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buiit to automate the process of designing systolic architectures. Staring from a problem
specified as systems of Affine Recurrence Equations (ARE), SASCOM can automatically
generate all systolic implementations for the problem. The mechanics behind its ability to
generate systolic architectures include (1) data pipelining of non-uniform dependencies, (2}
generation of all valid and distinct space-time transformation functions and (3) derivation of the
final architecture specifications from the transformation functions. The fundamental theory and
algorithms to perform each of these tasks are described in detail. The system currently runs on
the Macintosh-1l under the MacScheme programming environment. It has a front end editor and a

back end graphical simulator. The interface to these two paris will be briefly described.

Also included in the thesis is a new theory on the number of systolic architectures derivable
for a problem specification. By analyzing a few constraints which characlerize systolic arrays, an
upper bound on the number of distinct systolic architectures is derived. This upper bound is
found to be depended only on the dimension of the input recurrence. The result of this theory is
incorporated into SASCOM to make it a more complete automatic CAD tool as compared to other
existing systems.
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CHAPTER 1
INTRODUCTION

A systolic array is defined in the most general sense as a network of (identical) simple
processors that circulate data in a regular fashion [8,9]. This type of architecture derives its
computation power by organizing a large number of processing units to achieve the effects of

pipelining in one or more directions. A diagrammatic view of the systolic concept is shown in
figure 1.1.

ereq induj

ynsey indinQ

Figure 1.1 A diagrammatic view of systolic computing.

As shown in the figure, a stream of data is pipelined into a network of processors. Once
inside the network, the data stream is kept flowing rhythmically and is massaged by each
processing element along the way. Thus the array behaves much like an automobile
assembly line. While an automobile assembly line is linear, systolic systems can be two-

dimensional; thus allowing a higher degree of parallelism.

Poweriul as it is, this computing paradigm has had somewhat limited success partly
because of the tedious process involved in designing one. Many researchers have reported
systematic design methodologies lo derive systolic architectures {2,3,4,10,13,15,16,17].

The shift from using ad hoc methods to some systematic design methodologies has facilitaled



the design process. However, manually applying these methodologies is still quite tedious.
A CAD tool that can fully automate this design process is needed. SASCOM is built to meet
such a need. Starling from a problem specified as an Affine Recurrence Equation (ARE),
SASCOM can generate systolic implementations by performing a three step process - (1)

data pipelining, (2) linear mapping to space-time (3) generating architecture descriptions.

There are three major issues involved in designing SASCOM:

{1) Choice of Input specification language

Two criteria are used in choosing an input specification language for SASCOM: (i) it
should be powerful enough to be able to specify all problems for which systolic
implementations can be derived; (2) It should be a high level language o provide an
abstraction from the hardware to algorithm level. Systems of Affine Recurrence Equations

(ARE) are adopled since it satisfies both criteria.

(2) Choice of systematic design methedology

The choice of a design methodology and the input specification language are closely
related. Rajopadhye {16]) and other researchers has laid out a systematic approach to
generate valid transformation functions from an ARE specification. This approach can be
characlerized by the use of data pipelining 1o transform affine dependencies into uniform
dependencies; followed by the use of linear mapping functions to map computations from the
problem domain to the space-time domain. This approach is adopted by SASCOM. In
addition, a theory on the upper bound on the number of possible systolic implementations is
developed. This bound depends only on the number of dimensions of the input recurrence.
This result is incorporated into SASCOM giving it the power to generate all systolic

implementations for any given problem.

(3) Optimal systolic implementation
The cost of a systolic architecture can be roughly divided into two parts: (1) execution
time and (2) hardware requirements. Researchers have been able to treat these two types of

cost independently and derive more than one optimality criteria [7,10,21,22,23] for each of




them. SASCOM uses execution time as the primary criterion (i.e. the number of clock cycles
needed for the compietion of the algorithm). Using a linear programming algorithm, SASCOM
derives architectures with optimal execution time. The optimality criterion for hardware
requirements is more involved. In general, hardware cost can be characterized by the
processor counts and the hardware complexity of individual processors. However, there is no
consensus as 1o how the latter cost should be measured. SASCOM's approach is to
generate all systolic implementations with their associated processor counts as cost
measures. Presented with all available systolic implementations, a user can then choose an
optimal one based on his/her own optimality criterion for hardware complexity. This approach

is practical since the number of implementation is not very large.

The front end of SASCOM is an editor that permits the user to edit and execute input
specifications at the algorithm level. The back-end of the system is a graphical simulator to

simutate the final architecture. A diagrammatic view of SASCOM is shown in figure 1.2.

Systolic . Systolic
Specification ARE Architecture
Editor Spec. Generator Spec. Simulator

Figure1.2 Overall structure of SASCOM

As shown in the figure, an ARE input specification is fed into the systolic array generator.
The result is an architecture specification which can be input to the graphical systolic array
simulator. The systolic array simulator can also be run independently by manually supplying
an architecture specification. SASCOM therefore serves as an integrated software package
for the design of systolic arrays starting from editing and verifying problem specification to

generation and simulation of systolic architectures.

The following chapters of this thesis will cover all major componenis of SASCOM. We will
start the discussion in chapter two by looking at some other CAD systems that perform similar
tasks. Chapter three will present the theoretical framework behind SASCOM. The topics



include data pipelining and mapping functions. Chapter three will discuss the upper bounds
on the number of possible systolic architectures for any given problem. This bound is found
io depend only on the number of dimension of the input recurrence. Based on this theory,
SASCOM is able to find all systolic architectures for any given problem. Finally, in chapter
four, we will present the overall structure of SASCOM, the algorithms used and some

development notes.

Finally, | would like to thank several people who made this project possible. SASCOM is
the result of the collective effort of a group of four. With Ben Manuto working on the simulator
and Ed Kilnham on the input editor, | could focus all my attention on developing the systclic
architeclure generator. And of course, without the help, the numerous discussions and

supervision of Professor Sanjay Rajopadhye, the project would never have been completed.
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CHAPTER 2

SURVEY OF EXISTING SYSTEMS

There are five major aspects which set SASCOM apart from other systems in the

research community:

(1) Input problems are specified as a system of Affine Recurrence Equations (ARE). As
pointed out by Rajopadhye [16], ARE's provide a higher level notation to specify problems
than Uniform Recurrence Equations (URE's) [6,15].

(2) The process of data pipelining is almost completely automatic. With data pipelining,
an ARE specification can be turned into an equivalent system of URE's. This enhances the

generation of linear transformation mapping functions.

(3) SASCOM uses a linear programming aigorithm to generate optimal timing functions.

