraction matching algorithm sub ject to
[22] load balancing;
I store-and-forward maximal matching | O(HDM?3) minimizes
routing algorithm contention
[26]
111 wormhole routing iteratively O(|E|M*W?3d) minimize
reduce contention; contention;
[47] deadlock-free
II1 wormhole routing shortest path O(M(nN + log M)) | minimize
algorithm contention;
{48] deadlock-free
111 ecube routing Gray code 0O(1) deadlock-free
111 X-Y routing x then y 0(1) deadlock-free

Table II: OREGAMI mapping algorithms

22

1

110

10101100

290 0010 0100
1000

0000

(a)
(b)

1000 (0001) 1100 (1000) 1110(1001)

(1101)
1111 (i019)

0000,
(0000 {0101}

o S A o s

(1011)

0001 (1111} 0011(0013} oll1

(c)

Figure 7: (a) Binomial tree and its canonical labeling (b) Mapping of 61 node binomial tree 1o
8 x 8 mesh (c¢) Mapping of 16 node binomial tree to 16 node deBruijn

23

algorithm is known that recognizes Cayley graphs based on an adjacency matrix representation
[15]. However, with the aid of the LaRCS communication phases, for a task graph T with =
nodes and m edges, in time @(nm), our algorithm either reports that T does not satisly the
criteria or produces a contraction as described above. The contraction algorithm is thus efficient
only with the added information given by the LaRCS code. The algorithm is based on the fact
that under certain conditions, the LaRCS communication phases of T' can be used to directly
derive the generators S of the underlying group G.

We note that this approach to contraction will be especially useful for data parallel algorithms
which are inherently node symmetric. In addition, many interesting interconnection networks,
such as the butterfly, hypercube, cube-connected cycles, are themselves based on Cayley graphs
that have an underlying group structure [1]. Hopefully, this will also be an aid in the embedding
and routing steps of the mapping,.

Example: We will use the 8-node perfect broadcast algorithm to illustrate the operation
of Algorithm Cayley-Contract. (See Figure 8). In the perfect broadcast algorithm, 2% processes
with successive integer labels each disseminate information to all other processes in £ steps by
sending messages to neighbors whose distance from each sender represents successive powers of
2. In our example there are thus 3 communication phases, and process 0 will send to processes
1,2 and 4, in that order.

o The first requirement is that each communication phase is a bijection on the set of nodes
X = {0,1,..7}. In that case, we calculate the value of each communication phase on the
points of X and write the associated permutations in cycle notation as

comml = (01234567)
comm2 = (0246)(135T7)
comm3 = (0 4)(15)(26)(3T)

¢ The crucial point is that the communication phases can also be viewed as the set of
generators of a permutation group G acting on X. This generator set gives rise to a
unique Cayley graph CG. We can make use of the group G in the contraction of the
task graph T when CG is isomorphic to T with the colors of CG' and the communication
phases in 1-1 correspondence. This is the case precisely when the action of G is regular on
X. Detecting whether this is the case involves finding a spanning tree of T and thereby
expressing elements of G in terms of products of generators. For our example the group

24

node_labels (0..7)

comm1 {task(i) => task((i+1)mod8)}
comm?2 {task(i) => task((i+2)mod8))
comm3 {rask(i) => task((i+4)mod8)}

(a)

(b) (¢)

Figure 8: Group theoretic contraction: {a) Fragment of LaR(C'S code showing the communication
types (b) Task graph (c) Contracted task graph

25

G is indeed regular and the correspondence between elements of the group generated and
the nodes of the task graph is given as

EO: (0)(1)(2)(3)(4)(5)(6)(7) => task O
E1: (0123 456T7) => task 1
E2: (0246)(135T7) => task 2
E3: (036147 25) => task 3
E4: (0 4)(1 5)(26)(3 T) > task 4
E5: (0527416 3) => task §
E6: (06 42)(175 3) => task 6
E7: (0 7654321) => task 7

e It can be shown that a quotient Cayley graph arising from a subgroup of G is a contraction
of T preserving the symmetry of the parallel algorithm. We are interested in contractions
where the number of clusters is close to the number of nodes in the graph of our target
architecture, and where communication between tasks is internalized in a cluster. In our
example, the target architecture has 4 processors and since the subgroup {£0, E4} arises
from the generator comm3 = (04)(15)(26)(37) it yields a contraction where 2 messages are
internalized in each cluster and we can map one cluster to each of the processors. Note that
given this contraction, the lockstep symmetry in the execution of the algorithm is preserved
by alternately multiplexing tasks in the order {0, 1,2, 3} followed by {4, 5,6, 7} on the four
processors. This may be the most desirable property of these group theoretic contractions,
which we hope to exploit further in the later stages of mapping and scheduling.

