Specification Criticism
via Policy-Directed Envisionment

Keith Downing
Stephen Fickas

CIS-TR-90-05
February 27, 1990

Area: Automated Reasoning

Topic: Software Development

Keywords: knowledge-based software development, critiquing, envisionment,
qualitative physics

Abstract

Validating a complex system specification is a difficult problem. Gen-
erating behaviors and using them to critique a specification is one eflective
approach. Up until now, symbolic evaluation has been the key technique
of behavior generation. Unfortunately, it has problems both in the amount
of time it takes to complete a symbolic run, and in the large amount of
uninteresting data it produces.

We propose policy-directed envisionment as an alternative to symbolic
evaluation. This approach supplements the basic envisioning techniques
of qualitative physics with behavioral goals in the form of policies. This
combination overcomes the problems of symbolic evaluation by generating
interpretations in a reasonable amount of time and by exploiting policies
to prioritize and analyze the interpretations.

This paper describes the SC system, which employs policy-directed en-
visionment to critique specifications.

Department of Computer and Information Science
University of Oregon

4

Specification Criticism
Via
Policy-Directed Envisionment

Keith Downing
Stephen Fickas

Computer Science Department
University of Oregon
Eugene, Oregon 97403

Area: Automated Reasoning
Topic: Software Development

Keywords: knowledge-based software development, critiquing, envisionment,
qualitative physics

Abstract

Validating a complex system specification is a difficult problem. Generating
behaviors and using them to critique a specification is one effective
approach., Up until now, symbolic evaluation has been the key technique of
behavior generation. Unfortunately, it has problems both in the amount of
time it takes to complete a symbolic run, and in the large amount of
uninteresting data it produces.

We propose policy-directed envisionment as an aliernative to symbolic
evaluation. This approach supplements the basic envisioning techniques of
qualitative physics with behavioral goals in the form of pelicies. This
combination overcomes the problems of symbolic evaluation by generating
interpretations in a reasonable amount of time and by exploiting policies to
prioritize and analyze the interpretations.

This paper describes the SC system, which employs policy-directed
envisionment to critique specifications.

I. Introduction

Onc of the major problems in building formal, operational specifications for complex

systems® is accounting for the plethora of behaviors and behavioral interactions that
might occur during the operation of those systems. Without some feeling for the
space of possible behaviors, a specification designer can have little confidence in the
robustness of the final system. Thus, to properly critique or validate a specification,
onec must have the capability to generate a fairly complete set of possible bchaviors
from it.

Up until now, the general approach to behavior generation for system specifications
has been symbolic evaluation (see, for instance, (Cohen, 1983)). Using this approach,
the user selects some set of specification actions to perform and an abstract
description of an initial state. The symbolic evaluator thea chumns out behavior
descriptions, often on a massive scale,

There have been two advances in the symbolic evaluation area, First,
Fickas&Nagarajan (1988) showed that a case-based reasoning (CBR) approach could
be used as a front-end 1o the symbolic cvaluation process. In particular, their critic
cataloged important cases to consider in a resource management domain, and fed
these to a symbolic evaluator, thus partially automating the 1iest-selection process.
Full automation rests on two important assumptions; 1) that enough interesting test
cases can be captured and stored in a case-base to confidently cover a domain, and 2)
that one can match cases against complex specifications. The latter assumption, in
particular, is problematic for any automated tool: it can be mapped to the Al-complete
problem of concept recognition.

The second advance was directed to the back-end process of interpreting the results
of symbolic evaluation. Swartout (1983) built a behavior explainer that took the raw
behavior descriptions from a symbolic evaluator, and used hecuristics to 1) look for
interesting results, and 2) present them to the user in an understandable manner.

The key technique {(and drawback) shared by both the critic and the behavior
explainer is a reliance on the raw specification as a basis for cvaluation and
reasoning. Unless test cases and problem domains are tightly constrained,
operational specification languages are much too complex a representation for
automated behavior generation and critiquing tools. Of course the paradox here is
that the more tightly we constrain our test data and problem description so to use
existing symbolic evaluators, the less "symbolic" or abstract becomes the evaluation
and its results. As an alternative, we have turned to abstract qualitative
representations as a means of generating and interpreting specification behaviors.

