Negotiation Freedoms for
Requirements Engineering

William N. Robinson
Stephen Fickas

CIS-TR-90-04
April 6, 1990

Abstract

Requirements and specification acquisition are intertwined processes of
conflict management. Within an individual, or within a group, conflicting
requirements must be reconciled and specified. We propose three freedoms
to aid requirements and specification acquisition: freedom of preference,
freedom of conflict, and freedom of compromise. These freedoms imply
the need for multi-agenl requirements, multi-agent specifications, and re-
quirements negotiation. We have incorporated these freedoms and their
implications into cur model of requirements engineering. Requirements
are negotiated in the context of combining multiple specifications. This
process is aided by integrative reasoning, our computer counterpart to a
type of negotiation behavior. By providing the analyst with computer-
aided-negotiation methods, we directly support the intertwined processes
of requirements and specification acquisition.

Department of Computer and Information Science
University of Oregon

Negotiation Freedoms for

Requirements Engineering

William N. Robinson
Stephen Fickas

Department of Computer and Information Science,
University of Oregon, Eugene, OR, 97403, U.S.A.

Send comments to robinson(@cs.uoregon.edu

ABSTRACT

Requirements and specification acquisition are intertwined processes of conflict manage-
ment. Within an individual, or within a group, conflicting requirements must be recon-
ciled and specified. We propose three freedoms to aid requirements and specification
acquisition: freedom of preference, freedom of confliet, and freedom of compromise. These
freedoms imply the need for multi-agent requirements, multi-agent specifications, and
requirements negotiation. We have incorporated these freedoms and their implications
into our model of requirements engineering. Requirements are negotiated in Lhe context
of combining multiple specifications. This process is aided by intergrative reasoning, our
computer counterpart to a type of negotiation behavior. By providing the analyst with
computer-aided-negotiation methods, we directly support the intertwined processes of
requirements and specification acquisition.

1. Introduction

Typically, requirements acquisition consists of eliciting “‘correct’ and *“‘consistent’
descriptions of user desires. Many methodologies, languages, and tools support this para-

digm. Unfortunately, while simplifying automation, this paradigm binds the hands of the
analyst.

Analysts require freedoms. Freedom from implementation, completeness, and con-
sistency[3,36]. Analysts need to specify what is required, without speaking of how to do
it. Now, analysts require a new freedom: the freedom to negotiate

DRAFT

[5

A single user can express conflicting and inconsistent requirements. Multiple users
exacerbate this problem by disagreeing about requirements. Aiding their negotiation has
been outside of software engincering. Consequently, user decisions and rationale are lost
while their effects live on. Users are left to wonder about strange ‘‘features’”. Worse still,
maintainers may change features without understanding the (possibly dire) outcome.

We strive to overcome these problems by modeling and assisting requirements nego-
tiation. Specifically, we address
® acquiring preferences, and
e managing conflicls.

By doing so, we support the process of deciding what to specify while recording the
rationale for future use.

Analysts need the freedom to disagree. Having incorporated aspects of negotiation
into a specification methodology, we propose three negotiation freedoms for acquisition:

(1) Freedom of Preference

(2) Freedom of Conflict

(3) Freedom of Compromise

These freedoms have three direct implications:

(1) Multiple Requirements

(2) Multiple Specifications

(3) Spectfication Negotiation

We argue for these freedoms and their implications using theories from both computer

science and the Social and Decision Sciences. We illustrate their usefulness with an exam-
ple.

We present a negotiation design method. It combines domain modeling with
specification analysis. Various user perspectives of requirements are represented.
Specifications are derived for each perspective. Their components support user require-
ments while exhibiting domain interactions. Through specification integration, require-
ments are negotiated in the system context. This approach addresses the intertwining of
conflicting requirements, conflicting specifications, and their negotiation.

In this paper, we use a transcript excerpt to illustrate problems of conflicting user
requirements (§ 2). Related research follows (§ 3). Then, our Multiple Perspective
Specification Design (MPSD) methodology is presented (§ 4); it uses negotiation {reedoms
to aid resolution of conflicting requirements. Automated support for MPSD (§ 5) and an
automated example (§ 6) follow. Finally, we conclude that requirements and specification
acquisition are intertwined processes of conflict management (§ 7).

2. Acquiring Requirements

Three major tasks of requirements acquisition are: (1) acquiring user goals, (2) speci-

fying those goals, and (3) integrating divergent goals.! Consider the following transcript
of an initial dialogue between a systems analysts (A), a manager (M), and a user (U).
They are speaking of an admissions management system.

!Goals are flexible requirements. Unlike constraints, they allow for partial satisfaction. This type of re-

quirement is needed for specification negotiation (§ 4.3). In this paper, requirements are comprised of goals
and constraints.

DRAFT Submitted to TSE

DRAFT 3

79:U As tt1s now, the variety at least, | get to take my eyes away {rom the computer. I'm spending half of my ¢
ttme writing letters on the computer, and to spend the other half putting information into the computer, _.

413U Is the purpose to eliminate the card file?

4l-4A Yes Yes

415U Then I'll just restate my original objection

416 A Right

4170 . of sitting in front of the computer alt day and entering this information is exceedingly boring .
418 A Yeah

419U . _and very hard on the eyes.

42004 Right. Well, for one thing you wouldn’t be entering the information. And I admit that there’s no way around

looking at a computer screen il this is automated So, if that's real distasteful to you, then that could be a
problem.

421°'M Weren't you talking about having the computer print cards with all the information ..
422°A That's true.
423 M Or, just generate a hard copy so that you have some backup

424°A That’s true, but I guess we'd have to think about it more, it seems like the best reasons for doing this-ah,
that's true, maybe a card file would be useful. It seems to me that a person that likes to use computers, one of
the best reasons to have this automated is because it's a lot easier to get access to information rather than
looking through the log file or card file.

425U 1 think [find it personally easier to pull cut a card file, to get the name alphabetically than it is to punch it
into the computer and wait for it to come

426 A Yeah, night

The analyst, A, supports typical goals of an MIS system, e.g., automated filing. However,
U has other goals. She desires to work away from a computer at a variety of tasks. Per-
ceiving the specified system as conflicting with her goals, she negotiates. At issue is the
amount of computing time in which U must engage. She trys to reduce her computer
time by stressing the need for a card file. The analyst gives in. Interactions 424-426 exhi-
bit the compromise: a card file will complement the automated system.

The above interaction was typical in acquisition protocols we conducted[19].
Conflicts arose mainly from the pursuit of goals, not because of mistakes. Such conversa-
tions are similar to contract negotiations: parties interact to gain a mutually beneficial

outcome. Unlike contract negotiation, requirements negotiation is rarely investigated or
even acknowledged.

Once goals are acquired, they must be met in a specification. Complex specification
involves negotiation amongst a group of analysts(4,8]. Each analyst represents a user’s
concern or a domain of knowledge. These concerns may be initially sketched out in per-
sonal specifications. Later, they are integrated into the delivered specification.

Often, one individual stands above the rest with skills of: interdisciplinary informa-
tion integration, communication, and motivation. In one study, such individuals had
knowledge which “...allowed them to integrate different, sometimes competing, perspec-
tives on the development process."—p.l‘l?lrfS]. Such analysts serve the role of arbitrator
or mediator of conflicts. But, while they do apply negotiation knowledge, they do so
without support. Analysts have *..lamented having no tools for capturing issues and

tracking their status...Failure to resolve issues frequently did not become obvious until
integration testing.”-p. 1278]8].

Unfortunately, requirements negotiation remains largely unexplored. Next, we dis-
cuss work to date.

3. Related Research
Until recently, very little research has directly addressed the presence of negotiation

behavior in requirements acquisition. Even those that have, neglect to addressed negotia-
tion subprocesses|s, 20). However, negotiation is generally recognized to exist; Ross

DRATFT Submaitted o TSE

DRAFT 4

typifies its early treatment.

To succeed, the task of the analysis must be properly managed and coordinated,
and the requirements definition effort must embody multiple viewpoints. These
viewpoints may be overlapping and, occasionally contradictory-p. 10[49].

Later, Scacchi elevated the importance of negotiations.

Problems found in specifications may be due to oversights in their preparation or
conflicts between participants over how they believe the system should
function...Each of these questions point to tacit or explicit negotiations between par-
ticipants that must occur in the course of getting system specifications developed.
Subsequently, the outcome of these negotiations will shape how the specifications
will be.-p. 54/51].
Recently, a survey of large systems design concluded, *‘...developing large software sys-
tems must be treated, at least in part, as a learning, communication, and negotiation
process.”’-p. 1282[8]. However, only now are empirical and modeling studies of
specification concerned directly with negotiation.

Bendifallah and Scacchi[5] observed five student teams building similar software
specifications over a ten day period. As part of their analysis, they hypothesized six
categories of specification behavior. Three of these categories are particularly relevant:
separating a problem into sub-tasks, resolving conflicts, and integrating results. This is
encouraging and supportive of our methodology. However, we require a more formal and
detailed representation than that given by Bendifallah and Scacchi to build specification
design tools.

Finkelstein and Fuks view specification design as a multi-party negotiation prob-
lem{20]. They have developed a formal model of negotiation dialogue. Constrained by
dialogue rules, knowledge sources remove inconsistent beliefs through communication.
This view of specification as a multi-agent communication task is encouraging. However,
such protocol oriented models speak to only a narrow aspect of negotiation. They avoid

identifying conflicts, representing conflicts, and generating resolutions; these are basic
concepts of negotiation.

