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Abstract

Consider the problem of converting decimal scientific notation for a
number into the best binary floating point approximation to that number,
for some fixed precision. This problem cannot be solved using arithmetic
of any fixed precision. Hence the JEEE Standard for Binary Floating-
Point Arithmetic does not require the result of such a conversion to be
the best approximation.

This paper presents an efficient algorithm that always finds the best
approximation. The algorithm uses a few exira bits of precision to com-
pute an IEEE-conforming approximation while testing an intermediate
result to determine whether the approximation could be other than the
best. If the approximation might not be the best, then the best approx-
imation is determined by a few simple operations on multiple-precision
integers, where the precision is determined by the input. When using 64
bits of precision to compute IEEE double precision results, the algorithm
avoids higher-precision arithmetic over 99% of the time.

The input problem considered by this paper is the inverse of an cutput
problem considered by Steele and White: Given a binary floating point
number, print a correctly rounded decimal representation of it using the
smallest number of digits that will allow the number to be read without
loss of accuracy. The Steele and White algorithm assumes that the input
problem is solved; an imperfect solution to the input problem, as allowed
by the IEEE standard and ubiquitous in current practice, defeats the
purpose of their algorithm.

NOTE

This is a corrected version of a paper to appeat in the proceedings of
the ACM SIGPLAN '90 Conference on Programming Language Design
and Implementation. The three corrections are listed on the last page of
this report.
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given an oracle that delivers the value of g rounded to the
nearest 10. Given an input z, the obvious approach is to
ask the oracie for the value of g (z) to the nearest 10, and
then to round that result to the nearest 10000. Unfortu-
nately, this does not always work. If g (z) is 11074996 and
g () is 11075004, for example, then the answers should be
11070000 and 11080000, respectively, but the oracle will
deliver 11075000 for both x and y. This approach usually
works, though. It fails only when the value delivered by
the oracle ends in 5000.

To find the best approximation, the algorithm of this paper
uses an extended precision to compute an approximation
whose accuracy is significantly better than the accuracy re-
quired in the result. It then examines the low order bits of
that intermediate result to bound the additional error that
will be introduced when this particular vatue is rounded to
the precision required of the final result. If the sum of the
bounds for the intermediate approximation emor and for the
rounding error is less than the error allowed in the final re-
sult, then the rounded value must be correct. Otherwise the
rounded value must be checked using arithmetic of greater
precision,

By choosing a large enough extended precision, the proba-
bility that an even greater precision will be needed can be
made as small as desired. For [EEE double precision num-
bers, an experiment reported in Section 9 found that IEEE
extended precision is enough to find the best approximation
over 99% of the time.

2. EXTERNAL AND INTERNAL RADIXES

For concreteness it is often appropriate to assume that the
input is given in decimal scientific notation and that the
output is a binary floating point number, but most results
presented here hold for more general radixes. Let A > 2
be the radix used to express the input, and let 7 > 2 be the
radix of the floating point output. A is the external radix,
and g is the internal radix. In practice A is usuaily 10 and
B is usually 2 or 16,

Definition 1. [Matula70] Radixes A and £ are commensur-
able if and only if both are inlegral powers of a commaon
integral root. Equivalenty, A and S are commensurable iff
logg A is rational.

For ¢example, 2 and 16 are commensurable radixes, as are §
and 16. On the other hand 10 and 2 are incommensurable,
as are 10 and 16. As shown in Section 4, the problem of
computing the best floating point approximation is trivial
if A and 2 are commensurable radixes. Most of this paper
therefore assumes that A and # are incommensurable, and
for simplicity the internal radix g is always assumed to be
even.

For convenience “bit" will be used to refer to digits in the

intemnal radix A, and “digit” will be used for digits in the
external radix A.

3. FLOATING POINT NUMBERS

This paper deals exclusively with positive floating point
numbers. Overflow and underflow are considered only in
Section 8. Because the following definition refers to pre-
cision and not to a data structure, this paper considers an
IEEE single precision number to be a 24-bit floating point
number and an IEEE double to be a 53-bit floating point
number.