The field of qualitative physics(QP) offers considerable assistance in this endcavor.
Typically, qualitative simulators such as QPE (Forbus, 1986), QSIM (Kuipers, 1986) and
QUAL (de Kleer, 1979) take qualitative constraints and a behavioral perturbation as
inputs; they then derive a set of mutually-exclusive possible bchavioral sequences
(i.e. interpretations). Due to the ambiguities of qualitative arithmetic and local
constraint propagation, this process, called envisionment, frequently produces a

We define complex sysiems as those involving physical sub-systems, social sub-systems, and
software sub-systems. In essence, we consider problems where a software system is embedded in
an environment that includes physical and social components.

great many interpretations, some of which have a much higher likelihood of
occurrence than others. Consequently, envisionment trades off accuracy for
completeness by producing a comprehensive set of interpretations but having little
knowledge as to which one might actually occur.

This suggests that if we can express a specification as a set of qualitative constraints,
then envisioning techniques could be employed by a specification critic to elicit
interpretations that describe the possible event sequences that the specification
would permit. Of course, this also means that the specification critic will have little
information as to which of those sequences will most likely occur. We must look back
to qualitative physics for possible remedies for the accuracy-complcteness tradeoff.

Recently, qualitative physics researchers have used everything from range
arithmetic (Kuipers and Berleant, 1988) 10 high-order qualitative derivatives (de
Kleer and Bobrow, 1984; Kuipers and Chiu, 1987) to phase spaces (Struss, 1988; Lee and
Kuipers, 1988) in order to prune the interpretations down to a small set of mosi-
prebable behaviors. Basically, these efforts have supplemented envisioners with
qualitative versions of sophisticated quantitative analysis tools. These tools have
sufficient domain dependence (i.e. physical systems) to be of little use to the Al
community as a whole. However, de Kleer (1979) has shown that knowledge of the
purpose, function or teleology of a system can also significantly restrict the
interpretation set; and the synonymy of ‘teleology’ with ‘goal’ makes de Kleer's work
of widespread relevance to AI research - in particular, the type of specification
criticism embraced by this project.

De Kleer's QUAL system (1979) uses local and global teleclogies to filter the results of
envisioning electrical circuits. For each interpretation, QUAL employs local
teleologies to classify component behaviors, and global purposes to parse the local
icleologies into a gestalt picture of the functioning device. QUAL prunes every
interpretation that fails, at either the local or global level, to match any of the
known teleologies. Since many of the possible but improbable intcrpretations have
no known teleological import (relative to the standard teleologies of electrical
engineering), teleology forms a strong bias for pruning the interpretation space.

Our work in specification criticism also involves teleological or goal-like constructs
called policies. These represent biases as to how the policy-maker would like the
system to behave. So if we run the specification through an envisioner, policies
could help select the most desirable interpretation(s). Then, the critic could note the
favored interpretations and take steps to insure that in the final design, only their
behavioral sequences could occur. Thus, while QUAL takes an abstract/qualitative
model of a completed design and attempts to recognize its correct behavior via
teleology matching; the specification critic we investigate here would take an
abstract model of an unrefined design and use envisionment followed by policy-
based filtering to help clarify the design itself,

To investigate this integration of qualitative physics and specification criticism, we
have designed SC, a specification critic based on policy-driven envisionment and
interpretation analysis. The following section discusses SC's general operation along
with its application to the domain of automated library systems.

II. SC - The Specification Critic

The general activity of SC closely mirrors that of a qualitative simulator: it inputs a
sct of constraints along with a behavioral perturbation and outputs a set of

interpretations denoting the possible combinations of changes that the original
perturbation could cause. However, unlike most qualitative simulators, SC runs under
constant awareness of the set of active goals/policies. These policies compile into
desired behaviors of certain local variables. For instance, in the library domain, the
policy of keeping many books on the shelves compiles into an upper bound on the
number of books that any one person can check out; and in the perturbation-based
model of SC, this local goal is expressed as a recommendation that the individual
check-out limit should never rise.

During envisionment, if the propagation of changes dictates that exactly one of n
possible changes must happen next, and one of those is a rise in the check-out limit,
then all of the other n-1 possible changes (that do not violate a policy) are marked as
more desirable, since they prevent the check-out limit from rising and effectively
help preserve the policy of well-stocked library shelves. For instance, in a
university library, the addition of more, ecasier-to-use and/or cheaper copying
machines might abate any need for higher check-out limits caused by a campus-wide
increase in course workload.