Our research concerning negotiation originated with an automated assistant, Oz,
which embodied Feather's parallel elaboration specification methodologyltltl]. Simply
stated, his methodology calls for independent development of separable functional
specification aspects[16,17]. With it, independently developed designs are not con-
strained to have consistent interfaces. While this simplifies design, it complicates design
integration. In our approach, integration is assisted through negotiation tech-
niques|13, 45, 46].

We view specification design as an interplay between the acquisition of user goals
and their representation in a specification language. The first process entails formalizing
what users want to achieve (requirements acquisition); the second entails formalizing how
their needs can be met (specification acquisition).?

Only through operational prototypes can goals be discovered to interact.® A proto-
type is a proposed structure satisfying a variety of goals; its components support goals
and exhibit interactions. Where a complete model of goal interactions is lacking, analysis
of prototypes is essential. Specifications serve this role in requirements analysis.

'2Such specifications do not ‘Sgenerally) include software design or implementation decisions. They
describe relations of the system and its environment[3).

3Goal interaction descriptions, such as probabilities of competition{l0] or interaction-resolution

pairs{56}, are useful. But, they combinatorically increase with the number of goals[37] and depend on ever
changing technology(26, 63].

DRAFT Submitied to TSE

DRAFT 5

As a specification is created, it will become apparent that some goais have represen-
tations which interfere while others do not. Their interactions drive designers to seek
alternative representations, relax goals, and drop goals[11]. This is conflict management,
a process of negotiation.

Our approach can be viewed as one of planning: establish user goals and attempt to
find a plan that will map the goals into an operational form. However, it differs from
traditional planning techniques in important ways:

(1) Instead of fixed state descriptions, our goals allow for partial satisfaction through
preferences.

(2) Instead of a single agent, we take into account multiple agents, each with its own
goal perspective.?

(3) Instead of constructing a single plan, we construct a plan for each agent (i.e., for
each perspective) and integrate the plans into a unified whole.

The MPSD model addresses two types of conflict: conflicts within a single agent and
conflicts among multiple agents. Multi-agent planning research has mainly focused on
conflicts within a single plan. Conflicts are resolved by coordination using specialized pro-
tocols|7, 9,12, 13, 23, 53|.

Conflicts between agents with different goals (e.g., agent-1 wants X and agent-2
wants not-X) requires another type of knowledge: conflict resolution knowledge. Multi-
perspective research has focused on general architectures}25,31] and conflict resolution
knowledge. Multi-perspective resolution knowledge generalizes the resolution methods of
traditional single-agent planners[50, 54, 60] by directly addressing conflict among compet-
ing concerns{29, 32, 56, 57].

We too are focused on multi-perspective negotiation. Qur architecture generalizes
those above in its combination of analytic search, heuristic improvement, and case-based
reasoning. (We also introduce a new method of heuristic improvement called the Search
for Compensalion.) MPSD derives its generality from its use of integrative reasoning.
Like[29, 32] we test our negotiation model on design problems, specifically specification
design. The context in which it is applied is presented next.

4. Multiple Perspective Specification Design

In the following subsections, we present negotiation [reedoms, our specification
design methodology, and supporting arguments. Section 5 presents automation of MPSD.

There, more specific arguments are made concerning our model and conflict management
techniques.

4.1. Negotiation Freedoms

Using current specification methodologies, analysts cannot represent and negotiate
conflicting requirements. Yet, analysts must be free to represent preferences, conflicts,
and compromise(39)].

‘We use the term agent to represent a class of users with similar concerns; multi-agent means multiple
concerns (henceforth, multi-perspeciive). In contrast, Al planners view an agent as an entity or task to be
controlled; multi-agent means multi-tasking (i.c., coordinating or scheduling multiple entities or tasks to
achieve a goal set from a single pcrspectl'vs[%]. Further, in planning and distributed problem solving]6]
agents are often expected to cooperate to achieve common goals[48]. While we do assume a limited amount

of cooperation, our agents are encouraged to state selfish needs; they are not constrained to have common
goals.

DRAFT Sulmitted to TSE

DRAT'T 6

Freedom of Preference
Some requirements are more important than others. In our model, goals represent
requirements. Thus, goal preferences must be expressible. Also, there can be alter-

nate means to specify a goal: implementation preferences must be expressible.’

Freedom of Conflict
Conflicts of substance occur during specification. These are not just syntactic mis-
takes, but reflect variant semantics. Also, conflicts can arise from inconsistent
preferences. Goal, preference, and specification conflicts (and their resolutions) must
be expressible.

Freedom of Compromise
When conflicts arise, users must be able to reduce their demands or accept substi-
tute satisfaction; they must be able to delay their commitment[20]. Analysts must
be free to derive and represent compromised goals.

Together, these freedoms have direct implications:

Multiple Requirements
Preference conflicts, concerning both goals and their specification, give rise to multi-
ple perspectives of requirements. For example, user groups may internally agree on
goals, but disagree between groups. To address their negotiation, it is useful to con-
sider conflicting goals as interactions among alternative requirements perspectives.

Multiple Specifications
Multiple specifications are implied by both (1) alternative goal implementations and
(2) variant requirements perspectives: users need to compare various specifications of
a goal, and user groups need to represent their variant requirements perspectives in

specifications. Specification conflicts are the conflicting means of variant perspec-
tives.

Spectfication Negoliation
Conflicts imply negotiation. In MPSD, conflicts are detected between specifications,
negotiated between goals, and implemented back in specifications. We use
specifications to detect many goal interactions. Negotiation could take place solely
in the goal space if all interactions were known. But, if we had such complete

knowledge, the specification process would be of a different kind, i.e., akin to an
application generator.

Our MPSD research concerns incorporating these freedoms into a specification methodol-
ogy and providing automated support.

4.2. MPSD

Our Multiple Perspective Specification Design (MPSD) methodology entails (1) a
domain model, (2) user perspectives, (3) specifications, and () integration.
Domartn Model
The domain model is our requirements language. It represents knowledge of goals
and their implementations. Also, some types of goal interactions are represented,
e.g., inherent conflict.
Perspectives

Perspectives represent user motives. They consist of goals and constraints derived
from the domain model. The derivation entails describing goal and implementation

5In this paper, implementalion refers to (possibly abstract) means of specifying goal satisfaction; not
to be confused with software implementation.

DRAFT Submitted o TSE

DRAFT 7

preferences.
Specifications _
Specifications are perspective prototypes. Their components implement the goals

described in perspectives. Through their operationality, specification components
reflect relations implicit amongst the goals they support.

Integration
Integration is the process by which specifications are combined and goals are nego-
tiated. Diflerences detected between specifications reflect possible conflicts between
perspectives. Alternative goal implementations can sometimes remove these
differences. However, they often are the result of goal conflicts. These conflicts can
be resolved through integrative reasoning and then respecified. These techniques are
illustrated in sections 5 and 6.

In sum, analysts represent the goals of various user groups in perspectives and derive
supporting specifications. The specifications are integrated, during which conflicting goals
are negotiated. Finally, their resolution is specified. The result is a multi-agent nego-
tiated specification.

As an example, recall the conilict of section 2. Using MPSD, analysts can indepen-
dently represent the perspectives of the manager and the user. Next, specifications are
derived from the perspectives. These specifications represent “ideal’ systems in that they
exclude the needs of other agents. For example, U’s specification only has an indexed
card file system; A’s only has an on-line database. Specification integration follows:
differences are noted; conflicting goals are determined; resolutions are proposed; and a
resolution is accepted. In the example, the result was both a card file and a computer
system.

4.3. Supporting Structures

We support negotiation freedoms by modeling integrative behavior. Integrative
behavior is cooperative behavior observed in many profitable negotiations. The following
substructures support requirements negotiation. They do so by taking part in iniegrative
reasoning, the computer counterpart of integrative behavior. The next subsection places
them in the context of integrative behavior.

Goals

Goals are nonoperational descriptors of achievement in a domain[38]. They are

linked together by their implementation relations. For example, the goals LoanPeriod,

MaterialLimit, and Renewal are linked under the goal WorkingSet because they are imple-

mcntat)ions of it.® (The leaves of this goal graph can be operational specification seg-
ments.

Goal Preferences

Some goals may be inherently preferable over others, e.g., Life over Death. When such
goal preferences are expressed in a domain model or perspective, it constrains all
implementation preferences to bear the same order; i.e., Life will always be preferred
over Death in the implementation of any goal.

Implementation Preferences

An imp_lementation preference orders implementations relative to the satisfaction of
a particular goal. For example, a Wage implementation preference could be

*Working set is a library science concept. To support research, a library must allow patrons to use a

set of materials for sufficient time. This can be achieved through loan periods, material renewal, and multi-
ple material borrowing(30].

DRAFT Submitted to TSE

DRAI'T B

($1,$2,...81000,...) with acceptance increasing with dollar value. However, employers
may have an inverted preference: {...$1000,...,$2,$1)! Two goals that are ordered the
same in all implementation preferences can be placed in a goal preference relation.
Analysts use implementation preferences to try to maximize satisfaction of user per-
spectives. They aid in the evaluation of substitute and compromise conflict resolu-
tions.

Ideal Perspectives
The more tdeal initial perspectives are (coupled with cooperation), the higher the
resulting achievement. Implementation preferences describe ranges of achievement.
Through their combination, implementation preferences define a multi-dimensional
search space of resolutions. Setting low aspirations reduces the search dimensions:
compromising early can lead to suboptimal achievement.