(4) All valid and distinct allocation functions (processor space mapping functions) are
generated for purely systolic interconnections. In chapter three, we will present a bound on
the number of systolic implementations for any given problem. Based on this model, the cost
of all systolic implementations of a problem can be pre-computed before an optimal

architecture is selected.

(5) A hardware specification of the target architecture is generated as an oulput for

simulation.

in the remainder of this chapter, we will look at four other existing systems. All these
systems aim at assisting the systolic array design process. A survey of these syslems can

justity the need for a more complete CAD tool.



2.1 SDEF

The SDEF system due to Engstrom and Cappello [5] is a software tool that consists of an
editor, a translator, a domain type database, and a systolic array simulator. It is used as a tool to
express and execute systolic algorithms. The input to the system is an SDEF specification
which specities four properties of systolic architecture: the index set (S), domain
dependencies (D), space-time embedding (E) and process function (F). A systolic algorithm
specified in this SDEF language can be translated by the translator into C programs and finally

run by a simulator.

The four properties (SDEF) identified by Engstrom and Cappello roughly correspond to
the four terms we used in our system -- problem domain, data dependencies, timing-allocation
functions and processor executable code. There is almost a one-10-one correspondence
between the SDEF specification and our way of specifying final systolic architectures. Such a
coincidence is by no means arbitrary. As Engstrom and Cappello have pointed out, by
breaking down the specification into four parts, a systolic algorithm can be specified in
sufficient detail effectively. Engstrom and Cappello have also discussed the difference
between the SDEF specification language and other languages such as W2 [1]. Unlike W2,
SDEF specifies processor interconnections apart from the program's computation constructs.
Our system also adopts such a scheme. While W2's choice reflects the general-purpose,
message passing capabilities of their systems, SDEF and SASCOM reflects the traditional
view that a systolic architecture is problem specific and is identified by its own unique

processor interconnection pattern.

The difference between the SDEF and our system is the emphasis. While SDEF aims o
provide a clean way to specify systolic algorithms, our system is built as an automated CAD
tool to accept mathematical specifications and generate all possible systolic architectures

based on the constraints we set.



2.2 Crystal

The Crystal programming environment by Chen [3] provides a general purpose,
executable language to specify parallel algorithms. Systolic algorithms, being a type of parallel
algorithms, can be specified as recurrence equations in Crystal. Chen identified a three-step
process to transform an input specification to an architecture specification -- (1) reducing fan-
in and fan-out degrees, (2) performing space-lime mapping and (3) optimizing control signals.

Crystal does not perform these transformations automatically.

A distinguished feature of Crystal is the the use of space-time recursion equations
(STREQ) to specify target systolic architectures. A STREQ is a recurrence equation obtained
by renaming the indexes of the original specification from the problem to the space-lime
domain by means of space-time mapping functions. Such an architecture specification is
desirable since it maintains a direct correspondence between the input problem specification
and the target architecture specification. SASCOM on the hand maintains a distinction
between a higher Jevel problem specification (ARE) and a lower level architecture
specification (hardware). The lower level architecture specification is designed to be

compatible with the simulator which can be used as a stand-alone application.

The main difference between Crystal and SASCOM is again the emphasis. Parallel
algorithms can be specified and executed in the Crystal system. But unlike SASCOM, it does

not perform any transformation automatically to generate systolic architectures.

23 ADVIS

The ADVIS system by Moldovan [12] is one of the pioneer software systems for the
design of systolic arrays. The mathematical foundation of the system is based on the
transformation of algorithms from sequential forms to suitable parallel forms [13]). Systolic
architectures are derived by means of mapping from the problem domain to the space-time
domain using linear transtormation functions. These transformation functions, P and S are

semantically the same as our timing and allocation functions.



A major breakthrough of ADVIS is its ability to automatically generate transformation
functions and hence architecture mappings by solving linear diophantine equations. Using
this approach, ADVIS is capable of generating valid P and S transformation mappings. ADVIS
however does not offer a performance index to optimize the P functions. Moreover, it does
not distinguish between identical systolic arrays that could be generated by distinct S

functions.

24 STEP and PLACE

Kothari, Gannett and Oh in their paper [7] have mentioned a system to design systolic
architectures. Their prototype is able to generate STEP and PLACE mapping functions
(corresponding to timing and allocation functions respectively) for a given problem
specitication. Based on a constraint similar to our nearest-neighbor interconnection
constraint, they were able to come up with an upper bound on the number of possible systolic
architectures for a given problem. They however do not provide a model to differentiate

between non-distinct architectures.

It should also be noted that none of the above systems automatically performs dala
pipelining. By allowing users to specily problems in ARE's, SASCOM provides a high level
specification language for systolic algorithms. However, since not all problems specified in
ARE can derive systolic architectures, data pipelining is needed to transform the ARE
specification into an equivalent URE specification. Another important feature of SASCOM is
its ability to generate all systolic architectures for a given problem. Such a feature is lacking in

the above three systems.
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CHAPTER 3

SYNTHESIS OF SYSTOLIC ARRAYS: A THEORY

Till now, we have been casually using terms such as "pipelining” and "mapping
functions®. In this chapter, we will clearly define these terms. In addition, we will lay out the
theoretical foundations of the design methodology adopted by SASCOM. This methodology
is based mainly on the Affine Recurrence Equations (ARE) model described by Rajopadhye
[16].

Before we go into details, let's first briefly outline the design methodology:

i) Specify the problem in form of a system of ARE's.

ii) Pipeline the non-uniform dependencies in the problem specification.

iii) Find a valid timing and allocation function pair which defines a systolic architecture.

iv) Derive the final architecture by performing mappings from the problem domain to

space-time domain.

3.1 Specifving a Probl ARE

The first step in designing a systolic implementation for a problem is to define the
problem in a specification language. The choice of a suitable specification language is large.
Quinton {9] has shown that a special subclass of Uniform Recurrence Equations (URE's) can
specify many problems for which systolic implementations can be derived!. Formally, a URE

over a domain Dis defined to be an equation of the form:

fip)=g(fip-wy), fip-wa, ..., ip- wi}) (eq. 3.1)

1 Similar resulis have been presented by other researchers. Moreover, Rao [17] has shown that every
systolic array can be described by a system of URE's.



where pe D,
w;'s for i = 1..k are constant n-dimensional vectors; and

g is a single valued function dependent on each of its arguments.

The result of Quinton's theory suggests that URE's would be the good choice for
specification language. However, Rajopadhye has pointed out the usefulness of allowing
problems 1o be specified in a less restricted type of recurrence equations. This type of

recurrence equation is called an Affine Recurrence Equation {ARE) and is defined as follows:

fp) = g (f(A1p+ D), RAop + bp), ..., RAKP + D) )
where

pis a point in an n-dimensional problem domain;
Aj's are nxnconstant matrices;

b;'s are constant ndimensional vectors; and

gis a single valued function dependent on each of its arguments.