4.3 Contraction of Arbitrary Task Graphs

Algorithm MWM.-Contract performs contraction of arbitrary task graphs based on the static task
graph representation of the parallel computation which is obtained from the LaRCS code. MWM-
Contract utilizes an O(EViogV') maximum weighted matching algorithm, where £ is the number
of edges and V' the number of vertices in the static task graph. This contraction merges tasks
into clusters such that the total interprocessor communication is mininimized while satisfying
the load balancing constraint that the total number of tasks per processor be bounded by some
constant B. Typically B is set to the number of tasks divided by the number of processors.

If the number of tasks is less than or equal to twice the number of processors, the algorithm
yields an optimal symmetric contraction. If the number of tasks is greater than twice the number
of processors, a greedy heuristic is used in conjunction with the maximum weight matching

26

algorithm to find suboptimal task clusters. The greedy heuristic converts the original task
graph into a smaller graph which satisfies the property that the number of new nodes is less
than twice the number of processors. Then an optimal symmetric contraction can be found for
this smaller graph, yielding a suboptimal contraction of the original task graph.

Preliminary testing of the performance of MWM-Centract involved simulations on a wide
range of task graphs. The data used included four types of task graphs, with the best per-
formance exhibited by graphs characterized by regular communication topologies (90.0% of the
contractions found were optimal). Details of Algorithm MWM-Contraction, proofs of optimality,

and simulation results can be found in [22].

Example: Figure 9 illustrates the operation of Algorithm MWM-Contract on an (irregular)
computation in which 12 tasks must be assigned to 3 processors under the load balancing
constraint of at most B = 4 tasks per processor.

‘o First, the greedy heuristic merges tasks into clusters until number of clusters is less than
or equal to two times the number of processors. In order to satisfy the load balancing
constraint of B = 4 tasks per processor, the greedy heuristic ensures that no cluster size
exceeds B/2 = 2 tasks. This is achieved by examining edges in the task graph in non-
increasing order based on the edge weights. Initially, each edge connects individual tasks.
After several passes of the heuristic, however, an edge connects cluster of tasks which have
been merged in previous passes. When an edge is examined, the two clusters are merged
if the total number of tasks in the resulting combined cluster does not exceed B/2. For
example in Figure 9, the edge with weight 15 does not result in merging because the
combined cluster would have 4 tasks,

The outcome of the greedy heuristic is a new graph in which each node is a cluster of tasks
from the original task graph. A single edge between two clusters will represent the total
communication between all the tasks in the two clusters and will thus have a weight equal
to the sum of the weights on the corresponding edges from the original task graph. In
addition, the new graph will satisfy two conditions: (a) the number of nodes will be less
than two times the number of processors and (b) the number of tasks within a cluster will

be less than or equal to B/2.

o The maximum weight matching algorithm is then invoked on the new graph to produce an
optimal contraction of clusters to processors which minimizes the total IPC and satisfies
the load balancing constraint B. Figure 9(b) illustrates the contraction of the 6 clusters

27

to 3 processors and the corresponding contraction of the original 12 tasks. The total IPC

= 6 and happens to be optimal in this case.

4.4 Embedding of Arbitrary Task Graphs

After contraction, embedding is achieved by Algorithm NN-Embed which uses a greedy approach
to place highly communicating clusters on adjacent neighbors in the network graph.

NN-Embed is used by OREGAMI to assign process clusters to processors in the target ar-
chitecture. Currently the mesh and the hypercube are supported. Its input is a contracted task
graph which has no more clusters than the number of processors. The edge weights are assumed
to represent communication volumes of a single dominant phase. We use a greedy heuristic that
attempts to minimize the total weighted dilation of the embedding.

Given a contracted task graph, NN-Embed first constructs a list of all the edges in the graph
sorted by weight. Ties are resolved by comparing the total weights on all other edges adjacent
to the two edges. Then the algorithin traverses this list in linear time and for each edge, assigns

its endpoints as follows:
¢ If both nodes have already been assigned, do nothing.

o If only one node has been assigned, then assign the other node to the closest free processor
(this may not be unique, but the algorithm scans the processor list in a particular order—
increasing integer labels for the hypercube and row major order for the mesh).

e If neither node has been assigned, randomly choose a free processor and assign one node
to it and the other to its closest free neighbor.