When envisionment ends, the favored interpretations are those that violate the
fewest policies; and the design recommendations are to insure that the desirable
policy-preserving events of those interpretations actually do occur. These
recommendations take the form of simple rules such as, "If there is a possibility of a
global increase in course workload, and if the library sceks to maintain full shelves,
then copying resources should be improved to alleviate the need for higher check-
out limits."

III. Using The Specification Critic in the Library Domain

As a more detailed example, consider the library constraints of Figure 1. In this
hierarchy, each node represenis a variable, and constraints are formed by setting
each parent node equal to the sum of its children. For instance, Active-Set = In-house
+ Checked-out, while In-house = Unwanted + Gain-Info. This tree represents some of
the things that may happen to a library book. At the top, the active set is the
complete set of books owned by the library. At any one time, a member of this set is
cither checked out or in the library (in-house). On the right side of the tree, a book
may be checked out by a faculty member, graduate student or undergraduate. On the
left side of the trce, an in-house book may be unwanted, or somconc may seek to gain
information from the book. To gain information, a library patron may either
physically browse the book or utilize an on-line preview sysiem. If browsed, the
boock may be simply reshelved, or the patron may seeck to take home some
information from the book. In this model, there are three ways to take home
information: copy parts of the book, rip pages from the book, or steal the book.

I1I.1 Applying Confluence Theory to Library Models

To prepare this model for the perturbation analysis indigenous 1o envisionment, we
simply rewrite each rule as a qualitative partial-differential equation, or confluence
(de Kleer and Brown, 1985). For instance, the top constraint becomes dActive-set =
dIn-house + dChecked-out. That is, the qualitative change in the size of the active set
cquals the sums of the qualitative changes in the sizes of the in-house and checked-
out collections. Now, for any variable X, @X can take on one of three values: [+] for
'rising’, [-] for 'falling’, and [0] for ‘unchanging’.

Active Set

(AS)
In House
(IH)
Gain Info Unwanted
(GI) Book (UB)
On-line Browse
Preview Book (BB)
(OLP)
Simply Take Home
Reshelve Info (THI)
(SR)
Copy
Book

(cB)

Check Out

Taculty
Check Qut
(ECO0)

(co)

Grad
Check Out
(GCo)

Undergrad
Check Out
(Uco)

Rip
Peges
(RP)

Steal
Book
(SB)

Figure 1: The Library Conztraint Tree

During perturbation analysis, SC propagates changes through confluences via
simple qualitative reasoning. First of all, we make an assumption analogous to de
Kleer and Brown's (1985) confluence heuristic, which we call the "Most-Significant
Change" Rule (MSC):

When one variable of a confluence changes, it will cause a significant
change in exactly one other variable of that confluence, while all other
variables will remain constant.

SC makes no assumptions about which of the other variables will change, so it
investigates all possible changes that satisfy MSC. Each such possibility (i.e. point of
ambiguity) adds one or more additional interpretations to the final set produced by
envisionment.

For instance, if dIn-house = [+], then, under MSC, cither:

1) dActive-Set =[0] and @Checked-out
2) dActive-Set =[+] and odChecked-out

[-], or

[0].

Verbally, if the number of in-house books rises, then ecither the cardinality of the
active-set must also rise, and the number of checked-out books will hold steady; or, the
active set will remain consiant and check outs will decrease. Continuing the
propagation of change, if check outs rise, then either faculty, graduate students or
undergraduates will experience a significant rise in check outs; and again, SC
considers each possibility in tum.

ITL.2 Policy-Directed Envisionment in SC

As mentioned earlier, SC differs from most envisioners by paying attention to policy-
dictated variable-change preferences. In the library model, we employ a varicty of
pelicies such as "Good Condition Books", "Plentiful Stacks", and "Disseminate
Information”. These compile into local behavioral recommendations. For cxample,
"Good Condition Books" requests that, whatever perturbations occur, the number of
books with ripped pages should not increase, "Plentiful Stacks" demands that the sct
of in-house books should never decrease, and the number of stolen books should not
increase. Finally, "Disseminate Information" embodies a goal of supplying as much
information as possible to the library patrons, so it condemns a decrecase in either the
active set or the 'gain-info' books.