Nofice that the depending computations are linear (A;p + b)) instead of uniform (p - w}),
hence the term "affine”. For example, the multiplication of two square matrices A and B can
be specified by the following system of ARE's.

n f O it k=0
RiiK =\ Rijk-1) + Ali.kk-1) * Blkj.k-1) otherwise '

aof A k=0
AlijK = { A(ij,k-1) otherwise
and

F1iA B it k=0
Blijk = { B(ijk-1) otherwise

The power of using ARE's (instead of URE's) 10 specify problems lies in its flexibility.
However, not every problem specified as a system of ARE yields systolic architectures. In
fact, the next step in deriving systolic architectures from an ARE specification is to pipeline all

non-uniform dependencies into uniform dependencies. Only those ARE's whose

10

s et S e —



dependencies can be localized can be mapped to systolic architectures. The following

section describes how pipelining is performed.

.2 Pipetining Non-Uniform Depengend

A problem with non-uniform dependencies means that a computation depends on some
other computations which are at a non-uniform (linear) distance away. Such a linear
dependency when mapped to the processor domain (by linear mapping functions) also
generates a non-uniform (linear) processor interconnection. However, by definition of
systolic array, such a connection is not permitted. Hence, in order to derive architectures for
problems with linear dependencies, the non-uniform dependencies have 1o be converted

into uniform dependencies. The following pipelining theorem [16] helps us to do just that.

Iheorem 3.1

A particular dependency [A, b] of an ARE can be made uniform if the dependency matrix

Ahas a non-trivial zero p such that

3n|Vpe D, p+kp=Ap+b;

Intuitively, pipelining can be explained as follows. Suppose a computation at point p
requires the result of a computation at point gof a “linear" distance away;i.e. g=Ap+b. lfwe
can identify ali poinis (say p''s) that need the same value (g), then we ca1 somehow pass it

alu.ig these points (hence the "pipelining"). Hence if p and p' both needs the value of g, then

Ap+b=Ap'+b. {eq. 3.2)
= A(p-p)=0

(p - p) is therefore a solution 1o A x = 0 and thus belongs to the nullspace of A.

Conversely, all solutions to Ax =10 satisfy the condition given in (eq. 3.2) and therefore

11



1.3 Finding Timing Functi

After all non-uniform dependencies in the original ARE are pipelined, we have a new
system of URE's. This system of URE can now be used to derive systolic architectures.
Intuitively, we can look at the problem of deriving systolic architectures as follows. A problem
specified as a system of ARE's defines a dependency structure in the problem domain. We
can remove the non-uniform dependencies in the ARE by means of pipelining. The uniform
dependencies then form a lattice of dependencies in the problem domain. To generate a
systolic architecture,we map this dependency struciure in the problem domain to a space-
time domain: where the space domain denotes the processor locations and the time domain
defines the time at which the computation is performed by each processor. Two mapping
functions, one for mapping to the time domain and the other for mapping to the space
domain, are therefore required. These two functions are known as the timing and allocation
functions respectively. This timing and ailocation function pair, together with the computation
defined by the given URE, can therefore fully specify a systolic architecture. in what follows,
we will first look at the concept of an Affine Timing Function. Many researchers have

developed simitar theories. We will follow the notation used by Quinton [15].

An affine timing function is a function mapping a point in the problem domain to a positive

scalar value. It can be represented in the following form:

p=np-a

where A is an nx1 veclor and ais a scalar constant.

Intuitively, a timing funclion maps a computation in the problem domain to the time
domain. In other words, it identifies the time at which the specified computation is performed.
Since the dependency structure of the problem specifies a precedence relationship, the
timing function has to guarantee that a computation is performed only after its arguments have
been computed. Hence, if there are k dependencies dy, dz, ..., dx in the specified problem,

i.e. computation at point pis dependent on points G = p + d; fori=1.kthen

13



require the same value g as p does. Notice that the rank of A has to be less than n (the
dimension of the problem domain) in order for pipelining to be possible. When the rank of Ais
less than n-1 we get an "extended pipeline.” Moreover, under cerain conditions, it is
possible 1o involve multiple data dependencies in a single pipeline (called mulii-stage
pipelining [16]). SASCOM does not implement this and other recent techniques developed
by some researchers [19,24,25], but only addresses the case when the rank of A of 1. This

null space of Ais then a straight line, and has a unique integer basis p (up to sign).
Now there is one more thing to consider. After we have identified all the poinis p + kp
that need the same argument as p, we need to know how these points get their first value, or

in other words, how the pipeline is initialized. Let's call this point that gets the first value, p.

Since pyis the earliest scheduled point in the nullspace of A, it has to be a point on some
domain boundary (say, 6p = r). A proof of this is given by Rajopadhye []. In addition, it has to

be a constant distance away from the original point on which p depends. Hence,

Ap+b-p=p) and pgis aconstant vector.
Putting all this together, if the original ARE is:

Rp) = g (f(A1p + D), RA2p + bg), ..., RAip+ b)), ..., RAD+ by) ),
after Ajp + bjis pipelined, the specification becomes:

fp) = g(F(A1p + b1), RAzp + b2), ..., fi(D), ..., RAKP + by) ) and

IAp+pL) i19;p=my
P '{ filp + p) otherwise

12
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hp>N(p+d)
= Mdj<0 fori=1..6 Vpe D

In addition, the timing function has to map computations tc positive time instants. This
constraint can be expressed as constraints on the vertices and ray {we assume that the

domain has at most one ray) of the domain.

Given that v1, v, ..., vmare mdomain vertices and ris ray in the domain,
Atviza fori=1...m and
Arz0.

Any timing function satisfying these three constraints is a valid timing function. Finding
an optimal timing function from this set of valid timing functions is a linear programming

problem, which will be discussed in chapter 5.

a ! Eo Io EII I. E I.

While the timing function maps a computation to the time domain, an allocation function
maps it to the processor domain. Formally, given an n-dimensional problem domain, an
allocation function is a linear function which maps points from the 27 problem space to the Z+

1 processor space;

ie. AlD) =Aap

where is A5 an nxn-1 integral matrix.

A valid allocation function must guarantee that two computations scheduled 1o be
performed at the same time are mapped to two different processors. This constraint is

represented as follows:

T



Tip) =T A Alp) = Alg = pP=q

In this chapter, we have briefly presented the fundamental framework of a methodology
to synthesize systolic architectures. Starting from an ARE specification of a problem, we first
pipeline the non-uniform dependencies and turn the original ARE into a URE specification.
We then find valid timing and allocation functions to map the computations in the problem

domain to a time-processor domain which fully specifies a syslolic architecture.