Apart from the sorting step which took O(Vlog V) time, the rest of the algorithm runs
linearly in the number of edges. In the future, we plan to develop embedding algorithms which
exploit regularity.

4.5 Routing in OREGAMI

OREGAMI performs routing after the computation graph has been contracted and the tasks have
been assigned to processors. Thus, the input to each of OREGAMTI’s routing algorithms specifies
the set of messages to be routed by giving the source and destination processors corresponding
to the sender and receiver processes, respectively. Qur algorithms use the information provided
by the LaRCS comphase declarations to achieve low contention routing. Routing directives
are represented symbolically as a list of the source processor, intermediate processors, and

29

destination processors. Currently, OREGAMI does not translate these directives into system-
specific routing control headers.

To date, we have developed three heuristic routing algorithms, one for systems which utilize
store-and-forward routing MM/SF-Route and two for systems which utilize wormhole-like routing
WORMi-Route and WORM2-Route. OREGAMI’s routing library also includes the fixed ECUBE
routing algorithm for the hypercube and the fixed X-Y routing algorithm for the mesh.

OREGAMTI’s routing algorithms perform routing on a phase by phase basis. Recall that the
comphase declaration identifies logically synchronous communication, i.e. message passing that
can occur simultaneously at runtime. This information enables the routing software to focus
on only those messages that are capable of actual contention at runtime. There are several
advantages to be gained by this approach:

o The likelihood of finding a routing with low contention is greater because fewer commuri-
cation edges are considered.

¢ The use of contention as a performance metric for mapping and embedding is more accu-
rate, since we avoid measuring false contention, i.e., when two edges are mapped to the

same link which are not active simultaneously at runtime.

In this paper, we briefly describe Algorithm MM/SF-Route which uses an O(H DA 3) bipartite
matching algorithm to evenly distribute the edges of a single communication phase to the links
of the interconnection network, where i is the diameter of the network, D is the max degree
of a processor node, and M is the number of messages in the phase. MM/SF-Route is designed
to minimize contention on a hop by hop basis and thus is suitable for architectures that use
store-and-forward routing. However, we note that this algorithm can be used for systems which
utilize wormwhole routing schemes by including deadlock avoidance techniques such as virtual
network partitioning. Algorithms WORM1-Route and WORM2-Route are described in [47] and [48].

Algorithm MM/SF-Route was tested for the hypercube by comparing its performance with
random routing and the ecube routing algorithm [44]. The performance metric used in these
experiments was mazimum contention, i.e. maximum number of commmunication edges assigned
to a single link. The experiments were performed on parallel computations from the OREGAMI
test suite. Altogether 68 configurations were tested with the number of processors ranging from
8 to 32 and the number of tasks from 16 to 9G. In 88.2% of the cases, the optimal routing was
found. In 8.8% the routing was within 33% of optimal, and in the remaining 3% the routing
was within 50% of the optimal value. We are currently performing additional experiments to
test the performance of our routing algorithms using additional metrics for contention.

30

Example: Suppose the 15-body problem is embedded on an 8-processor hypercube as shown
in Figure 10. We discuss the operation of MM/SF-Route for the chordal edges only; the same
procedure would be invoked for the ring edges also. In the bi-partite graph that is constructed by
our routing algorithm, one partition consists of the communication edges in a single comphase
and the other partition consists of the available (shortest) routes in the network that could
potentially service these communication edges.

e In Figure 10(a), nodes in the task graph are labeled with the LaRCS task numbers, and
links in the network are numbered arbitrarily from 1 to 12,

¢ In the chordal communication phase, task 0 sends to task 8, task 1 sends to task 9, etc.
From a table of routing information for the 8-processor hypercube, we can determine the
possible choices for the shortest routes: e.g., for messages from task 0 to task 8, possible
routes are links 4 then 12, or links 9 then 8).

¢ From this information, we construct a bi-partite graph G = (X, Y, E) where nodes in X
represent chordal edges in the task graph, nodes in Y represent links in the hypercube,
and edges in E connect each edge node to the links that can serve as the first hop (or
only hop) in the possible routes from sender to receiver. Thus, in Figure 10(b), there is
an edge from the node labeled (0-8) to the nodes labeled link 4 and link 9.