Goal Protolypes: specifications
While goals are eflective descriptors of needs, they are inadequate for interaction
analysis. Interaction knowledge must be known a priori or gleaned from linked pro-
totypes. Specifications are eflective prototypes. Through analysis of operational
components, interactions can be detected and traced to goals.

Preference Feedback

Choosing a resolution from a set of alternatives can be difficult. Considering alterna-
tives by their satisfaction of goal can help. However, people still have difficulty
understanding goal interactions and comparing alternatives. They exhibit intransi-
tive preferences: first, preferring A over B over C; then, B over C over A. Such deci-
sions are context dependent. However, an interactive procedure which provides feed-
back of goal interaction can help. Such a procedure can aid an analyst in deriving
preferences over user implementation preferences. These tmplementation meta-
preferences are used to choose a final resolution.

These structures were derived from our attempt to automate integrative behavior. This
behavior and the theory of its support is introduced next.

4.4. Negotiation Requirements

Productive inlegrative bargaining is more likely to occur in negotiations involving
cooperative parties employing a strategy of flexible rigidity[42]. This strategy consists of
incorporation, information exchange, and search. Incorporation is the act of augmenting
a proposal with some element of an opposing, previously made, proposal. Information
exchanges are communications which provide insight into another party’s motivational
structure (goals, values and constraints). Search involves jointly considering a variety of
proposals. Parties present them based entirely on their own perspective with little con-
sideration as to why others favored or rejected previous proposals. Each of these indivi-

dual aspects, and the strategy of flexible rigidity as a whole, have substantial empirical
support(42].

We have mapped the strategy of flexible rigidily onto specification design. Proposals
are specifications; motivational structures are perspectives; search and information

exchange are part of integration. Parts of the strategy are automated through mtegrative

reasoning (§ 5), our model of integrative behavior. Belore its presentation, we justify its
use.

4.4.1. Implementation Preferences
Integrative agreements can only be achieved by communication of real needs[59].

Studies conducted or reviewed by Pruitt agree[42]. Most situations benefit from the
exchange of preference and numeric information, be it explicit or implicit. More detailed

DRAFT Submitied to TSE

DRAI'T 9

information exchange involving ‘‘goals, values, and priorities is theoretically capable of -
transmitting rich information from which integrative formulas can be devised. However
our data suggest that it has limitations...”-p. 171[42]. Pruitt postulates these
difficulties are due to: parties uncertain of their own motives, lack of trust by listeners,
and poor interpretation of statements by listeners.

Zeleny proposes implementation preferences as the basic expression of needs. Prefer-
ences ‘‘represent directions of improvement or preference along individual attributes or
complexes of attributes”-p. 15(63]. These flexible goals allow for maximal achievement,
since they don't pick a value to attain e priere. If preferences are unavailable when goals
conflict, resolution evaluation is impossible. For example, one needs to know that a
$14,000 car may be preferred over a $16,000 car if a $15,000 car can’t be had; one prefers
to minimize expenses. Preferences are particularly useful in domains where many goal
interactions are unknown, and consequently conflicts are common. Requirements acquisi-
tion is such a domain.

Implementation preferences are used two ways. First, to evaluate achievement.
When goals interfere, feasible implementations may only support submaximal achieve-
ment. Such implementations are evaluated through preferences. This helps guide resolu-
tion search.

Interpolation is a second way preferences are used. Alternative implementations can
be plotted in a n-dimensional preference space. Each axis is a preference scale. Alterna-
tives are positioned along each scale based on their preferred goal implementation status.
New alternatives can be sought between existing preferences. Nondominated alternatives
can be identified. These ideas aid resolution search.

4.4.2. Goal Perspectives

Zeleny's displaced ideal theory defines a search space of resolutions and an ideal to
obtain[63]. Alternatives are defined by their ability to satisfy a goal based on implemen-
tation preferences. These preferences form the dimensions of a resolution search space.
The ideal is the Einfea.sible) composite of each preference’s maximum achievable value
within the feasible alternatives, i.e., the best known implementation for every goal
without any of the negative interactions.

A's prelerence

&
~file &

X*=ifile & = } &
computer O il s ot et
file & .
computer X
file &

—compuer
L . % o E_ U's preference
E 9E «
L L
1 = =

Figure 1. Searching for the Ideal Resolution.

DRAFT Submitted to TSE

DRAFT 10

Figure 1 illustrates Zeleny’s ideal using interactions 79-426 from § 2. From the pro- -
tocol, we infer that U desires (1) only a card file and no computer. But, A desires (2) only

a compuler and no card file. The composite infeasible ideal, depicted x°, includes both
statements 1 and 2. Through search, x" is displaced in favor of the feasible ideal, x**.
The three remaining points are other feasible alternatives. Together, the feasible alterna-
tives circumscribe the space of possible, yet undescribed, alternatives. The bold line
represents compromise alternatives. Such alternatives are nondominated since no alterna-

tive is between them and the ideal, x*. Despite being infeasible, describing the ideal is
useful.

The search for the displace ideal is based both on moving away from an anti-ideal
(the worst of all issues) and moving toward the ideal.

As all alternatives are compared with the ideal, those farthest away are removed
from further consideration. There are many important consequences of such partial
decisions. First, whenever an alternative is removed from consideration there could
be a shift in a maximum attainable score to the next lower feasible level. Thus, the
ideal alternative can be displaced closer to the feasible set, Similarly, addition of 2
new alternative could displace the ideal farther away by raising the attainable levels
of attributes [goals]. Such displacements induce changes in evaluations, attribute
[goal] importance, and ultimately in the preference ordering of the remaining alter-
natives. — p. 143[63].

Search starts at the anti-ideal and moves toward the ideal. Near the ideal there is a set
of nondominaled alternatives; these alternatives are equal distance from the ideal. One of
these alternatives must be chosen (a compromise) or a negative interaction must be
removed. Removing a negative interactions moves the nondominated set closer to the
ideal. This method is presented in section 5.5.2.

Arrow’s axiom, influential and controversial in decision theory, states that only
Jeasible aliernatives have influence on a rational decision[2]; infeasible ideal resolutions
should not be considered. It implies that perspectives should be unified before
specification construction begins; that ideal prototypes need not be built. However, while
attempting to verify Arrow’s axiom experimentally, Festinger and Walster obtained evi-
dence to the contrary[18]. Infeasible alternatives do have an influence on preferences.
Thus, specifications should be attached to perspectives early. They influence user prefer-
ences and, through their operationality, provide preference feedback. Specifying from
multiple perspectives elucidates user goals. It helps requirements acquisition.

The strategy of combining extreme requirements perspectives assists in: (1) exploring
specifications, (2) ranking specifications, (3) deriving maximally feasible specifications,
and (4) predicting the existence of ideal specifications. This last case is of particular
importance; the very description of Lhe ideal alternative may point to its existence or
suggest its achievement; cf. Zwicky’s morphological analysis[%l or Lenat's discovery
mechanism(33-35]. Our dissolution heuristics (§ 5.5.2) serve this role.

4.4.3. Preference Procedures

Often, many nondominated resolutions exist. One of two basic methods are typically
used to choose a final resolution. Static analysis, such as utility analysis, can compute
the best resolution. Or, a tool can interactively assist a decision agent (e.g., an arbitra-
tor). These methods are considered in turn.

In utility analysis, agents define a function mapping implementations onto a
scale[28]. Agents must also specify the mapping of goals onto a scale. Determining a
compromise becomes simply the maximization of the scaled preference functions.

DRATI'T Submitted to TSE

DRAFT 11

Ir1 1Pl

ir3

P2

‘Illllillli[ll'

(a) {b) {c) (d)

Figure 2. Choosing a Compromise with IDEA.

Unfortunately, utility theory is only relevant when people maintain consistency in
their preferences; utility functions must be transitive-this is a direct result of the addi-
tivity assumplion, i.e., the summing of weights[l]. There is evidence to the contrary; peo-
ple display intransitive preferences(1] and are poor at combining relative strengths in a
consistent manner[52]. Zeleny's theory explains this intransitivity as changes in the dis-
placed ideal which causes a reordering of alternatives during resolution search[63]. He
complements his search strategy with an interactive decision aid.

Zeleny's Interactive Decision Evolution Aid (IDEA)[63] assists the analyst in choos-
ing a nondominated resolution. Here too, implementations must be mapped to a prefer-
ence scale (see § 5.4). However, implementation meta-preferences are obtained through
search. IDEA graphically displays user implementation preferences. The closer all poten-
tials are together and to 10075, the better the alternative. {The ideal is achieved when all
implementation preferences are at 100%5). However, the analyst can choose an alternative
that has significant variance in potentials reflecting trade-offs between user implementa-
tion preferences.

Initially, all potentials are at zero percent. The analyst moves toward the ideal by
increasing potentials. Figure 2 illustrates this process. Interactions surface when increas-
ing an implementation prelerence decreases another. For example, moving from (b} to (c)
in figure 2 shows the trade-ofl between IP, and IP,. Through this procedure, implementa-

tion meta-preferences are assigned.