From the discussion on timing and allocation functions, it is clear that they are not
unique. The constraints presented in this chapter only define a search space of valid timing
and allocation functions. Finding a syslolic architecture for a problem theretore becomes a
search problem. However, as we will see in the next chapler, by focusing on a few additional
constraints that characterize systolic architectures, we can limit the search space of syslolic
archileclures to a fairly small set. By choosing suitable optimality criteria, we can find an

optimal architecture for a specified problem.

15



CHAPTER 4

ALLOCATION FUNCTION AND ITS IMPLICATIONS:
NUMBER OF ALL SYSTOLIC ARCHITECTURES

We have seen in the last chapter a methodology to design systolic architectures from
systems of affine recurrences. Using a timing and an allocation function, we can map
computations from the problem to the space-time domain to generate a final architeclure.
Such a timing and allocation function pair therefore uniquely determines a systolic
architecture. In this chapter, we develop a lower bound on the number of valid allocation
functions. This lower bound is found to be a small number and depends only on the
dimension of the input recurrence equation. For two and three dimensional recurrences, the
bounds are 4 and 13 respectively. Such small bounds imply that it is feasible 1o pre-compute
all possible sysiolic architectures before we select an optimal one. We will star our discussion

by going back to our old friends from last chapter, the timing and allocation function.

4.1 Timing Function

A timing function of an architecture defines the time at which each processor performs
the computation corresponding to each index point defined by the input recurrence.
Formally, a timing function, 7, maps the points in the problem domain to positive integer
points such that if p depends on gi.e. p- g=c where cis a positive constant vector, then T{p)
> T{q); or equivalently, if dy da, ..., diare dependencies in the problem domain, then T{d) <
Oforalli=1.. k. Although there are in general infinite number of timing functions for a given
problem domain as we have seen in the last chapter, at least one optimal timing function could
be found consistent with a given allocation function. This optimal timing function can be

found using a linear programming algorithm given in the next chapter.

16



1.2 Allocation Funti

Given a problem domain in Z7 , an allocation function is an affine function mapping points
from Z"to Z™1. 1t defines the mapping of computations from the problem domain to

processors in the architecture domain. Furthermore, uniform dependencies in the problem
domain are mapped 1o processor connections in the processor domain. Hence if dy do,

ese g

dj are k dependencies in the problem domain and A is an allocation function, then

Ald) | ... |dd=Tcrlo2]...|cd=C (eq. 4.1)

where Ais an -1 X nmatrix, [dy | &> | ... |dJannx kmatrixand[cy|c2]...[cdan 1 X k
matrix. Each of the columns, ¢jin C is a vector denoting the direction of a processor

interconnection!. The matrix C then fully specifies the connection pattern of the final

architecture, and we call it the connection pattern matrix.

Given a valid allocation function, we can choose an optimal timing function and hence
derive a target array. Thus the problem of finding all systolic arrays for a problem can be
reduced 1o finding the number of valid allocation functions. Finding an allocation function for
a particular application is, in general, a constraint-satisfaction problem. There are basically
three constraints that the allocation function has to satisfy -- non-conflict with the timing
function, the dense array and the nearest-neighbor interconnection. Based on these three
constraints, we can find the entire set of valid allocation functions. We note that not all valid
allocation functions define distinct architectures. We must therefore derive a condition which

enables us to identify architectures that are isomorphic to each other.

Non-confiict with The timing functi tcai

This constraint requires that the allocation function does not conflict with the timing

function: if the timing function requires two computations to be performed at the same time,

1 Chen [3] calls sach cja basis connection vecior,
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the allocation function must guarantee that they are performed at different processors.
Hence if T{x) is a timing function and A(x) an allocation function, then the following condition

holds:

=T AAp)=Alg =p=q

Ihe dense array constraint

Intuitively, the dense array constraint requires that every processor in the final architecture
maps to at least one existing point in the problem space. Such a constraint is necessary 1o
guarantee that there do not exist processors in the final architecture that do not perform any

computation {"hole").

Formally, if A(x) is a valid timing function, then
¥ pin 21,3 qin 27, such that
Alg) =p.

1 Lneighbor i , .

This constraint requires the allocation function to map all the data dependencies of the
URE to nearest-neighbor interconnections in the final architecture. These interconnections
are identified by a set of permissible interconnections. Many researchers have employed
different set of permissible interconnections in defining systolic arrays. In this thesis, we will
look at several of them fo see the effects of each of them on the bound of the number of

syslolic arrays.

The above three constraints limit the search space for valid allocation functions. The
following section defines a condilion, based on which we can determine whether two

allocation functions yield distinct architectures or not.

e e il




Condition for Distinct Architect

Intuitively, two systolic architectures are the same if the logical attributes of the processors
and the processor interconnections are the same. By logical afiributes, we mean attributes
such as the number of accumulators, input and oulput buffers for each processor, the
function computed by each processor, etc. Altributes specific to hardware implementations

such as whether it has hardwired control or not are not considered here.

As an example, consider the two arrays shown in figure 4.1. Lel's assume that they have
been derived from a URE with two dependencies, di and d by the allocation functions A4
and Ao respectively. Their inlerconnection pattern matrices are given by Cy = [? [1) ] and Cz

- 2 1 ] respectively. The functions computed by the processors in both arrays are the

same since they are determined by the same problem specification. Since one of the arrays is

obtained merely by "skewing" the other one, it is obvious that they are identical.

1l
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Figure 4.1. Two arrays that are isomorphic to each other.
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We thus see that two archilectures could be the same even if the processor
interconnection patierns given by their interconnection pattern matrices are not the same and

they have ditferent allocation functions. We shall now express our definition formally:
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Definition 4.1

Two architectures for a given problem specification given by their allocation functions A4
and A are the same if their connection pattern matrices Cy and Cz are linear transformations

of each other.

In the example above, we see that the two connection pattern matrices are linear
transformation of each cther (since [11 ?]'[? : ]= 2 a]) They therefore represent

the same architecture. The condition for distinct architecture can also be described in terms

of allocation functions for architectures. This is given by the following theorem,

Iheorem 4.1

Two architectures deduced by their allocation functions Ay and Az are the same if Ay and

Az are linear transformations of each other.

Proot

Let dy, 05, ... , 0 are the dependencies in the problem domain, then
Ald10| .. 1dd = C; and
Aldi| | ... |d] =C2
If A1 and A are linear fransformation of each other, there exists non-singular matrix 7, such

that

T A=A -I
ST A0 10 - |dd=4e" [0y (o] . |0 = Co ?
= T*'Ci=0Cy, '

Hence, C1 and Cp are linear transformation of each other. By definition 4.1, Ay and A

yield the same architectures.