¢ A maximal matching of size M in graph G selects a maximal set of M distinct links in the
hypercube and assigns A/ distinct chordal edges to those links. If A #| X | then some
nodes in X are unassigned. G is then reconfigured by removing all nodes of X covered by
the matching and all edges incident to those nodes, and repeating the call to the maximal
matching algorithm. Since each call to the maximal matching algorithm selects a given
link at most once, we have achieved a low level of link contention.

e When all nodes in X are covered, a new graph is constructed for those chordal commu-
nication edges that have a choice of routes for the second hop. Note that in many cases,
selection of the link for the first hop determines the second hop link.

5 Ongoing and Future Work

Areas for continuing work on the OREGAMI project include extensions to LaRCS to support
dynamically spawned tasks and processor constraints on mapping; new and improved mapping
algorithms, and scheduling directives. In addition, we plan to do additional performance testing

31

(a)

task —s> @sk links
¢ — 8 4412, 98
1 — 9 4-12, 9.8
2 —>» 10 1046, 2-11
7 — 0 4
g — 2 7+6+10, 8510, 7-11-2, B8-9-1
X: Chordal
(b) Communication @

(c)

Figure 10: Algorithm MM/SF-Route: (a} 13-body algorithm mapped to 3 dim hypercube (b)
table of possible shortest routes (¢} bi-partite graph

32

both through simulation and empirical experiments using the new Sun/X-Windows OREGAMI
tools.

LaRCS extensions: OREGAMI currently is designed only for computations in which
the number of tasks is static. We plan to extend our software to handle computations with
dynamically spawned tasks when the spawning pattern is regular and predictable. For example,
parallel divide and conquer algorithms dynamically spawn tasks based on the size of the problem
instance; however, it is known a priori that the spawning pattern will produce a full binary tree.
We plan to augment LaRCS with the capacity to describe regular spawning patterns, and to
design task assignment and routing algorithms to accomodate dynamically growing parallel
computations. In addition, we will extend LaRCS to include language constructs that specify
certain types of mapping constraints, such as the assignment of specific tasks to specialized
processors (I/O processors, processors with floating point hardware, etc.).

Mapping algorithms: We will continue to augment the MAPPER library with new and
improved algorithms for contraction, embedding, and routing. Some of the new approaches to
mapping that we are investigating include algorithms for mapping computations expressible as
affine recurrences; algorithms that perform two or more of the mapping steps simultaneously;
algorithms that consider migrating processes at run time in order to accomodate phase shifts
(as opposed to our current approach of finding one mapping that accomodates all the phases);
and algorithms that avoid overspecification of communication topologies for common parallel
paradigms such as aggregate and broadcast. For example, many parallel algorithms use a specific
tree topology to aggregate results when a variety of alternate communication topologies will
suffice (any spanning tree or the perfect broadcast ring of [17]). We would like to automatically
select the aggregate topology that is ‘compatible’ with the topologies of other phases in the
computation. Finally, we will continue to add to the library of ‘canned’ mappings for nameable
task graphs.

Scheduling: Many parallel algorithms can be characterized as synchronous in nature, i.e.,
they are designed to run lockstep through their execution and communication phases. Therefore,
it is advantageous to be able to coordinate the scheduling of tasks across processors after they
have been assigned by MAPPER. We plan to extend OREGAMI to include a means for speciflying
task synchrony sets across processors. A task synchrony set is a set of tasks, one on each
processor, that should be executing at the same time. This approach appears to be promising
for computations whose task graph fulfills certain Cayley conditions as discussed in Section 4.2.
Identification of these synchrony sets can be used to refine the routing algorithm and to produce
local scheduling directives for each processor that ensure synchronous execution of the tasks in
each set. The scheduling directives can be expressed in a notation similar to path expressions

33

[11] that specify the allowable ways to multiplex the tasks assigned to a given processor.

Testing: Our experiments thus far have focused on testing the performance of individual
mapping algorithms. Our plans also include careful testing of the performance of the whole
OREGAMI system by comparing OREGAMI mappings to random mapping, user manunal map-
ping, and mapping produced by Berman's Prep-P system. These mappings will be evaluated
using METRICS and through empirical experiments on the Intel iPSC/2.

Two key goals of our research are to provide tools that ensure portability of parallel software
and to achieve the performance potential of parallel processing. OREGAMI was designed to
achieve these goals by offering efficient algorithms for contraction, embedding, and routing, and
by utilizing the user’s knowledge through LaRCS and METRICS. The OREGAMI project is
currently beginning its third year of development in which we hope to continue to contribute
towards the development of an effective and practical tool for the mapping of parallel algorithms
to parallel architectures.