Meta-preferences reflects a weighting between users. I one user has more authority
than another, his preferences will be weighted more heavily. However, users typically
have areas of authority. For example, a manager can have many of his preferences
heavily weighted. Yet, a worker can have some of her preferences weighted more where
her expertise applies. While one can model some preferences and meta-preferences a
priori, many such decisions are context dependent[le. This process of modeling agents,
deriving meta-preferences, and choosing a compromise is called arbitration{43|.

IDEA allows for intransitive preferences. It supports exploration of goal interactions
and comparative analysis. Trade-offs are considered in the actual context, not a priori.
Users can see the consequences of their preferences. Essentially, it’s an interactive
abstract prototyper of goal implementations, i.e., 2 requirements prototyper.

DRAFT Submitted to TSE

DRAFT 19

4.4.4. Summary

Integrative bargaining helps people derive beneficial solutions to their interacting
needs. It consists of incorporating opposing proposals; communicating goals, values, and
constraints; searching through alternatives; and intransitive preferences. These complex
interacting behaviors result in high profits when individual participants are stubborn in
their aspirations and seek innovative solutions. If participants seek an expedient resolu-
tion by abandoning goals early, lower satisfaction will result.

MPSD is the result of our effort to reap benefits of an integrative approach. MPSD
representations and processes map onto the elements of integrative behavior. Through
this correspondence, MPSD manages requirement conflicts and preferences. It frees the
analyst to represent:

e Variant Goal Preferences

e Variant Implementation Preferences

¢ Implementation Meta-Preferences

These expressions allow freedom of preference, conflict, and 'compromise.

5. Automating MPSD

Having described MPSD, we now characterized its automation. Specifically, we
present a generic integrator (GI). This facility unifies specifications through conflict
management.

A GI has five general tasks to complete:
(1) Correspondence Identification
(2) Conflict Detection
(3) Issue Formalion
(4) Conflict Resolution
(5) Resolution Implementation
and two major types of knowledge:
(1) Domain Goal Knowledge
(2) Conflict Resolution Knowledge

The following subsections describe the tasks in turn. Domain goal knowledge is intro-
duced as part of the Issue Formation task; conflict resolution knowledge is introduced as
part of the Conflict Resolution task.

5.1. Correspondence Identification

Correspondence identification determines which entities in two specifications denote
the same object. This problem differs from graph isomorphism 21} since it involves a par-
tial match; i.e., corresponding entities are not exactly equivalent. In fact, the power of
integrative reasoning is derived from the differences between corresponding objects. Such
differences can be combined via integration.

There are three basic ways in which correspondences can be determined. First, they
can be given. Second, they can be determined from derivation records; correspondence
means being similarly derived from 2 common ancestorJAIO]. Third, entities can be arbi-
trarily placed in correspondence, then ranked by the degree their associated structures
match; e.g., the types of the corresponding objects, their substructures, and their rela-
tions with surrounding objects. The pairing structure with the highest accumulative

DRAFT Submilted to TSE

DRAFT 13

score can be chosen|62].

The third method, constraint-directed determination, can be improved by a good
initial guess and a good equivalence function. Initial correspondence can be established
during specification retrieval (i.e., for reuse); or, based on a top-down model providing
clues of possible correspondences {e.g., only place objects of the same type in correspon-

dence)[61). 7 Similarly, constraints obtained from domain knowledge or goal directed
processing can assist in determining semantic or functional equivalence of specifications
components. For example, functional knowledge of libraries can be used to determine the
correspondence between a borrower and a patron, BORROWER=
PATRON(14, 22, 27, 61, 62].

5.2. Conflict Detection

Once correspondences have been found, differences must be determined. Such
differences are called feature conflicts. Feature conflicts can be combined through negotia-
tion and placed in the integrated specification.

Conflicts are determined by feature comparisons between correspondences and
amongst the remaining noncorresponding entities. These differences can be the product of
the correspondence identification process or of direct comparison. After conflicts are
determined, they must be characterized in a way which allows for their reconciliation.
This is tssue formation.

5.3. Issue Formation

An issue is a domain goal, recognized by all agents involved, as subsuming the
direct interests each agent has in a conflict, and excluding extraneous interests of that
conflict. We distinguish feature conflicts, which tend to imply mutual exclusion, from
tssues which exhibit a range of behaviors.

Consider a simple conflict concerning a book loan period. From a patron’s perspec-
tive, loan periods should be as long as possible; this insures their ability to enjoy bor-
rowed resources. On the other hand, a circulation librarian desires to insure equal access
ol resources to all patrons; hence, shorter loan periods provide higher turnover which
enables greater access to a large population of patrons. If both parties expressed their
preferences, we might observe the following feature conflict.

Patron: “Loan periods should be six months!”
Librarian: “Absolutely not! They must be two weeks!”

Above, “six months # two weeks” is not the issue, Loan Period is the (most direct)
issue[46]. Furthermore, by issue formaiion we mean the initial process by which issues
are derived from the given conflicts. Any further processing used to bring in other issues

will be considered part of conflict resolution. Conflicts are characterized by issues to
enable profitable resolutions.

Like correspondence identification, there are three basic methods of issue formation.
First, the linkage from feature conflicts to issues can be given. Second, derivation
records can be created during specification linking components to issues; conflicts are
determined by tracing from conflicting features to their common issues[46]. Finally,
heuristics can use feature conflicts with constraints derived from the context to recognize

| "Specifications and perspectives can be reused by retrieval and integration. See[46] for a simple exam-
ple.

DRAFT Submitied to TSE

DRAFT 14

issues. This is essentially plan recognition. It is complicated by multiple agents and their -
interacting plans. The recognizer must map the conflicts to a common set of goals for
negotiation.

5.4. Domain Goal Knowledge

A conflict characterized as a choice between mutually exclusive alternatives is
unlikely to be resolved adequately. Instead, conflicts should be seen as interfering means
of differing goals. In nearly all but idealogical arguments, this is true.

Next, we present knowledge structures to characterize conflicts and aid in their reso-
lution. They are based on structures manipulated by Oz in its application of integrative
reasoning[47]. Hence, their presentation is somewhat biased. Yet, a GI must use similar
structures to characterize conflicts and reason about their resolution.

The structures consist of goals, implementation preferences, and implementation
meta-preferences as presented in section 4.3. However, now we extend our model to
include preference scales and goal relations. These concepts are used to combine prefer-
ences and constrain resolution search.

5.4.1. Preference Scales

Comparing alternatives amongst themselves and with the ideal requires the
definition of a distance function, d. To reduce the effects of incomensurate scales on d, we
scale implementations by the degree they fulfill their goal[83]. 8 For example, a bowling
score of 300 fulfills PerfectBowlingScore 100%. Scaling preferences by partial goal
fulfillment allows d to combine a variety of preferences in a measure of distance. How-
ever, partial fulfillment can be difficult to define.

For example, consider WorkingSet. Implementations LoanPeriod, MaterialLimit, and
Renewal cover WorkingSet; they are different ways to give users access to materials. Prefer-
ences are defined on the power set of covering implementations.® A user might prefer
WorkingSet implementations by the number of component implementation they include:!°

(null,Renewal MaterialLimit,LoanPeriod,[Renewal MaterialLimit|,[MaterialLimit,LoanPeriod]
[Renewal,LoanPeriod],[Renewal MaterialLimit,LoanPeriod])

Clearly, {Renewal MaterialLimit,LoanPeriod] is 100% and null is 095. However, values between
can be scaled a variety of ways. Now, users define both preferences and scaling.

5.4.2. Goal Relations

Scaling provides a distance measure, which in turn defines the ideal, anti-ideal, and
the nondominated set. The dimensions of the scales describe the broad bounds of resolu-
tion search. These bounds may be constrainted through goal relationships. Such relations
also provide opportunities of conflict dissolution and compensation (§ 5.5.2).

8For example, changing a scale from meters to kilometers can alter the perception of the ideal.

°Wea}ist component implementations while implicitly recognizing they may be combined in the sup-
port a goal.

) '"Prel'ergnces; are enclosed in parenthesis with better values to the right: (1,2,3,...). When a value con-
sists of multiple implementations, they are enclosed in brackets: {(1,2],(3,),...). Equivalence sets (no prefer-
ence) are enclosed in braces: (1,{2,2.0},3,...).

DRAFT Submitied to TSE

DRAFT 15

Besides the implicit support relation between implementations and goals, Oz uses
four other relations: inherent conflict, obstruction, partial obsiruction, and linear correla-
tion. A GI would use these along with more expressive relations.

(1) Inherent Conflict '
Causality determines if goals inherently conflict. For example, definitional opposites:
Hot +—#— Cold, Light +—s—+ Dark.

(2) Obstruction
When all implementations of goal A inherently conflict with all implementations of
goal B, then A and B obstruct each other. Obstruction propagates inherent conflict up
the goal graph.

(3) Partial Obstruction
When some implementations of goal A inherently conflict with some implementa-
tions of goal B, then A and B partially obstruct each other. Partial obstruction also
propagates inherent conflict up the goal graph.

(4) Linear Correlation
Linear correlation is a very specific type of relation. It demonstrates how detailed
goal relations can be represented. Goal A is linear to goal B if both have only one
preference scale and the implementations on the two scales exhibit a linear relation-
ship; A linearly supports B when the relation is positive, A linearly obstructs B when

the relation is negative. For example, EmployeeHours can linearly support EmployeeDol-
larCosts.

Relations based on inherent conflict or causal correlation (e.g., linearity) divide the
preference space into feasible and infeasible implementations. ‘““Ideal” resolution search
only picks feasible implementations, while using infeasibles to rank them.