Next, we will look at the dense array and nearest-neighbor interconnection constraint in
more detail. Note that aithough we can define problems in any number of dimensions, we
normally fabricate systolic architectures in o.dimension. Therefore, in the following
discussion, we will limit our examples 1o mappings from 22 and 23 problem domains to Z! and

22 processor domains respectively.

4.3 Dense Array Consiraint

Let [i1.i2....,i,.,]T be a point in the problem domain. Then an allocation function can be

represented as:

i

i
Alp) = A5 2

i

where Ais an -1 X ninteger matrix.

The dense array constraint requires that each point in the processor domain maps to at
least one point in the problem domain. Hence, the equation:
Ap)=b
has integer solution(s) p for allbe Z+1 , the processor domain.

The following theorem from Schrijver [20] gives a necessary and sufficient condition for

the above constraint o be true.

Theorem 4.2

Let A be an integral mx n-matrix of full row rank. Then the system Ax=D has an integral

solution x for each integral vector b if and only if the g.c.d. of the subdeterminants of A of

21
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order mis 1 (such a matrix is also known as a unimodular matrix).
Our dense array constraint can therefore be fully specified by the above theorem.

For 2-dimensional recursion, an allocation function is given by the following:

ap =tati [[]-x (eq. 4.2)

Applying theorem 4.2, we get
gcdab)=1.

An allocation funclion in 3-dimension is given by:
a; by 01] i |:a1:1+b1j+c1k:|
A =[ = 7 . 4.
1= & by cp || ]| "L azivbarcok (€q. 4.3)

Applying again theorem 1, we get
g.cd.((a1by-azby), (a10p-2361), (b1 Cp-bpey) ) = 1.

14N T fion C int

Locality of processor interconnection has been one of the most important properties of
systolic architectures. Such a property enhances the modularity and therefore the
extensibility of the architeciure. We now show how the nearest-neighbor interconnection
constraint also limits the search space of possible architectures for a particular problem. The
nearest-neighbor interconnection constraint requires an allocation function to map each
dependency to a permissible nearest-neighbor interconnection. Let A be the allocation

function, dy, dy, ..., di be the k dependencies of the problem and P be the set of permissible

interconnections. Then,

R —
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Aldg) e 7 (eg. 4.4

A(dy) € P.

Using the connection patiern matrix notation, (eq. 3.4) may thus be stated as follows.

C=Aldy || .. ldd=Tcile]-.1ed (eq. 4.5)
where g e Plori=1.k

We see that {eq. 4.5) represents K systems (each one of n-1 equations) of diophantine
equations. Since Pisa finite set, there are only a finite number of ways 1o form C. Therefore,
there exists only a finite number of systems of equations like (eg. 4.5). By solving each one of
these systems for A, we can therefore find all the valid allocation functions. However, if this is
done naively, the number of solutions will be too large. We musl therefore use other
constraints to remove duplicates and choose only valid allocation functions that yield distinct
systolic arrays. There are two properties of these system of equations that are important for

the derivation of the total number of systolic architectures.

(1) Another look at flion for distinct architect
According theorem 4.1, nol all connection pattern matrices generate distinct
architectures. Given a finite P, those that are linear transformation of each other will not

generate distinct architectures.

(i) Numi (d tengi i ion of 1 bi

If k < n, the system of equations, (eqg. 4.5) is under-determined. There are potentially
infinite number of solutions and hence infinite number of architectures. 1If k=n, the system of
equations is a determined one. There is at most one solution to each system of equations of
the form of (eq. 4.5) and therefore at most one architecture defined by {ed. 45), lik>n,(eq.
4.5) becomes an over-determined system of equations. There is again at most one solution

and at most one architecture defined by each system of equations of the form of (eq. 4.5).

23



The k < n case is not very interesting as can be seen by considering point p in the
problem domain. Any point that either depends on p or that p depends on is obtained by a
linear combination of the dependencies. Hence, the dependencies span (i.e. constitute the
basis for) a lattice space that contains the component of dependency graph of the entire
computation that is connected te p. Since k < n, this lattice space must be a subspace of the
problem space. We can therefore partition the problem domain intc a number of independent
subdomains; i.e. into independent subproblems. The number of dimensions of each of
these subdomains is then equal to the number of dependencies of each of them (k = n), and

this reduces to the k = ncase.

Since for k 2 n, there is at most one solution to & given system of equations of the form of
(eq. 4.5), each distinct system of equations determines at most one unique allocation
function. Hence, the number of allocation functions is bound by the number of distinct
systems of equations that can be formulated, given dj, d, ..., di and P, the set of permissible
interconnections. This reduces to the number of distinct2 connection pattern matrices that

can be found.

5 The Total Number of Systolic Archi

We now look at two specific P's which describe the permissible interconnections for linear
and 2-dimensional arrays. These two P's are the most commonly used sets of permissible

interconnections for systolic architeclures.

2.gi .

For linear arrays, the commonly used set of permissible interconnections is P= {0, 1, -1}.
Given this P and k dependencies (note that k>=2), there are 3k possible number ot C's that

can be formed. Consider the following two cases:

2 1. distinct modulo the constraint imposed by the distinct architecture condition.
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(i) if k=2, the number of possible C's is 32 = 9. But one of these permutation is [0 0] for

which we get:
Aldy | d&]=[0 0] (eq. 4.6)

This yields an architecture which maps all points in the domain to a single processor, and

is not a realistic solution.

Now let's look at the connections defined by [0 1] and [0 -1]. According to the distinct

architecture constraint, since [0 1] and [0 -1] are linear transformation of each other (since [0
1] = -1 X [0 -1]), they therefore describe the same architecture. Similarly, [1 0] and [-1 0]

define the same array as do the pairs, [1 1] and [-1 -1]; and also [1 -1jand [-1 1]. Hence, by
eliminating the uniprocessor (C = [0 0]) architecture and grouping the non-unique
architectures, we obtain 4 valid, unique architectures.
(i) If l2, there are 3k C's and therefore 3% systems of equations of the form:
Ald| 1| ... {dd=[c1|2]|..1cd (eg. 4.7)

But notice that any such system is overdetermined, and may be solved in two steps:

(a) Form a determined system of equations by choosing any two dependencies d and d]

where i# jand iand jarein {1, ..., K}; i.e. the system
Aldildl=[c1] gl {eq. 4.8)

(b) The solution, A obtained from (eq. 4.8) is then back substituted into (eq. 4.7) and

tested for consistency with the rest of the equations.

The number of solutions is again limited by (eq. 4.8) which is the same as the k=2 case.