34

References

[1] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection
networks. JEEE Transactions on Computers, C-38(4):555-566, April 1989,

[2] D. A. Bailey and J. E. Cuny. Graph grammar based specification of interconnection struc-
tures for massively parallel computation. In Proceedings of the Third International Work-
shop on Graph Grammars, pages 73-85, 1987.

[3] D. A. Bailey and J. E. Cuny. Visual eztensions to parallel programming languages, pages
17-36. MIT Press, August 1989.

[4] F. Berman. Experience with an automatic solution to the mapping problem. In The
Characteristics of Parallel Algorithms, pages 307-334. The MIT Press, 1987.

[5] F. Berman and L. Snyder. On mapping parallel algorithms into parallel architectures.
Journal of Parallel and Disiributed Computing, 4(5):439-458, October 1987.

[6] F. Berman and B. Stramm. Prep-p: Evolution and overview. Technical Report C589-158,
Dept. of Computer Science, University of California at San Diego, 1989.

[7) B.P. Bianchini and J.P. Shen. Interprocessor traffic scheduling algorithm for multiprocessor
networks. IEEE Transactions on Computers, C-36(4):396-409, April 1987.

[8] S. H. Bokhari. Assignment Problems in Parallel and Distributed Computing. Kluwer Aca-
demic Publishers, 1987.

[9] J.C. Browne. Framework for fomulation and analysis of parallel computation structures.
Parallel Computing, 3:1-9, 1986.

[10] J.C. Browne. Code: A unified approach to parallel programming. IEEE Software, 6(4):10-
19, July 1989.

[11] R. H. Campbell and A. N. Habermann. The Speificalion of Process Synchronization by
Path Ezpressions, volume 16, pages 89-102. Springer-Verlag, 1974.

[12] Marina C. Chen. A design methodology for synthesizing parallel algorithms and architec-
tures. Journal of Parallel and Distributed Computing, 3(6):461-491, December 1986.

[13] M. H. Coffin. Par: An approach to architecture-independent parallel programming. Tech-
nical Report TR90-28, Dept. of Computer Science, University of Arizona, August 1990.

35

[14] H. El-Rewini and T.G. Lewis. Scheduling parallel program tasks onto arbitrary target
machines. Journal of Parallel and Distributed Computing, 9:138-153, 1990.

[15] M. Fellows. Problem corner. Contemporary Mathematics, 89:187-188, 1989.

[16] W. G. Griswold, G. A. Harrison, D. Notkin, and L. Snyder. Port ensembles: a communi-
cation abstraction for nonshared memory parallel programming. Technical report, Dept. of
Computer Science, University of Washington, 1989.

[17] Y. Han and R. Finkel. An optimal scheme for disseminating information. In Proceedings
of the 1958 International Conference on Parallel Processing, pages 198-203, August 1988.

[18] S. L. Johnsson. Communication in network architectures. In VLSI and Parallel Compula-
tion, page page 290. Morgan Kaufmann Publishers, Inc., 1990.

[19] D.D. Kandlur and K.G. Shin. Traffic routing for multi-computer networks with virtual
cut-through capability,. In Preceedings of the 10th International Conference on Distributed
Compuler Systems,, pages 398-405, May 1990.

[20] Simon M. Kaplan and Gail E. Kaiser. Garp: Graph abstractions for concurrent program-
ming. In H. Ganzinger, editor, European Symposium on Programming, volume 300 of Lecture
Notes in Computer Science, pages 191-205, Heidelberg, March 1988. Springer-Verlag.

[21] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558-565, July 1978.

[22] V. M. Lo. Algorithms for static task assignment and symmetric contraction in distributed
computing systems. In Proceedings IEEE 1988 International Conference on Parallel Pro-
cessing, pages 239-244, August 1988.

(23] V. M. Lo. Heuristic algorithms for task assignment in distributed systems. I[EEE Transac-
tions on Computers, 37(11):1384-1397, 1988.

[24] V. M. Lo. Temporal communication graphs: Lamport’s process-time graphs augmented
for the purpose of mapping and scheduling. Technical Report CIS-TR-92-05, University of
Oregon, 1992. Submitted to Journal of Parallel and Distributed Computing.

[25] V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. A. Mohamed, and J. Telle. Mapping
divide-and-conquer algorithms ato parallel architectures. In Proceedings IEEE 1990 Inter-
national Conference on Parallel Processing, pages 111:128-135, August 1990. Also available
as University of Oregon Technical Report CIS-TR-89-19.