For some domains, many casual relations are known. For them, more specific rela-
tions can be defined. For example, dependent conflicl: two implementations not
inherently conflicting (e.g., [Gasoline,Oxygen]) but, combined with another, they obstruct a
goal (e.g., [Gasoline,Oxygen,Heat] —* Safety).

The more relations we can express about a domain, the better our model. However,
we must be careful about expressing noncausal confiicts as they constrain the initial
search dimensions. Also, our resolutions methods are not directly applied to inherent

conflicts. So, when A «—w— B is based on intuition, an integrative resolution may exist,
but will not be sought.

Causal relations aid in detecting goal interactions. Yet, even precise mathematical
relations can be inadequate. We cannot model domains such that we can predict all
interactions of goal implementations(55,63). Except in simple domains, we can always
invent new implementations having new interactions[26]. Thus, we analyze prototypes
to detect goal interactions.!!

When goals are found to interfere during integration, we search for alternative goal
implementations. One could actually build and compare specifications; however, that
would be very inefficient. We would rather search through preference space which
abstracts actual specification interactions. However, this search is only as precise as the
causal relations linking domain goals.

When a satisfactory resolution cannot be found, Oz applies compensation or disso-
lution methods. Now, only the partial obstruction relation is used to find compensation.

If a user can’t get satisfaction of goal A, goals that partially obstruct A are considered for
negotiation (see § 5.5.2).

"This does not preclude a recognition procedure which caches such analysis.

DRAFT Submitted to TSE

DRAFT 16

Satisfaction is assessed with perspectives. Users needs are expressed through domain -
goals and relations. A perspective is a ‘‘copy’’ of the domain model marked with user
preferences. Preference satisfaction can be determined by tracing the links connecting
specification components to goals (§ 5.3). Good specifications achieve near the maximum
for most preferences. Perspectives represent user requirements; they evaluate
specifications; they allow for reasoning about alternate means when requirements are not
met. That reasoning process is presented next.

5.5. Conflict Resolution

A feature conflict appears when users support interfering specifications. Users can
cooperatively explore a space of specifications constrained by the environment and their
understanding of it. Opportunity for conflict resolution stems from (1) differences in
preferences, and (2) misunderstandings of the domain.

Conflict resolution aims to dissolve conflicts, and if that fails, to find “fair"
compromises. In both cases, negotiators use two basic insights.

e Separation of Means and Ends
Negotiators recognize that most conflicts concern means, i.e., methods by which
goals are pursued. Separation of means from ends, the desired end states, allows one
to accept substitute means to achieve one’s goals: sometimes these alternate means
are superior to the original.

e Search for Alternatives
Once a conflict situation is understood to concern n different goals, one can
effectively search this n-dimensional space for compromise alternatives. Furthermore,

knowledge of the dimensions (goals) and their interactions aids the formation of
novel alternatives.

These two insights form the gist of integrative reasoning. Resolution space was intro-
duced in section 4.3, while separation of means from ends is captured in Issue Formation
(§5.3) and implementation preferences (§ 4.4.1).

The following subsection will introduce an analytic method which derives resolutions
in preference space. The multicriteria simplex method, as employed by Oz, uses only
linear constraints and simple preferences. After its presentation, we introduce methods
which remove, reduce, or compensate conflicts.

5.5.1. Analytic Methods

While heuristic methods are mainly concerned with altering the negotiation situa-
lion, analytic methods try to make the best of the given situation. One method is simply
to enumerate all the possible choices and let an arbitrator pick the “best” compromise.
However, such a strategy is ineffective if the choice set is large. It is more practical to
generate nondominated alternatives. This set is usually smaller the the initial set,
thereby simplifying search. However, both the initial set of alternatives and the nondom-
inated set, N, may be infinite.

® Multicriteria Analysis
In multicriteria analysis, agents scale their implementation preferences. Then, the
method determines the ideal, anti-ideal, and nondominated set. Zeleny's multi-
criteria simplex method (MCSM) is a modification of the simplex linear program-

ming method. It allows for the simultaneous maximization of several preference
functions, cf. [63].

MCSM is efficient at generating alternatives. However, it only handles linear goal rela-

DRAFT Submitted o TSE

DRAFT 17

tions.!? Also, users must agree on a single implementation preference and its scaling for °
each goal; they can only disagree on the direction of improvement.

Utility analysis is not limited by simple preferences or linear relations. However, the
model has other limitations (§ 4.3.3). Moreover, the multicriteria model is not inherently
limited. Unfortunately, analysis tools have yet to support its generality.

Next, we consider methods which compensate or dissolve conflicts. By doing so, they
can move the nondominated set closer to the ideal.

5.5.2. Heuristic Methods

Goals should not be considered to be in conflict until so proven. This decision
theoretic idea supports the notion that one can't sufficiently model an environment to
predict the interaction of unimplemented ideas[55,63]. Except in the most constrained
worlds, one can invent new alternatives. Using this idea, we are developing Dissolution
Heuristics.

Unfortunately, some conflicts can’t be dissolved. But, compensation can be given to
those interests not met by an alternative. Our Search for Compensation addresses this
problem.

Finally, Case-Based Modification attempts to resolve conflicts by analogy. Here,
conflicting situations are recognized and matched with previously resolved disputes. Each
of these topics are presented next.

e Dissolution
Consider again the conflict over the loan period (§ 4.3) It can be dissolved by the
applying an appropriate heuristic. One could subdivide the inputs of the loan pro-
cess and distribute the loan periods over subclasses of inputs, i.e., based on patron
and book subtypes. Our Predicate Input heuristic suggests just this type of resolu-
tion. It is not specific to the loan goal, rather it uses the I/O behavior described in a
specification language to construct a resolution. Such heuristics can be considered
conflict resolving methods as in[29, 57} or patches as in[54,58]. However, they are
most closely related to the broad categories of dissolution techniques described
in[42, 60]
Note how this type of heuristic will lead us to consider other goals: resource and
patron subtypes. Moreover, their inclusion can be recorded with a specific
Justification for their existence, i.e., reconciliation of multiple loan periods. This type
of conflict-driven resolution has been observed in design. “Resolving the conflicts
among system requirements created a feedback cycle in which many groups provided
inputs or constraints that had [to] be negotiated into a design.”-p. 1277(8].

e Compensalion
Compensation also increases the number of goals under consideration. Again from
the example, instead of dealing with the one goal of loan period, we attempt to
bring in other goals which can be traded-off against each other, i.e., using integra-
tive bargaining techniques such as coupling/decoupling and quid pro quo, cf. [42].

Pruitt has defined three basic types of compensation: specific, homologous, and sub-
stitute. These run the gamut from compensation directed to the specific needs
blocked in a conflict to general compensation unrelated to the original needs
expressed in the conflict. Searching ancestors of conflicting goals is one way to derive
compensations in order of increasing generality. This is a good strategy, since the
more general substitute compensations tend to be more difficult to accept and

Nonlinear lunctions make analysis much more difficult; however, one could apply a cutting-plane

DRAFT Submitted to TSE

DRAFT 18

require greater satisfaction than direct compensation[42].

With the example, one could maintain the loan period, but in compensation do
some combination of increasing material limit and renewals; also, using the partially
obstructs relation, recall can be reduced. These goals are found by examining the
goal graph (figure 3) to find siblings of the conflicting goals. However, ultimately it
is the evaluation of whole perspectives that we want to maximize. Hence, increasing
local goal satisfaction is a heuristic which gives way to searching up the goal graph
in case of an impasse. For example, if a satisfactory adjustment of WorkingSet could
not be obtained, one might consider compensation for ancestral goals. For example,
reducing user Fees or Fines would increase the evaluation of the ancestor ResourceUsage.

e Case-based Modification
Sycara has demonstrated the usefulness of case-base modification in labor
relations—a domain where precedent based reasoning is partially dictated by the
law[56]. Using records of previous disputes which include all impasses and resolu-
tions, PURSUADER. proposes resolutions based on modifications of analogous
cases. Modifications take into account any significant differences, e.g., inflation,
location, market-share.

Both cases that have resulted in a satisfactory resolution, as well as those which
resulted in an impasse, are useful. Successful cases can be instantiated and modified
for the current context. Unsuccessful cases can prune compromises, dissolutions, and
compensations from consideration. The case-base is a cache for integration
knowledge, as well as a store of unenunciated negotiation knowledge.

Even after an alternative has been chosen, the job is not done. A resolution must be
implemented, as described next.

5.68. Implementing a Resolution

Implementing a resolution amounts to remapping goals to specification components.
This process is the inverse of issue formation and has three basic methods. First, the

— SA lmpiemantation Library
Parflally Obstructs "Efticlancy
Key Rasourca
U
=498\ 1 routagton
/sn ?“’ ./}7 ws‘t\ i Fees) mm\
Recall Loan Material Ranewal
Retrieve Remove Control Control
Material Mategial Perlod Linie Hatarial Hateclal
Exl.r.l AT” \
Permanent Temporary Sys Check ID
Remy nt
maq me Rnc::d Haterial MagRaturn Dema t Agenta
/ \ ™ 7 ¥ateris]l Ma Ha
Agents er. Agent Mag Material DemagAgent Demag
Material Hfemove loan
Agent Perlod et
Librarian Patron “Guard Agencs Agents
Agents

Figure 3. Part of a Library Goal Relations Graph.

linearization as an approximation. cf. appendix C in[24].