Let n, the precision in bits of a floating point number, be
a positive integer. For the purposes of this paper, an n-bit
floating point number consists of an integer significand m
and an integer exponent ¢ with 0 < m < 8", representing
the value m x 89. A floating point number is normalized iff
B! < m < A", For a fixed precision n, the significand
m and exponent ¢ of a normalized floating point number
are uniquely determined by its value m x 9,

For any fixed precision n, a closest floating point approx-
imation to a real number a is a normalized floating point
number m x B9 such that a = (m+¢) x 37 where |¢| < 1/2,
and where m = °~! only if —1/(28) < ¢. The closest
approximation is uniquely determined unless e] = 1/2, or
m = "1 and ¢ = —1/(28), in which cases there are two
closest approximations. The best approximation is a closest
approximation where, in a case of two closest approxima-
tions, the tie is broken by a fixed rounding rule such as
round to even.

For any real number a, the fractional part of a is defined
to be {a} =a— |a]. The value of a rounded to the nearest
integer, assuming ties round to even, is defined 10 be

la] if {a} < 1/2

o] Tl ifla>12
lal if {a}=1/2and |a] is even
[a] if {a}=1/2and |a] is odd

This definition can easily be changed to accomodate other
tie-breaking rules, but the algorithms presented later will
assume that ties round to even. The significand of the best
n-bit approximation to a is

[ﬁﬂ-lﬁ{lﬂh “]]

unless this value is A", in which case the significand is
gt

The floating point product of normalized floating point
numbers z x #9 and y x 7 is a best approximation to
ry x 9. That is, the floating point multiplication oper-
ator is assumed to be reliably accurate, to round to near-
est, and o resolve ties that result when the mathematical
product is exactly halfway between two adjacent floating
point numbers by the same rounding rule used to define
the best approximation. These assumptions hold for the
defanlt rounding mode in IEEE arithmetic, but do not hold
for many other implementations of floating point numbers.



Theorem 5. For n > 5, no finile automaton compules the
significand of the best n-bit binary floating point approx-
imation to f x 10°, where f and e are presenied in base
10.

Proof: This is a special case of the lemmas below. =
Lemma 6. If = and y are positive real numbers with

1 1
m < {logﬂ:c—logpy} < IFW

then the best n-bit floating point approximations 1o = and
y have distinct significands.

Proof: By symmetry suppose {logsz} < {loggy}. Let
w = {logg z} and w+ 6 = {logg y}. Then
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Lemma 7. (Kronecker’s Theorem in one dimension) If 8
is irrational, then { {nf} | n € w} is dense in the interval
(0,1).

Proof: See [HW60]. =

Lemma 8. If A and 2 are incommensurable, 7 > 3 or
n > 2, and e is presented with its least significant digit
first, then no finite automaton computes the significand of
the best n-bit approximation 0 A®,

Proof: Suppose e is presented in radix v, and let D be a
DFA. Let i and j be integers such that D is in the same
state after reading 1+ j zeroes as after reading ¢ zeroes. By
Kranecker’s theorem there exists an integer £ such that

1 1
Take e; = kv**/ and e; = ky*. D computes the same result

for A as for A°?, but their significands are distinct by
Lemmaé. m

< {k(" —7)logg A} < 1-

Lemma 9. If & is irrational and 4 > 1 is an integer, then
there exist infinitely many nonnegative integers k such that

y—1 y2—y+1
—.,z—<{‘f"9}<—;z—-

Proof: If all digits 1o the right of the radix point in the
y-ary representation of ¢ are zero or ¥ — 1, then let £ be
such that the kth digit to the right of the radix pointis y—1
and the following digit is zero. Otherwise let & be such that
the kth digit is neither zero nor v — 1.

Since 7% 8 is also irrational, a larger such k always exists.
a

Lemma 10. If A and § are incommensurable, e is pre-
sented in base ¥ with ils most significant digit first, and
42/(y = 1) < 2" log A, then no finite automaton com-
putes the significand of the best n-bit approximation to A®.