During constraint propagation, any changes that could violate an active policy are
recorded as such. Furthermore, the alternate behaviors within any confluence that
contains those violated variables are labelled as policy-preservation acts. For
instance, if on-line previewing capabilities were to decrease, then two (mutually-
exclusive via MSC) possible changes could occur: either the gain-info books would
decrease, or the physically browsed books would increase. Now, if "Disseminate
Information" were an active policy, then the decrease in gain-info books would be
undesirable, Hence, an increase in browsed books would represent a policy-
preservation act, since it could inhibit the gain-info decrease.

SC continues propagating changes to yield a complete set of interpretations (Table 1),
which represent all possible (relative to MSC) consequences of decreasing on-line
previewing. These interpretations appear in ascending order according to the
number of interpretation behaviors that violate an active policy. In this example, the
only active policy is "Disseminate Information”. Values in the table represent the

qualitative derivatives of the library variables. Starred changes denote policy-
preservation acts, while those in shadow font (e.g. [-]) signify policy violations; an
emply spot symbolizes no change.

AS (O FCO GCO UCOIH GI UB OLPBB SR THI CB RP SB
AC*

[+]1* [+]

[+]* [+] [+]

[+]1* [+] [+]

[+1* [+] [+]

* % B B ®

— p— p— p— p— p— pe— fe— p— p— p—
[]
o B R S R S L i ==) Sy ey S S e

AC*

{-]
[+]1%* [+] (-]
(+1* [+] (-]
[+]1* (+] [-]

[+]

ol D 00 S AU R W
]
) e bt et)

-0
o g
I

(-]

Table 1

The first five interpretations contain no policy violations and therefore represent the
most desirable possible outcomes. The pivotal point in each of those interpretations is
the use of a policy-preservation act to prevent ‘gain-info' (GI) from falling. In 2 - §,
that act is an increase in the number of physically browsed books (BB), while in 1, SC
makes an ‘add-child' (AC) recommendation. That is, to prevent GI from declining,
simply add another mechanism for gaining information (such as microfilm) and list
it as a child of GI in the constraint hicrarchy.

SC combines these policy-preservation acts into the following design
recommendation:

In the event of an on-line previewing decrease, be prepared to either
increase the ease of physically browsing books or to add another means
of gaining information from them so as to avoid a decline in the library's
overall ability to disseminate information.

So, just as teleologies govern interpretation selection in QUAL, policies guide
this selection in SC, along with pointing out the most salient behaviors.

By biasing interpretation selection according to the disseminate-information
policy, SC essentially takes a library patron's point of view. Conversely, a
library administrator may have other priorities, such as good-condition books
and plentiful stacks. By using this duo as the active policy list, SC generates a
different interpretation table:

AS (O FCO GOO UCOIH GI UB OLPBB SR THI CB RP SB

1* AC* [-] (-]
2°* -1 [+1*[-]
3= (-1 [+ [+]

4* -1 [+] (+]

AC*
5* [-1 [+] [+ [+1*
6 [-] (-1 [-] [-]
7 (+] [+] (-1 [-] (-1
8 (+] [+] (-1 [-] [-1
9 [+] [+ [-1 [-] [-]
10 -1 [+ [+] [+]
11 [-1 [#] (+] [+]
Table 2

Again, SC's envisionment produces eleven interpretations, five of which
violate no policies. Unlike the first envisionment, this one employs many
different policy-preservation acts among the highest-ranking interpretations.
The first recommends the addition of another subordinate to 'In-house’ in order
to prevent a decrecase in IH books, while the second prefers an increase in the
unwanted books (UB) as a remedy. Neither of these is very informative and
would surely be pruned if SC possessed meta-knowledge about its constraints.
Interpretation three has no preservation acts, while four and five recommend
changes to block an increase in either stolen books (SB) or page ripping (RP).
To wit, #4 prescribes the addition of another method for taking home
information (THI), while #5 advocates an increase in copying capabilities (CB).

Thus, policy decisions have considerable influence upon the generation and
prioritization of behavioral interpretations. In addition, policies highlight the
critical behaviors within any interpretation to isolate the pivotal constraints
within a specification. Furthermore, policy-directed cnvisionment can lead to
suggestions for supplementing those constraints with additional variables (as a
means of preserving policies). All in all, policy-directed envisionment
provides the completeness to explore the breadth of a specification's
consequences, and the bias to evaluate and understand those behaviors.

IV. Related work

As shown above, SC borrows a few basic tools from qualitative physics:
confluence theory and envisionment, which it then foniifies with policies to
produce a qualitative simulator for social domains. In so doing, SC indicates the
extensibility of QP techniques to non-physical situations; but most importantly,
it illustrates the wuiility of qualitative, policy-directed simulation in
specification development.