DRAFT Submitted to TSE

DRAFT 19

mapping from a resolution to a specification can be given. However, a direct plan
instantiation procedure is unlikely because of the creation of novel resolutions.

Second, a specification can be created by a design agent. This process will be guided
by the resolved goals. If conflicts arise during this process, they can be resolved using the
integration paradigm. However, such conflicts are less likely to occur because many
interactions have already been considered during negotiation.

Finally, the original specifications can be patched. Noninterfering components are
kept. Interfering components are modified according to goals derived from negotiation.
Both Robinson[45] and Feather[15,17] have employed a variation of this process,
whereby a single specification is modified to contain all user goals.

5.7. Evaluation

The integration paradigm seems well suited to aid requirements negotiation.
Through its use of integrative reasoning, it addresses negotiation freedoms and their
implications. However, its full generality has yet to be explored. Particularly lacking are:
(1) a substantial goal relations language, (2) preference and scaling languages, (3) a gen-
eral multi-criteria search method, and (4) substantial dissolution and compensation
knowledge. Yet, even a severely constrained integrator can be useful. The next section
demonstrates this using Oz.

6. An Automated Example

In this section we illustrate MPSD with an example. We focus on conflict resolution

by integrating three very simple specifications. The example is simplistic for tutorial clar-
ity and because of tool simplicity.

Oz is an experimental MPSD assistant. Now, it manages the specification process
and aids some procedures interactively. Unfortunately, automation of conflict resolution
is severly limited. This example shows current and planned automation.

Figure 4 shows three prototypes of a library borrow operation. They represent
(simplistic) ideal specifications from the perspectives of a patron, a librarian, and a secu-
rity officer.!3

The patron’s perspective supports material removal from a library. The librarian
supports this goal, but only if records are kept. The security officer is interested in
preventing theft. His prototype supports this goal by magnetic scanning.

Now that our users’ goals have been prototyped in specifications, we begin the five
step process of integration.

6.1. Correspondence Identification

Correspondence identification determines equivalences like Exitp, con = EXitpy oo
The analyst decides which specification components represent the same concept. We sup-

port this process with automated comparison guided by predicates. The analyst controls
predicate application by marking them. He can use NamesCorrespond, TypesCorrespond, and

dgﬂne his own predicates (in Lisp). Once initial correspondences are created, they can be
edited.

b "‘)’I‘he specification language is an extension of Petri nets[41); bubbles are conditions on procedures
oXes).

DRAFT Submitted to TSE

DRAFT)

Uz Specification Editor

Application
Lt

v tarinld m_—j
L al3 setronk :
ll-lhu Matarials
alren Lt alron Inai
Entye B
fheary TRl icasson o]

o
SS9, 8
»e Jibrarisal [Lock furis;
barruna 2 a..tn...‘ = 'E g::l::!
P Ta Hriadl E L L
. srendmiiarial? "‘ o Pirad ™) [Linrar laniEytco)
patrondmatgriall i patronbmaLeriall ;l‘t';’;i,'-." el
i) (i Treide) edlieve Hatarisis Fﬁ.‘:’-""‘"
\’ - 59{8, ol
. - batrs [Eeeeii nce) :

satronbborrowd . Lol o TH a-m..a..f"
Cai val 1 =
o ratronbmatarisi?

Figure 4. Three Specification Prototypes of RemoveMaterial.

68.2. Conflict Detection

After correspondences are determined, conflicts are detected. In our specification
language, components are defined by a type and its slots. For example, Exit is a transi-
tion with slots fnputs and oulpuis (among others). A feature conflict is noted between
Exiteron and Exity o ian 0V 2 diﬂer.ent place in the input slot. In this way, diflerences
between correspondences are automatically detected.

8.3. Issue Formation

Next, direct issues are identified by tracing incorporation links from conflicting
specification components to goals (figure 5). These links are created when perspectives are

mapped to specifications.! Differences between Patron, Librarian, and Security are traced
to the following goals (see figure 3):

RemoveMaterial, TempMaterialRecord, LoanPeriod, RecordAgent, ControlMaterialExit, Contro-
LAcess, CheckAgent, MagMonitorSys, MagReturn, DeMagExit, MagAgent, DeMagAgent.

User preferences associated with these goals form a resolution space. However, this
12-dimension preference space can be broken into a hierarchy of subspaces. For example,
observe that Security is the root of a hierarchy of goals (ControlMaterialExit, ControlAcess,

"Besides providing negotiation support, these links are used to track the status of goals; goals may, or
may not be irncorporaled into a specification. Furthermore, one may explain the rationale for system
features based on the negotiations which created them. For example, one could explain that the admission
system’s card file (of § 2) was provided to add variety to U’s workday and to provide an index backup. If U
were replaced and another backup mechanism available, negotiations (design) could be profitably reopened.

DRAFT Submitted to TSE

Appiication

%
laterfacm

EI(D, udyp
Fatron(C, Bes)
Libror{aniQ, BCa)

Bopur 1ty L, BGs)

& ibrarylt, ECal
&2

Tick wn 1he et of moper domain sF3arte Ry A0 when dena.

Hove Lhe mouts AL &N cbject for m choliw of mctipny,

User Ingut

Figure 5. An Oz Depiction of Incorporation Links.

MagMonitorSys, ...). When the Security conflict is resolved, it will effect lower level prefer-
ences. Using this idea, we form an fssue free.

Figure 6 shows the issue tree for the direct issues. It's simply the domain model
linkage between goals. This tree provides control over the resolution process. Issues are
resolved from the root(s) to the leaves. This strategy provides abstraction over a (possi-

bly very large) set of issues. Also, it resolves issues in order of importance and scope.
Next, we show how conflicts are resolved using this tree.

8.4. Conflict Resolution

Five steps are used to resolve the 12 issues. Step one is shown nearly in its entirety.
The five steps that follow are summarized.

- Remove Security
ISA implementation ye:ial / \
Key \ Control Control
Permanent Temporary Material Material
Remove Remove Exit / 9cess
MagSys Check ID
Temporary Remove Record Material Agent
cord Agent Agent
MagReturn DemagExit

Material Remove Loan

Agent Period Material MagAgent Mag Material DemaghAgent Demag

Figure 8. Resolution Issue Tree.

DRAFT Submiited to TSE

DRAFT 22

6.4.1. Loaning and Security

Conflicts associated with RemoveMaterial and Security are resolved first. These two
goals are the roots of the issue trees. Table 1 shows these two issues, their scales, and
user perspectives. Because we are employing Zeleny's multi-criteria simplex method to
find the ideal, anti-ideal, and nondominated resolutions, implementations are only scaled
once. This limitation forces all users to agree on the degree implementations satisfy their
goals. For example, all agree that PermantRemove achieves RemoveMaterial at 90%. How-
ever, users can express different directions of preference. They can have no preference
(i.e., ---), or prefer to maximize (i.e., Max) or minimize (i.e., Min) achievement along a
scale. Table 1 reflects Patron's desire to minimize security, and Librarian’s and Security’s
desires to maximize it.

qu
Scale RemoveMaterial Security
90% PermantRemove
40% [CME,CMA]
30% TemporaryRemove CME
10% CMA
0% None None
Per i
Patron Max Min
Librarian Min Max
|_Sernrity ===

Table 1: Issues for compromise ¢,

Table 1 also illustrates the use of a linear obsiructs relation. Under each issue is a
constant multipler. Combined with the limit, they form a constraint on the combined
implementations of RemoveMaterial and Security: (1 * RemoveMaterial) + (1 * Security) < 70%.
The constraint is used to limit the combined cost of these systems. Clearly, this is a
poor representation. Mappings from percent achievement to dollars are implicit in this

constraint. Such mappings, as well as multiple scales, will be part of a future resolution
search method.

Our current search method is Zeleny’s MCSM. Using it, scales form search dimen-
sions, goal relations are constraints, and perspectives are functions to be maximized or

minimized. MSCM first derives the nondominated extreme points, N, =

{[0,0],[70,0],[0,70]}, as determined by the goal relations. The nondominated set poten-
tially contains these and other points: N = N_ U {[35,35],30,40],[40,30] ...}. Using

IDEA, the analyst weight the various implementation preferences, identifies trade-offs,
and picks a compromise. The pair [30,40] is the chosen scale-space compromise. Mapped
to goal implementations, it corresponds to:

¢,=[TemporaryRemove,[ControlMaterialExit,ControlAcessl).
Compromise ¢, represents a library system which uses a temporary removal mechanism

(TemporaryRemove) to implement material removal. Security is obtained through two
abstract mechanisms which control the exit of material and access of patrons.

DRAFT Submitted to TSE

DRAFT 23

Compromise ¢, represents the resolution of two conflicting goals between three -
agents. The analyst moved from the abstract issues of ¢o=[RemoveMaterial Security] to the
more refined concerns of ey Similarly, the next four compromises will negotiate issues
until leafs of the issue tree are derived.

MSCM is fully automated, while IDEA is still a simple weighting aid. Open areas of
research include: (1) expanding MCSM to include a general preference reasoner to aid

search and (2) expanding IDEA to include a general arbitration system which can reason
about agents and derive meta-preferences.

6.4.2. Loan, Exit, and Access

Continuing with the example, three new issues must be resolved: TemporaryRemove,
ControlMaterialExit, and ControlAcess. Their resolution follows the pattern of the first
compromise. Compromise ¢, resolves temporary removal with a recorded transaction;

material exit is limited with a magnetic monitoring system (MMS); finally, access is con-
trolled with an identification system.