Proof: Let D be a DFA, and let i and j be integers such
that D is in the same stale after reading ** as after reading
+*. By Lemma 9 there exists an integer k such that

—1 i 3 : - +1
772 < {Y* & —1)logg A} < YZ—I

so take ¢y = ¥"** and e = ¢, m

The lemma above is unpleasantly technical, for there is
no apparent reason why the base in which the inputs are
presented should affect the difficulty of the problem. The
lemma probably holds without such assumptions, but a
more sophisticated proof will be required.

Figure 1 shows a straightforward algorithm, Algorithm¥,
that uses integer arithmetic of unlimited precision to com-
pute the best n-bit floating point approximation to f x A®.
As wriuen, the algorithm assumes ties are broken by round-
ing to even.

Like the other algorithms in this paper, AlgorithmM is
expressed as a purely functional Scheme program, with
the assumption that all integer arithmetic is exact, i.e.
of unlimited precision [Rees86]. For integers m and &
with g*~! < m < ", (make-float m k) is assumed
to return the n-bit floating point number m x g%, The
nextfloat procedure, shown in Figure 2, returns the least
normalized floating point number greater than its argument.

For most applications AlgorithnM is impractical because it
uses too much high-precision arithmetic. The next section
obtains a better algorithm by starting from a close but not
necessarily closest approximation.

5. AN ITERATIVE ALGORITHM

It is quite easy, using a few extra bits of precision, to find
an approximation that differs from the best approximation
by only a few units in the last place of the significand. In
fact, it is fairly easy to find an n-bit approximation that
differs from the best approximation by no more than one
unit.

AlgorithmR, in Figure 3, takes a good approximation
m x A% and checks it using integer arithmetic of unlim-
ited precision. If the given approximation is too smatl or
too large, it then repeats the process with the next larger or
smaller floating point number.

The algorithm begins by finding positive integers = and y
such that




Given eract integers f and e, with f positive,

H
; and a floating point number z0 close to f ¢ delta”e,
i returna the best floating point approximation to

»

i I * delta”e.
{define (ilgorithmR £ & zO}
(detine (loop z)

(define m (float-significand z))
(define k (float-exponent z))

; Given exact positive integers x and y with

; x/y = (fsdelta~e)/(m*beta~k), returns the bast

; approximation to fedelta~a.

(define (compare x y)
(lete ((D (- x ¥))
(02 (» 2 n (abs DV)))
(cond ((< D2 ¥)
(if (and (= m beta~n-1)
(negativae? D)
(> {» beta D2) ¥))
(loop (prevfloat z))
2))

((=D2 y)
(cond ((even? m)
(if (and (= m beta"n-1)
(negative? D))
(loop (prevfloat z))
z))
((negative? D)
{pravfloat z))
({positive? D)
{nextfloat 2))))
(({negative? D)
(loop (prevfloat z)))
((poaitiva? D)
(loop (nextfloat z))))))

(cond ((and {>= « 0) (>= k 0))
(compare (» f (axpt delta o))
(s m (oxpt beta k))))
((and (>= a 0) (< k 0))
(compare (» f (axpt delta o)
{axpt beta (- k}))
m}}
((and (< e 0) (>= k 0))
(compare f (* m (expt beta k)
(axpt delta (- @)))))
((and {< & 0) (< k 0)}
(compare {* £ {oxpt beta (- k)))
(* m (oxpt delta (- e)))))))

{locp z0))

(define bota~n+1 (expt beta (+ n 1)))

Figure 3. AlgorithmA.

seems to be a pre-computed table of powers of A, contain-
ing the range of powers that is apt 10 occur in practice,
With practical floating point formats the range of floating
point exponents is usually limited, so very large exponents
will overflow and very small exponents will underflow un-
less the number of digits in the input is unreasonably large.
AlgorithmM can be used when the input exponent is out
of the table’s range.