Therefore, the bound on the number of distinct allocation functions is again 4. Therefore, we

have the following theorem:

Iheorem 4.3

The bound on the number of distinct systolic architectures is 4 for 2-dimensional input

problem.

b, 3-di -

For planar arrays, we use the standard set of permissible interconnections as shown

below:

P-{[3L C1 BT E1 I BT D)

This includes rectangular mesh, together with one diagonal, and thus expresses all purely
systolic arrays (including the hexagonal ones). With this P and k (k23) dependencies, dy, oo,

w o Oy, there are 7k ways to form the connection pattern matrix. Although this is a large
number, we can show that many of these connection pattern matrices generate redundant

solutions.

Theorem 4.4

There are at most 13 distinct and valid systolic implementations for 3-dimensional input

problem.
The proof is a generalization of the 2-dimensional case and is given in appendix A.

There are two other P's that are also commonly used by researchers:
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P4 and P> define the connections for the eight-neighbors and mesh array configuration
respectively. The bounds on the number of systolic architectures for these two P's are 25

and 9 respectively. The derivation of these results are also given in appendix A.

We have shown that given a problem specification, the number of all possible systolic
architectures that can be derived is bounded. For the most common cases in practice, these
bounds are fairly low: for linear arrays, the total possible number of systolic architectures is

equal to 4; and for planar arrays, the number is 13.
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CHAPTER §

THE SOFTWARE: SASCOM

We have seen in the last two chapters the theoretical framework for the automatic
generation of systolic arrays. The theory is embodied in a software system that accepts
problems specified as affine recurrence equations and produces systolic architectures for the
input problem. The system is composed of three paris: (1) an input editor, (2) a systolic
architecture generator; and (3) a systolic array simulator. figure 1.1 is repeated below to show

a diagrammatic view of SASCOM,
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Figure 1.1 Overall structure of SASCOM,

The Editor

The front end of the system is a text editor to accept ARE specifications. The reader is
refered to appendix B for the BNF of the specification language. A problem specified in this
language is first parsed to an internal representation, which is then passed on to the systolic

array generator for the derivation of systolic archilectures.

The Syslolic Array Generator

This is the core parl for systolic array generation. It performs pipelining, generation of
valid mapping functions and derivation of final architecture. The result of these operations is

an architecture specification for the simulator.



The Simulator
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The simulator provides a graphical user-interface to perform step by step tracing,

inspection of state of individual processors and debugging of processor specification. It may

also be used as a stand-alone application.

While the editor and simulator are important parts of the system, the main emphasis of

this thesis is on automatically generating systolic architectures. We shall therefore focus the

discussion in this chapter on the algorithms used by the syslolic array generator.

5.1 Systolic Aay G .

The process of systolic array generation can be broken down into four major steps. Each

of these steps are performed by a separate module of the generator. A diagrammatic view of

these modules is shown in figure 5.1.

Generate
timing
functions

Pipeline
L

Non-uniform
Dependenciej

UE
Spec.

Generate
Allocation
Functions

—»

Optimal
Timing
Function

Generate Architecture
Architecture Spec.
Specification

Allocation
Functions

Figure 5.1 The data flow diagram of the systolic array generator.



Figure 5.1 shows the top level flow of the systolic array generator, which is an
implementation of the synthesis methodology presented in chapter 2. The four steps

invoived in systolic array generation are listed in the following:

1. Pipeline the affine dependencies and transform the original ARE into a system of

uniform recurrence equations (URE).

2. Find the optimal timing function(s).

3. Find all possible allocation funclions for the problem1.

4. Build the final architecture specification.

We have made four design decisions in our system:

{1} User's input to the system is kept at a minimum level since it is built to automate the

entire design process.

{2) All allocalion functions are derived and the cost of each resulting architeciure
computed before generating the architeclure specifications. Such an arrangement is
possible because of the reasonably small bounds on the number of distinct aliocation

functions described in the previous chapter.

(3) The architecture specification language generated by the generator is closer to a
hardware than a mathematical descriplion. Such a choice maintains a distinction between a
higher level problem specification (ARE)} and a lower level architecture specification
{hardware).

1 Step 2 and 3 may be performed independently of each other.
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(4) SASCOM currently accepts only finite problems, and this limits the applicability of the

system, particularly in real-time and DSP applications2.

In the rest of this chapter, we present the algorithms used by SASCOM to perform each
of four steps shown in figure 5.1. Then we will demonstrate the mechanism of these

algorithms by tracing through one complete example -- LU-decomposition of a square matrix.

The algorithms will be presented in the following format -- first, the theory behind the
algorithm (if there is one) is explained, then the inputs and outputs to the algorithm; finally,

the algorithm is presented.

- s o

The theory of pipelining has been presented in chapter 2.

Inputs:

The original affine recurrence equation.

Output:

The transformed uniform recurrence equations (URE).

Algorithm:

1. Given an affine (non-uniform) dependency d=Ap+b in an n-dimensional problem space,
find the nullspace of A; where A is a constant nXn matrix and b is a constant n-dimensional

vector.

2 |1t is theorstically possible to perform the derivations for such recurrences oo, though it
involves reasoning about parameterized systems of ARE's. In the first version of SASCOM,
this generality was deliberately sacrificed for the sake of simplicity.
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1.1 The nullspace of dis found by solving the equation A p = 0 for p.

1.2 The value of the free variable(s) in p is (are) bound to be the smallest positive integer.
1.3 The sign of the free variables(s) in p is (are) found by applying the following heurislic:

Compare the results of 1aking two dot-products: (1) d with p with its free variable bound
fo -1 and (2) dwith p with its free variable bound to 1. The one having the larger product

gives the correct sign of the free variable3.

2. Find the p_, the distance between the point of interseclion of the newly pipelined

dependency with a boundary plane of the problem domain. p; must be a constant vecior in

order for pipelining 1o work.

2.1 The user is prompted for the equation of a boundary plane with which she thinks the

new dependency might intersect.

2.2 The intersection point (p;) of that boundary plane and the new dependency is then
calculated. If the intersection point is nol a constant vector away from the original
depending point; i.e. {(py = d- py) is not a constant veclor, step 2.1 is performed again.

3. A uniform recurrence equation is formed by replacing the original affine dependencies with
their corresponding pipelined dependencies and by adding in new functions formed by the

Pl

3 There is a well developed theory for determining the so called pipslining

transformations. In the most common cases however, the null space is linear and the above
heuristic yields satisfactory resulls. The generality provided by the theory was sactificed
for simplicity of implementation of the system.




5.3 Algorithm 2: Findi Optimal Timing Funci

Given a list of n data dependencies, dy, dy, ..., d,, a valid timing function 7{p) has to

satisfy the following constraints:

T(dy) s 1
T(dp) s 1

Tidp) <1
This set of constraints forms a convex hull embodying a space of valid timing functions.