36

[26] V.M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. A. Mohamed, and J. Telle. OREGAML:
Software tools for mapping parallel algorithms to parallel architectures. In Proceedings 1990
International Conference on Parallel Processing, pages 11:88-92, August 1990. Updated
version available as University of Oregon Technical Report CIS-TR-89-18a and will appear
in the International Journal of Parallel Programming.

[27] V. M Lo, S. Rajopadhye, M. A. Mohamed, S. Gupta, B. Nitzberg, J. A. Telle, and X. X.
Zhong. LaRCS: A language for describing parallel computations for the purpose of mapping.
Technical Report CIS-TR-90-16, University of Oregon Dept. of Computer Science, 1990.
To appear in IEEE Transactions on Parallel and Distributed Systems.

[28] J. Magee, J. Kramer, and M. Sloman. Constructing distributed systems in conic. [EEE
Transactions on Software Engineering, SI-15(6):663-675, June 1989.

[29] P. A. Nelson and L. Snyder. Programming paradigms for nonshared memory parallel com-
puters. In The Characleristics of Parallel Algorithms, pages 3-20. The MIT Press, 1987.

[30] C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Publish-
ers, 1988.

{31] C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Publish-
ers, 1988.

[32] Sanjay V. Rajopadhye and Richard M. Fujimoto. Synthesizing systolic arrays {rom recur-
rence equations. Parallel Computing, 14:163-189, June 1990.

[33] A.L. Rosenberg. Graph embeddings 1988: Recent breakthroughs new directions. Technical
Report 88-28, University of Massachusetts at Amherst, March 1988,

[34] M. Rosing, R. B. Schnabel, and R.P. Weaver. The dino parallel programming language.
Technical Report CU-CS-457-90, Dept. of Computer Science, University of Colorado at
Boulder, April 1990.

[35] R. Rowley and B. Bose. On necklaces in shuffle-exchange and de bruijn networks. In
Proceedings International Conference on Parallel Processing, pages 1:347-350, August 1990.

[36] P. Sadayappan, F. Ercal, and J. Ramanujam. Clustering partitioning approaches to map-
ping parallel programs onto a hypercube. Parallel Computing, 13:1-16, 1990.

[37] V. Sakar. Partitioning and scheduling parallel programs for execution on multiprocessors.
Technical report, Ph.d. Thesis, Dept. of Computer Science, Stanford University, 1987.

37

[38] C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33, January 1985.

[39] L. Snyder. Introduction to the configurable, highly parallel computer. Computer, 15(1):47-
56, January 1982.

[40] L. Snyder. The XYZ abstraction levels of Poker-like languages, pages 470-489. MIT Press,
August 1989.

[41] L. Snyder and D. Socha. Poker on the cosmic cube: the first retargetable parallel program-
ming language and environment. In Proceedings 1986 International Conference on Parallel
Processing, pages 628-635, August 1986.

{42] H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Transactions on Soflware Engineering, SE-3(1):85-93, January 1977,

{43] J. Vuillemin. A data structure for manipulating priority queues. Communicalions of the
ACM, 21(4):309-315, April 1987.

[44] C. L. Seitz W. J. Dally. Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Transactions on Computers, 36(5):547-553, May 1987.

[45] A. Wagner, S. Chanson, N. Goldstein, J. Jiang, H. Larsen, and H. Sreekantaswamy. Tips:
Transputer-based interactive parallelizing system. Technical report, Dept. of Computer
Science, University of British Columbia, 1990.

[46]) H. Wielandt. Finite Permutalion Groups. Academic Press, 1964.

[47] X. X. Zhong and V. M. Lo. Application specific deadlock {ree wormhole routing on mul-
ticomputers. Technical Report CIS-TR-92-03, University of Oregor, 1992. To appear in
PARLE 92.

[48] X. X. Zhong and V. M. Lo. An eflicient heuristic for application specific routing on mesh
connected multiprocessors. Technical Report CIS-TR-92-04, University of Oregon, 1992,
To appear in 1992 International Conference on Parallel Processing.

[49] X. X. Zhong, S. Rajopadhye, and V. M. Lo. Parallel implementation of divide-and-conquer
algorithms on binary debruijn networks. Technical Report CIS-TR-91-21, University of
Oregon, 1991. To appear in Gth International Parallel Processing Symposium.

38