Even when limited to the range needed for reasonable in-
puts, the table of powers may be fairly large. The size
of the table can be reduced, at the expense of accuracy,
by factoring it into two smaller tables. One table contains
values for small powers of A®, with 0 < e < h, while
another table contains approximations to 10"/ for integral
J. It is convenient to assume that h is smail enough that
the small powers are represented exactly as p-bit floating
point numbers. If this is so, and all other table entries are
best approximations, and 4 = 2, then Corollary 3 says that
the error in the value calculated for A® is strictly less than
# units in the least significant bit.

If the floating point approximation to f is the best possible,
and the approximation to A® is within 3 units, and 8 =2,
then the error in the product is less than  units. If this
calculation is performed using p > n + 4 bits of precision,
then rounding the product to the nearest n bits yields either
the best n-bit binary floating point approximation 10 f x A°
or a next-best approximation,

7. AN EFFICIENT, NON-ITERATIVE ALGORITHM

Algorithm Bellerophon, shown in Figure 4 for the special
case of A =10 and 8 = 2, is a practical algorithm based on
the idea explained in the inwroduction. The terms used in
Figure 4 differ from those used to describe previous algo-
rithms, in that “float” refers to p-bit floating point numbers
and “shortfloat” refers to n-bit numbers.

Given integers f and e, Bellarophon dispaiches on the
error introduced when f and A° are approximated by float-
ing point numbers with p bits of precision, where p is large
enough to ensure that the product of the approximations,
rounded to n bits, is either the best or a next-best approxi-
mation to f x A°,

If f and A® can both be represented exactly using n bits,
then an n-bit floating point multiplication yields the best
approximation to their product. If f and A~° can both
be represented exactly using n bits, then an n-bit division
yields the best approximation. (This assumes that floating
point division, like multiplication, is reliably accurate.)

Otherwise Bellerophon approximates f and A° by p-bit
fioating point numbers x and y, and computes their floating
point product z = m x 39, where /7~! < m < 3. Hence

fxA*=(z+e)x g7



lex| ley! lef
fF<2?A0<e<h 0 0 <3
f<2AE<OVe2h) 0 <3 <3
f22%A0<e<h <i 0 <3
f22A(e<0Ve>h) <4 <3 <3
Figure S, Error bounds in units of the least significant bit.
where for 8 = 2 the error € is bounded by the values shown < B P(zo+|e])

in Figure 5.

Unless z lies about halfway between two adjacent r-bit
floating point numbers, the error ¢ will be absorbed when z
is rounded to n bits, The multiply~and-test procedure
therefore tests to see if z could be within ¢ of the midpoint.
If not, then the correct answer is obtained by rounding =
10 n bits. Otherwise the efficient part of the algorithm
fails, and the rounded value of z is passed to AlgorithmR
as a starting approximation. Since the rounded value of
z is always either the best or a next-best approximation,
Algorithmi always converges in one loop.

Theorem 11. Algorithm Bellerophon computes the best
n-bit approximation to f x A°.

Proof: This proof deals with the generalizations of Figures
4 and 5 to any even internal radix #. In general, Algorithm
Bellerophon computes a p-bit floating point number z =
m x f* such that f x A® = (z +¢) x g* and

1
<'slop+ =
le| £ slop 5

where the value of slop is determined by numerical anal-
ysis.

Let z, and 2o be integers such that
z=z X "4z
grl<a < g

0< < pr™"

There are three cases, depending on whether zp is well

below, well above, or near §57—",

Case 1: zo+slop < 18°~", Rounding z 10 n bits yields

71 x AP~ and f x A® = (2; + €) x B¥*P~" where the

error ¢ is

FxA°

AEp—n

(z+¢) x gF

. ﬁki-p—n -

|€’| -z

Zg+ €

Ap-n

< " P(zg+slop+ %)

1
n-—p _pap=n
<l xzﬁ"
1

2

Case 2: 1/P~™ < z9 — slop. Rounding z to n bits yields
(Zl-l‘l) x ﬂiH-p-n' and f xXxA%= (zl+l+t") X ﬁk'tp—ﬂ where