Looking to the knowledge-based software development field, Swartout's Gist Bechavior
Explainer, or GBE for short, (1983) comes closest to the rescarch goals of SC. As with
SC, GBE attempts to come to grips with the massive number of interpretations that can
be generated from complex specifications. In SC this is handled by abstraction, in GBE
by heuristic pruning and a reliance on the user to constrain test cases.

As with SC, GBE looks for interesting behaviors to present to a user. In GBE,
interestingness is based on the domain-independent language Gist, and hence must
center on features of the language rather than features of the domain. In SC,

interestingness is also based on a domain-independent language, but that language is
tied to domain-dependent policies: the focus of interpretation presentation is on
their preservation. Related to this, we note an interesting insight by Swartout in his
future work section (1983):

The current [Gist] symbolic evaluator is not goal driven. Rather than
having a model of what might be interesting to look for in a
specification, the evaluator basically does forward-chaining rcasoning
until it reaches some heuristic cutoffs...By giving it, at least at a high-
level, a model of what might be interesting, it could be more directed in
its search. After narrowing the search using goals, the evaluator could
then switch to forward-chaining to more completely examine the smaller
problem space.

It is not hard to view SC as a front-end process to a full symbolic evaluator such as
that used by the GBE. By joining the two, we would rely on SC to narrow an area of
concern, and then call on a more brute-force, symbolic evaluation approach to
explore deiails.

Finally we note that SC will attempt to fill in missing portions of a specification to
avoid producing an interpretation that violates a policy (the ACs of tables 1 and 2).
The DESIGNER system takes a similar action when faced with a deficiency in an
algorithm under design (Steir and Kant, 1985).

References

Cohen, D. (1983). Symbolic execution of the Gist specification language, In
Proceedings of the 8th International Joint Conference on Al.

De Kleer, 1. (1979). Causal and Teleological Reasoning in Circuit
Recognition (Lab Rep. No. 529). MIT AI Lab.

De Kleer, J. and Bobrow, D. (1984), Higher-Order Qualitative Derivatives. Proceedings
AAAI-84, Austin, Texas (pp. 86-91).

De Kleer, J. & Brown, J. (1985). A Qualitative Physics Based on Confluences. In D.
Bobrow (Ed.), Qualitative Reasoning about Physical Systems (pp. 7-84). Amsterdam,
The Netherlands: Elsevier Science Publishers B.V.

Fickas, S., Nagarajan, P., (1988). Being suspicicus: critiquing problem
specifications, In Proceedings of the 1988 AAAl Conference, Minneapolis, Minn.

Forbus, K. (1986). The Qualitative Process Engine (Tech. Rep. No. 1288). Urbana-
Champaign, Illinois: Univ. of Illinois.

Kuipers, B. (1986). Qualitative Simulation. Artificial Intelligence, 29 (3), 289-338.

Kuipers, B. & Berleant, D. (1988). Using Incomplete Quantitative Knowledge in
Qualitative Reasoning. Proceedings of the Seventh National Conference on Artificial
Intelligence (pp. 324-329). Si. Paul, Minnesota: Morgan Kaufmann Publishers, Inc.

Kuipers, B. and Chiu, C. (1987). Taming Intractible Branching in Qualitative
Simulation. Proceedings of The Tenth International Joint Conference on Artificial
Intelligence. Milano, Italy: Morgan Kaufmann Publishers, Inc.

Lee, W. & Kuipers, B. (1988). Non-Intersection of Trajectories in Qualitative Phase
Space: A Global Constraint for Qualitative Simulation. Proceedings of the Seventh
National Conference on Artificial Intelligence (pp. 286-290). St. Paul, Minncsota:
Morgan Kaufmann Publishers, Inc.

Steier, D., Kant, E. (1985). The Roles of Execution and Analysis in Algorithm Design, In
IEEE Transactions on Software Engineering, Vol. 11, No. 11.

Struss, P. (1988). Global Filters of Qualitative Behaviors. Proceedings of the Seventh
National Conference on Artificial Intelligence (pp. 275-279). St. Paul, Minnesota:
Morgan Kaufmann Publishers, Inc.

Swartout, W. (1983) The Gist behavior explainer, In Proceedings of the National
Conference on Al.