¢,=/[[TempMaterialRecord Record Agent],[MMS, [ID,CheckAgent)]]

6.4.3. Loan Records, Agents, and Monitoring

Table 2 shows the issues involved in the next resolution. Although ID was an issue
in ¢y, it is not part of c, since it is a primitive (leaf) goal.

Scale TempMatRecord | RecordAgent MeaMonitorSys CheckAgent
100% Complete Video [MagReturn,DemagExit] | [Video,Guard]
30% [Mat,Agent,LP] Librarian Guard
20% [Mat,Agent] Guard Librarian
10% Material | llser
'Pprs_gnprt.iqu
Patron Min Min Min Min
Librarian Max Max --- -——
&%ﬁ Limi
1 | 1 KN

Table 2: [ssues for compromises ¢, and c,-

3

The derivation of compromise ¢, is like that of the previous two. It determines the

loan record and recording agent, the magnetic system components, and the identification
checking agent.

¢g=={[[[Material, RmvAgent,LoanPeriod],Librarian],[MagReturn, DeMagExit],Guard]

While this is the best compromise in N, it is still unsatisfactory according to the

DRAFT Submitied to TSE

DRAFT 24

analyst.!® He consults his dissolution rules and applies the Functional Sharing heuristic
to Librarian and Guard.

Functional Sharing) _

Il (1) processes a and b have the same inputs, except for sets a.f and b.i. }"

processes @ and b have the same outputs except {or sets a.0 and b.0. (3) *.¢ and/or
*.0 may be null.

Then create ¢ with combined inputs *.i{ and combined outputs *.o, and use ¢ in
place of a and b. (c may form a limited replacement but reducing sets *.i and *.0).

Application of Function Sharing creates a new implementation, named a WatchfulLibrerian.
It is added to the implementations of CheckAgent, RecordAgent, and all other agent goals.
Finally, a new compromise ¢ 4 closer to the ideal, is obtained.

c,=([{[Material, RmvAgent,LoanPeriod],WatchfulLibrarian |, [MagReturn,DeMagExit|,
WatchfulLibrarian,}

We have a catalogue of rules similar to Function Sharing. Future research includes: (1)

refining current rules, (2) extending the rule catalouge, and (3) controlling automatic rule
application.

8.4.4. Loan Period, Return, and Exit

Compromise ¢, is derived in similar fashion; it is the best of NV, but still unsatisfac-
tory. Table 3 shows the issues involved. Goals Material, RmvAgent, and WatchfulLibrarian are
left out, as they are primitive (at his point). Compromise ¢; represents a four week loan

period and the components of the magnetizing and demagnetizing systems.®
c5=[4w,[MagAgent,Ma.t,erial,Mag],[Dm.Agent.,Ma.terial,DeMag,h'[agCheck]}

To better it, the analyst applies dissolution rule Predicate Input to LoanPeriod. Analysis of
the specification inputs to the loan process reveal that both Patron and Material can be

divided into subtypes. This results in new subtypes for Material: {Book,ReservePeriodical,...}
and RmvAgent: {Grad,UnGrad,Faculty,Staff,...}.

"®In simplifying this example, we removed the Administration perspective. It prefers to minimize the
number of system agents. This is illustrated in table 2 as the minimization on RecordAgent and CheckAgent. In
this example, the analyst reflects the implicit dissatisfaction the Administration feels. Such dissatisfaction of
preferences guides the application of dissolution rules.

18A four week loan period was derived from Llbrarian’s anchored preference. An anchored preference
defines preferences relative to a particular implementation. The Librarian prefers to minimize the distance
from a two week implementation. Anchored preferences are illustrated in tables 3 and 4.

DRAFT Submitted to TSE

DRAFT

_ Jssnes _
Scale LoanPeriod MagReturn DeMaglirit
100% co days
80% [MagAgent,Material] | [DemagAgent,Material]
20% Material Material
% O days |
' Patron Max Min
Librarian 2w - -—
| Sernrity === M@L -

Table 3: Issues for compromises ¢, and Cq-

5

Compromise c, is based on the new subtypes. Now, multiple loan periods will be
given on the basis of material and patron subtypes. However, from ¢; it is only apparent
how Material subtypes can be incorporated:

¢g=1[2w,6m],[MagAgent,[Book,Reserve,Periodical], Mag|,[DmAgent, {Book,Reserve,Periodical|,DeMag]|
But ¢, is only part of the complete compromise tuple:

c5.=[[MaLeriaI JRmvAgent,{2w,6m|],Watchl ulLibrarian ,[MagAgent,[Book, Reserve Periodical],Mag],
[DinAgent,[Book,Reserve,F'e. "dical],DeMag],Watchf; ulLibrarian |

From ¢, we can see how the impleme. tations off both Material and RmvAgent can be pro-
pagated:

06.,=[[[Book,R&erve,Periodical],[Grad,UnGrad,Faculty,St.aﬂ'],[2w,6m]],\ \tehfulLibrarian,,

[MagAgent,[Book Reserve,Periodical], Mag] /[DmAgent,[Book,Reserv. Periodical],DeMag],
WatchfulLibrarian, |

However, even the complete tuple does not show the predication of LoanPeriod based on
subtypes. It's up to resolution implementation to incorporate such operational descrip-
tions into a specification. Yet, it must have some description. The resolution derivation
history provides help. It contains rule applications which indirectly point to operational-
ity. Using it, more complete operational descriptions are constructed during resolution
implementation.

6.4.5. Monitoring Agents

In the last resolution, all remaining issues are primitive (e.g., Mag, DeMag, and
MagCheck) save the magnetizing and demagnetizing agents. Again, the best weighted
compromise is unsatisfactory.

¢,=|WatchfulLibrarian,WatchlulLibrarian,)

While this compromise makes use of the WatchfulLibrarian agent type created in comprom-
ise c,, there are still too many agents associated with the library. Compromise ¢, is only

7
part of the complete tuple:

DRAFT Submiiled to TSE

DRAFT 26

e = [{[Book,Reserve,Periodical],[Grad,UnGrad,Faculty,Stafl],[2w,6m]],WatchfulLibrarian -
[WatchfulLibrarian,,{Book,Reserve,Periodical],Mag],
[WatchfulLibrarian,,[Book,Reserve,Periodical], DeMag],WatchlulLibrarian |

Next, the analyst applies Functional Sharing to WatchfulLibrarian, and WatchfulLi-
brarian,:

cg=/([[Book,Reserve,Pericdical},(Grad,UnGrad Faculty,Staff],[2w,8m]}, WatchfulLibrarian,

[WatchfulLibrarian,[Book,Reserve,Periodical], Mag],
[WatchfulLibrarian,[Book,Reserve,Periodical|,DeMag],WatchfulLibrarian]

It is still unsatisfactory with regard to Patron's LoanPeriod, so the analyst applies compen-
sation heuristics. Examining the graph is figure 3, the analyst observes the two siblings
of LoanPeriod are MaterialLimit and Renewal. Also, through the obstruects link between Work-
ingSet and Recall, Recall becomes an issue. These three issues support or obstruct the
immediate ancestor of LoanPeriod. Compensation can be provided by heavily weighting
supporting goals and minimally weighting obstructing goals. By these weights, the
Patron perspective dominates the compromise choice.

h&=%
Scale MaterialLimit | Renewal | Recall
100% o0 00 o0
0% 1] 0 0
Perapectives

Patron Max Max Min
Librarian 20 Max Min

| Secnrity Min ___Min | Min |

Table 4: Issues for compromises Cgs C1o and ¢y

After considering the perspectives in table 4, the best weighted compromise is Cq-

¢g=[20,00,0]

Happily, this resolution is satisfactory. However, if it was not, we would continue the
Search for Compensalion by considering goals which support or obstruct the ancestors of

WorkingSet. (e.g., Circulation, ResourceUsage). Constraining this search remains an open prob-
lem.

Now, we have finished the resolution process. At the top level of abstraction, our
resolution issues are:

o= \RemoveMaterial Security, MaterialLimit,Renewal,Recall]
Completely filled out, it is:
(e ={(|Book Reserve Periodical],|Grad,UnGrad,Faculty Staff], [2w,6m]],WatchfulLibrarian,

{WatchfulLibrarian,|Book,Reserve,Periodical],Mag],

[WatchfulLibrarian,[Book,Reserve,Periodical],DeMag], WatchfulLibrarian,
20,Unlimited,0]

DRAFT Submitted to TSE

DRAI'T 27

Compromise c,, represents a library which loans materials for two weeks or six months

based on patron and material subtypes. There is a 20 item checkout limit, unlimited
renewal, and no recall. A single watchful librarian runs the security and checkout sys-
tems.

The above example has shown the (1) combination of analytic compromise with
heuristic improvement, (2) resolution control through issue abstractions, (3) incorpora-
tion of new issues, and (4) reuse of prior issue compromises. This has been accomplished
through integrative reasoning, a three step sequential process of: (1) compromise, (2) dis-
solution, and (3) compensation. Generalizing the control to consist of the intertwinning
of these processes remains an open problem.

6.5. Resolution Implementation

Once a resolution is chosen, it must be implemented. Given our simple example, an
analyst can directly create a specification. However, more typically the resolution is a
small part of the overall specification. The analyst must patch the specification to
include the changes implied by the resolution. Specification construction is guided by
both the resolution tuple and the resolution derivation history. This remains a difficult
task.