The optimal timing functions are the timing functions from the set of valid timing functions
which gives the least processing time for the given problem. Given a timing function and the

set of domain vertices { v, vo, ..., ¥ }, the processing time is calculated as:

s=max{ - T | ijin{1, ... n})
=rnax{T(Vi-|{;)| iJin{'I,...,ﬂ}}

This gives us an oplimizing criterion to choose the optimal liming functions. Notice that this
criterion is a linear condition. Therefore, the linear programming algorithm can be used to find

an optimal timing function.

Inputs:

The data dependencies and the vertices of the problem domain.

Outputs:

An oplimal fiming function.

Algorithm:

1. Find the vertices of the convex hull defined by the foliowing set of constraints:
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T(dy) < 1
Tlda) s 1 (ineq. 5.1)

T(d,) < 1

Since we are not considering problem domains with rays, the inear programming theory

dictates that at least one of the vertices is an optimal timing function.

1.1. The vertices of the convex hull are found by solving sels of equations formed by all

combinations of k inequalities {k is the number of dimension of the problem domain) from

{ineq. 5.1).

2. Of allthe T's {vertices) found in the above step, apply the optimizing criterion, s=max { T{v;
-v)1 ijin{1, .., n} } on each of them and find the one 7 with the least s. This Tis an optimal

timing function.

5.4 Algorithm 3: Finding All the Pessible Allocation Functi

Recall from last chapter that the nearest-interconnection constraint dictates that:

Aldy, &, .. dj = C (eg. 5.2)

where A is the allocation function, d; ... d, are the data dependencies and C is one of the
valid connection pattern matrices. The entire set of valid allocation functions for a given

problem is found by solving systems of equations like (eq. 5.2) with all valid C's,

Inputs:;
The data dependencies, sel of permissible interconnections and an optimal timing function

trom step 2.
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Outpuls:

The entire set of valid and unique allocation functions.

Algorithm:

1. Build all systems of nearest-neighbor interconnection constraints.

1.1, Given n data dependencies, form all valid connection pattem matrices.

permissible imterconnections all valid combinations of 1

1.1.1 Choose from the set of

interconnections.

1.2. For each connection pattern matrix found in step 1, form a valid nearest-

interconnection constraint of the form of (eq. 5.2).

interconnection constraints for integer solutions. Rule out

2. Solve all systems of nearest-

those systems of equations which do not have any integer solution.

3. Rule out the invalid allocation functions.

1o rule out the invalid allocation

3.1 Apply the linearly independent rows constraint

functions.

3.2 Rule out the architectures that are not dense by applying the dense array constraint to

the allocation functions.

3.3 Apply the distinct architecture constraint to rule out the non-unique architectures.

stent optimal timing functions for each valid allocation function. Given a

4. Generate consi
e timing function is not

timing and an allocation function, the two junctions are consistent if th

orhogonal to the normal of the alocation function.



4.1 For each of the valid allocation functions, test to see if the optimal timing function found
in step 2 is linearly dependent on the row(s) of the allocation function. If it is, alter the

timing function until it is consistent with the allocation function.

5.5 Algorithm 4: Building the Final Architecture Specifica

The final architecture is derived by mapping the computations from the problem domain
to the processor-time domain. Three inputs are required -- (1) the pipelined URE defining the
computations performed in each processor; (2) the timing function specifying the time at
which each processor performs its designated computation and (3) the allocation function
mapping the computations and dala dependencies to processors and processor
interconnections respeclively.

After being pipelined, the original ARE specification becomes a system of conditional
URE's, of which each is of the form:

g1 it cy(p)
gz if ca(p)
fp) = P : (eq. 5.3)
ax if ck(p)
gk+1 Otherwise

where
g/s are single value functions of the form (b; /s are constant n-dimensional vectors):

gi=(hi{Rp+ bj1), Ap + b;2), ..., AP+ b))

each c;(p) is a conjunction of simple equalities and inequalities of the form :
B[ 1P=T1A .. A P=Tir ABjpAP2Tin 1 A .. ABinsP2Tins
where
9; /s are constant vectors in 2",

/s are scalar constants, and,
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r, s are non-negative integers.

fp) defines a variable to be computed in each of the processor. The value of fp) is
computed by evaluating one of the g/s depending on whether the guard condition ¢;(p) is
true or not. The truth of ¢;(p) is established when all of its conjuncis (iinear equalities and

inequalities involving the index points) are true.

Let 6p = = be a conjunct of a guard expression, cmip) where 1 < m < k.Since the timing
and allocation functions may be viewed as simple (linear) renamings of the index space, this

condition is equivalent to:

AT
9[7.] (X140 -os Xn-14 fl=nt

where
[x1, w2 Xp-1, ] represents the coordinates in the space-time domain and
[%] is the inverse of the space-lime mapping function.

This reduces to

) [X‘|, s Xp-15 ﬂ =T
where
T _o[Al"
6= (81, 6p, .. 0T =0 ['f] (eq. 5.4)

if 85 # 0, the linear equality is dependent on fime and is therefore called a time-

dependent condition. Next we present the concept of control signals.

-1
1 h should have been 6[%] X1, 0 Xn-1 t+a]T = 1t where -ais the constant term in the timing

function. It simply affects certain initialization and is left out for simplicity.
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Control Signals

The purpose of control signals in systolic architectures is 10 inform individual processors
the truth of cerlain time-dependent condition. Given a processor location (x4, ..., Xp-1), the
time t at which a condition is true can be calculated from (eq. 5.4). Such a time-dependent
condition can be implemented by pipelining a Boolean signal so that its arrival o processor
{x1, ..., Xp-1) at time ¢ signifies the truth of the condition. The theory of data pipelining

presented in chapter 3 can also be used to generate control signal pipelines as can be seen

by the following argument:

Let g and g’ be two points in the problem domain that both satisfy the condition, 8p = x.
Then
0g=n=90q
=8(q-q)=0

Hence, the nullspace of 6 characterizes all the points, p in the problem domain such that
6p = . The basis vector(s) of this nulispace define(s) the direction(s) of the pipeline. There
are in general many ways to choose the basis vector(s) and thus the direction(s) of a pipeline.
Since control pipelining is performed after data pipelining, SASCOM always tries to choose
the direction of the control pipeline to be the direction of one of the existing data
dependencies. Each control pipeline is initialized at the boundary processors. Given the

location [x1, ..., Xp-1] of one such processor, the pipeline is initialized at time ¢=-{ [81, ..., -

1} [X3, o Xn-1] + ®m } /0.

We have presented a method to pipeline control signals for conditions in the form of one
simple equality. To handle a conjunction of equalities, a control signal is generated for each
conjunct. The truth of the composite condition is established when all the control signals
arrive at a processor at the same lime. SASCOM does not currently handle conditions
involving inequalities, aithough the same method can easily be generalized to handle
inequalities. This can be done by interpreting the arrival of a control signal as signifying the
time at which the processor changes the value of a certain flip-flop. Thus it denotes a range of

space-time values rather than a single space-time point.