, (z+¢) x B*
€l = |

Zg+€
e

B*P(BP" — zo+ [e])

< ATP(APT" — zp+slop+ %)

5P x (B~ — 27)
1

2

—21—1

IA

A

Case 3: }47~" — slop < 79 € §#P~" + slop. This is the
failure case in which another algorithm is used. =

8. OVERFLOW AND UNDERFLOW

Overflow and underflow become possible when the range
of floating point exponents is restricted.  Algorithm
Bellerophon can be modified to deal with overflow and
underfiow by testing the n-bit result to see if it is an infinity,
the largest representable floating point number, the smallest
normalized floating point number, denormalized, or zero.
In such cases the computation may need to be repeated us-
ing some other algorithm, depending on the policies that
have been established for handling overflow and underflow
within the particular floating point number sysiem in ques-
tion.

With IEEE arithmetic, for example, a denormalized result
may be required. Denormalized resuits can be generated



precision IEEE arithmetic faster than double or single preci-
sion IEEE arithmetic. By defauit, therefore, some compil-
ers that appear 1o support IEEE single or double precision
aritbmetic may actually perform single or double precision
calculations using exiended precision, rounding 1o single or
double only when a result is stored in a variable. Somewhat
counterintuitively, this makes individual floating point op-
erations jess accurate, and does not meet the error bounds
required by the IEEE specification for the default rounding
mode using singie or double precision arithmetic.

Suppose, for example, that Algorithm Bellerophen is used
10 compute the best IEEE double precision approximation
10 1.448597445238699. The correct result is

6525704354437805 x 2-32 = 1.448997445238699

obtained by dividing 1448997445238699 by 10* using
double precision arithmetic. If this division is performed
using 64-bit extended precision arithmetic instead, and the
extended precision resuit rounded to double precision, then
the incorrect result

6525704354437806 x 2~2 = 1.4489974452386991
will be obtained.

10. RELATED WORK

Mathematical properties of the best approximation function
have been investigated by Matula, who does not consider
algorithms for computing it [Matula68, 70].

Theorem 4 strengthens an observation by Matula and others
[Matula68). Calculations similar to Lemma 2 and Coroilary
3 appear in [Knuth81] and in most books on numerical
analysis, though the results are seldom stated as they appear
here. Theorem 5 expresses well-known folklore, but to my
knowledge this is the first proof of it.

AlgorithmM is essentially the same as Method (2a) in Sec-
tion 4.4 of [Knuth81]. The solution to Exercise 3 of that
section contains a forward reference to [Steele90].

A draft of [Clinger90] required the standard routine for nu-
merical cutput to print floating point numbers using the
fewest digits that allow the number to be read back in
without loss of accuracy. Although this can be done by
extending an JEEE-conforming but imperfect implementa-
tion, reference was made to a draft of [Steele90], which
assumes a perfect input routine.

On 1 November 1989 Chris Hanson expressed concern over
this requirement in electronic mail sent to Steele, White,
and myself. Hanson described AlgorithmM but noted its
inefficiency and asked whether any other perfect algorithms,
especially perfect and efficient algorithms, were published
or known. The matter was urgent because Hanson was
editing a draft IEEE standard for Scheme to be voted on in
January, After checking with Steele to confirm that he did

not know of an efficient solution to the input problem, I set
to work, keeping the others informed of my progress.

Jon L White was out of town and unable to read his mail.
On 10 November 1989, after I had announced the basic
idea of Algorithm Bellerophon, White reported that Lu-
cid Common Lisp has for several years used a similar al-
gorithm of his invention. This algorithm has not been pub-
lished, and was known only to a handful of people at Lu-
cid. From subsequent telephone conversations, it appears
that the algorithm in use at Lucid is essentially the same
as Bellerophon but uses twice as many bits, primarily
because the error bounds were not calcutated very tightly.

Bellerophon is so named because it inverts the Dragon3
and Dragond algorithms of [Steele90]. Unlike its name-
sake, the algorithm reads its fate and acts accordingly.
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