6.6. Evaluation

Even with simple examples and limited automation, we have obtained encouraging
results. Integrative reasoning is a viable method of automation, and MPSD is a viable
method of requirements negotiation.

Many benefits are derived from the MPSD model. It addresses: (1) conflict and
preference management, (2) multiple analysts, (8) specification and compromise reuse,
and (4) specification rationale. However, it rests on the assumptions that: (1) parts of a
specification are better designed in isolation, and (2) specification integration adequately
addresses conflicts. Our arguments throughout, as well as those for modular languages,
support these assumptions. However, what about optimality?

MPSD considers how well implementations satisfy goals. Compromise, dissolution,
and compensation methods are directed to local interactions. More global concerns are
only satisfied through local interactions. Overall optimization is not directly addressed.
Instead, multiple optimizations are considered.

If a single goal were to be satisfied, then overall utility could be defined. This sole
arbitrator would resolve all *“‘conflicts” in its favor; in fact, conflict cannot exist without
goal competition. Conflicts occur when multiple goals interfere. Thus, the idea of univer-

sal optimization is foreign to a model which allows multiple goals of (nearly) equal
importance.

7. Conclusions

In this paper, we have presented Multiple Perspective Specification Design (MPSD)
and tntegralive reasoning. This model of requirements and specification acquisition, and
its automation, support three basic freedoms: freedom of preference, conflict, and
compromise. By supporting these freedoms, MPSD directly addresses the intertwining of
requirements acquisition and specification design.

Swartout and Balzer have noted how some specification changes are driven by an
understanding of the implementation 55]. Of course, other changes are driven by chang-
ing user requirements. Many research projects are concerned with the cyclic process of
specifying, implementing, and modifying a specification. ‘It is only because we have

DRAFT Submilled to TSE

DRAI'T 28

allowed this development process to occur, uncbserved and unrecorded, in people’s heads
that the multi-step nature of this process was not more apparent earlier.”[55]

While the intertwining process is recognized, it is not directly supported; most tools
simply speed up the process (e.g., rapid prototyping) without tying the observed conflicts
into a system which aids their resolution and respecification. MPSD and its surrounding
support can be seen in this light. It aids in the description of requirements, their
specification, recognition of conflicts, resolution, and their respecification.

This multi-step process is similar to specification implementation. Until recently,
this development process has gone on unobserved and unrecorded. Requirements acquisi-
tion, like specification implementation, is an intertwined process. In both processes, the
common thread is the recognition and resolution of goal conflicts. The automated sup-
port of negotiation freedoms directly address intertwined processes.

ACKNOWLEDGEMENT

Thanks to John S. Anderson for his comments on previous drafts of this paper. Also,
thanks to Arthur Farley for his insightful critique of the goal terminology. Robert Helm
provided endless examples (and counter examples) to consider. Also, thanks to Martin
Feather for his parallel elaboration model and his eritiques of this project. Finally, we
thank the National Science Foundation for their support via grant CCR-8804085.

REFERENCES

1. E.W. Adams and R. Fagot, “A mode! of riskless choice,” in: Eds. W. Edwards, A. Tversky, De-
cision making, (1967) 284-289.

K.J. Arrow, “Public and private values,” in: Eds. S. Hook, Human values and economic policy,
New York University Press (1967) 3-31.

3. R. Balzer and N. Goldman, “Principles of good software specification and their implications for

Specification Languages,” Proceedings of IEEE Conference of Specifications of Reliable Software,
(1978) 58-67.

4. L. Beck and T. Perkins, “A survey of software engineering practice: tools, methods, and results,”
Transactions on Software Engineering SE-9 (September 1983) 541-561.

5. 5. Bendifallah and W. Scacchi, “Work structures and shifts: an emperical analysis of software

specification teamwork,” 11th International conference on softwarc engineering, (May 1988) To
appear.

6. AH. Bond and L. Gasser, Readings in distributed artificial intelligence, Morgan Kaufmann, San
Meteo, California (1988).

7. S.E. Conry, R.A. Meyer, and V.R. Lesser, ‘‘Multistage negotiation in distributed planning,” in:
Eds. A H. Bond, L. Gasser, Readings in distributed artificial intelligence, Morgan Kaufmann
San Meteo, California (19885 367-384.

8. B. Curtis, H. Krasner, and N. Iscoe, “A field study ol the soltware design process for large sys-
tems,” CACM 31 (November 1988) 1268-1287.

9. Randall Davis and Reid G. Smith, “Negotiation as a metaphor for distributed problem solving,”
Artificial Intelligence 20 (1983) 63-109.

10. M. Deutsch, The resolution of conflict: constructive and destructive processes, Yale University,
New Haven (1973).

11. T. Dietterich and D. Ulman, “Artificial intelligence approaches to design,” Artificial Intelligence
in the Northweat, (October 22-24 1985) 8/3.

12. Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill, “Coherent cooperation among com-
municating problem solvers,” IEEE Tranaactions on Compulers C38 (1987) 1275-1291.

13. EH. Durfee and V.R. Lesser, “Using partial global plans to coordinate distributed problem
solvers,” Transaclions on compulers C-36 (1987) 1275-1291.

&)

¥

DRAFT Submitted to TSE

14.

15.

186.

17.

18.

19.

20.

24,

25.

26.

37.
38.
39.
40.

41.

T.G. Evans, ““A program for the solution of a class of geometric analogy intelligence test ques-
tions,” in: Eds. M. Minsky, Semantic information processing, MIT Press , Cambridge, Mass
(1968) 271-353.

M. Feather, S. Fickas, and W. Robinson, “Design as elaboration and compromise,” in: Proceed-
ings of the Workshop on Automating Software Design, Kestrel Institute , AAAI-88, St. Paul, MN
(August 25, 1988) 21-22,

M.S. Feather, “Language support for the specification and development of composite systems,”
Transactions on Programming Languages and Systems 9 (April 1987) 198-234.

M. S. Feather, “Construct.ing specifications by combining parallel elaborations,” Trensactions
on Software Engineering 15 (February 1989) To appear {Also available as Technica! Report RS-
88-216 from ISI?.

L. Festinger, Conflict, Decision, and Dissonance, Tavistock Publications, Ltd., London (1964).

S. Fickas, S. Collins, and S. Olivier, “‘Problem acquisition in software analysis: a preliminary
study,” CIS-TR-87-04, University of Oregon (January 1988).

A. Finkelstein and H. Fuks, “Multi-party specification,”” 5th International workshop on soflware
specificalion and design, (1989) 185-195.

MR. Garey and D.S. Johnson, Computer and sintraclability: a guide to the theary of NP-
completeness, W.H. Freeman, New York (1979).

Dedre Gentner, “The mechanisms of analogical reasoning,”” in: Eds. S. vosniadou, A. Ortony,
Similarity end analogical reasoning, Cambridge University Press (1989) 199-242.

M.P. Georgefl, ““A theory of action for multiagent planning,” in: Proceedings of 1984 conference
of the AAAIL Morgan Kaufmann Publishers (1984) 121-125.

A. Goicoechea, D.R. Hansen, and L. Duckstein, Multiobjective decision analysis with engineering
and business applications, John Wiley and Sons (1982).

Carl Hewitt, “Offices are open systems,” Trans. on Office Information Systems 4 (1986) 271-287.

E. Jantsch, Technological Forecasting in Perspective, Organization for Economic Co-operaticn
and Development, Paris (1967),

S. Kedar-Cabelli, “Purpose-directed analogy,” in: Proccedings of the International Conference of
the Cognitive Society, (1985) 150-159.

F.L. I)(eeney and H. Raiffa, Decistons with multiple objectives, John Wiley and Sons, New York
1976).

M. Klein and S. C-Y Lu, “Run-time conflict resolution in cooperative design,” AI and Design
Warkshop, (1988) To appear.

D.F. Kohl, Circulation, interlibrary loan, patron use, and collection maintenance: A handbook Jor
library management, ABC-Clio Inc. (1986).

W.A. Kornfeld, ““The scientific community metaphor,” IEEE Transactions on Systems Man Cy-
bern SMC-11 (January 1981) 24-33.

Susan Lander and Victor Lesser, “Negotiation among cooperating experts,”’ Al and Design
Workshop, (1988) To appear.

D.B. Lenat, “The nature of heuristics,” Artificial Intelligence 19 (1982) 189-249,
D.B. Lenat, “The nature of heuristies II,” Artificial Intelligence 21 (1983) 31-59.
D.B. Lenat, ““The nature of heuristics III,” Artificial Intelligence 21 (1983) 61-98.

Philip E. London and Martin S. Feather, “Implementing specification freedoms,” Science of
Computer Programming 2 (1982) 61-131.

Mare Luria, “Goal conflict concerns,” IJCAI-87, (1987) 1025-1031.
Jack Mostow, “A problem-solver for making advice operational,” AAAI-83, (1983} 279-283.
J. Mostow, ““Towards better models of the design process,” Al Magazine 8 (Spring 1985) 44-57.

J. Mostow, “A preliminary report on DIOGENES: progress towards semi-automatic design of

specialized heuristic search algorithms,” ML-TR-27, Department of Computer Science, Rutgers
University (October 1988).

J. L. Peterson, “‘Petri nets,” Computing Surveys 9 (September 1877) 223-252.

29

DRAFT Submitted te TSE