Note that if 0,= 0, {eq. 4.5) reduces 1o

[91 v oo Bp1) X1, o Xp1] =1,

and the equality is independent on time. We call such a condition a time-independent
condition. A time-independent condition (say 8p = =) in the form of an equality defines a
hyperplane in the processor domain. The points {processors) on this hyperplane difier from
the rest of the points in the processor domain in that they are the only processors that perform
the computation g guarded by the condition, 8p = = in the URE. This condition therefore
partitions two types of processors in the processor domain -- one computing g, the other one
not. For a time-independent condition in the form of an inequality, the partition is a half-space
in the processor space. In general, the different processor types of an architecture can be
found by considering all intersections of the spaces formed by all the time-independent guard

expressions in the URE.

Next, we present the algorithm to derive the tinal architeclure specification.

Inputs:
The transformed (pipelined) conditional URE problem specification, a timing function and an

allocation function.

Outputs:

An architecture specification for the systolic array simulator. The specification includes (1) a
data structure (pary) which specifies the internal structure of each processor and the
processor interconnection, {(2) the code executed by each processor and (3) the input

expressions defining the sequence of input data going into the processor array.
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Algorithm:

1. Find all processor locations in the architeciure domain.

1.1. Determine the mappings of the domain vertices 1o corner processor locations (i.e.

vertices) in the architeciure domain by using the allocation function.

1.2. Apply a polygon-fill algorithm to find all integer coordinate points inside the convex

hull generated by the vertices. These correspond o the processor locations.

. Determine the control signals needed.

2.1. A control signal is need tor every guard expression that is not time independent.

2.2. Pipeline the conditional expression by finding the nullspace of 8. The direction (basis

vector) of the pipeline is set to be the direction of one of the existing data pipelines.

2.3 The pipeline is initialized at the boundary processors at time t=-{ [81, ..., 8p-1] [x1, -.-

Xptl+mm} Bp.

. Find the variables and their atiributes in the final architecture:
Make one pass through the problem specification, and assign for each funclion a variable
name and determine the attributes (direction of connection, propagation delay, etc.) of its
arguments (dependencies). Let dbe a dependency of an argument to compute a certain
variable, then its direction of connection is given by A(d) and the propagation delay is T{d)
where A and T are the allocation and timing functions. Since control pipelining has already
been performed (in step 2), the flip-flops and wires needed for the control variables are

also generated by this step.
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4. Build the data structure (pary) for simulation. Pary is implemented as a two dimensional

schetme array.

4.1. The different processor types are classified according to the discussion given at the

beginning of this section. A hardware specification for each processor type is generated.

4.2. Copies of the hardware specification from step 4.1 are placed in the two dimensional
array in such a way that location (i,j) of the array contains the hardware specification for

processor (i,j) of the architecture.
5. Derive the code for each type of processors.

6. Determine the input expressions for the architecture. The system uses two ways to get

input data to the architecture:

(1) If the input guard condition maps to a single processor for a linear array or a line of
processors for a planar array, the inputs are fed inlo the processor array in form of a stream of

data.

(2) Otherwise, the allocation function is such that the data must be preloaded, and for this

purpose, a dummy accumulator is set up in the processor.

6.1. Each input expression of type (1) inputs is obtained simply by mapping its input guard

condition, ©p=n to the space-time domain:

AT
L —-

where [x1, ..., Xp-1, f] are the coordinates in the space-lime domain.

6.2. For type (2) inputs, since the input data are already stored in an accumulator inside a

processor, there is no need for an input expression. However, control signals are used 10
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iniiate the use of the input data. These control signals are pipelined in the standard way

defined earlier.
5.6 AnE je: LU-D it

We now present an example 1o illustrate the various steps. The problem of LU-

Decomposition is to decompose a square matrix into an upper and lower matrices:

841 842 ... dqq 1 0 ... 0O Ugq Uga -.. Uqgq
ay ap ... dq |_ bt 1 ... 0O 0 ugp ... Uz,
an1 an2 soa ann In1 In2 sss 1 0 0 e un"

The problem can be specified in our software by the following system of ARE:

(program
{function
#ijk)
{input
(matrix-a {12 3) {28 11) (3 22 35)))
(output
((=ik) (matrix-u i)
((=j k) (matrix-1i ))
(bounds
(c=kj) (c=ki) (<=i3) (<=]3) (<=k3) (>kO))
{cond ((= k O} (input matrix-a i j))
(=kDEEijEk) kK
(etse (- (FIj -k 1) (" (fikk) (Fkj -k 1M
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Key words are in bold typeface. Notice that the language is scheme-like (prefix notation).
Because of this, SASCOM can be closely tied with the scheme programming environment we

chose to use. The system above is equivalent to the following equations in infix notation:

aijj if k=0
oy f(i.j.k-1) . _
f(,r lk) = '(k,f,k"l) If k = j

f(i j, k) - t1(i.k.k) * f(k.j,k-1) otherwise
Appendix B contains a BNF specification of the input language. In this language, the

inputs, outputs, domain boundary and the bodies of the recursive functions are all fully

specified.

Pipefin

Notice that (f kj(- k1)) and (§ i k k) are two affine dependencies which need to be

pipelined. These dependencies are parsed into their matrix representations:

0
]andb1 =[ 0 ]for(fki(-kﬂ):

01

10

01 -

00 0

01 |andbo=| 0 [for(tikk).

01 0

To pipeline the two dependencies, their nulispaces are calculated by solving the equations:

Alpi= 0 ad {eq. 5.8)
Aop2=0

forpq and p2 .
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k1 0
The nullspaces for p4 and p2 are|: 0 ] andI:kz] respectively, where kq and k2 are two
0 0

integer constants. The magnitudes of the two variables k1 and k2 are then bound to 1, and

their signs are chosen as follows:

1) (k1,0,0)7 with kq first bound fo 1 is muttiplied with (kj.k-1)T.
i.e. (1,007 (kik1)T = (k0.0)T

2) Then the same operation is done with k4 bound to -1.
ie. (-1.0,007* (kjk-1)T = (k0,07

3) The two products are then compared. The one with the smaller product has the
correct binding for k1. Since k is positive in the problem domain, {-k,0,0)7 < (k,0,0)T. k5 is

therefore bound to -1.

With the same consideration, k2 in (O.kz,D)T is bound to -1.

Solving forP

Next, p1 's for both dependencies are solved in the following way.
First, the user is prompted for a domain boundary plane where each of the two new

dependencies is expected to inlersect. Figure 5.3 shows the user-interface of the system.

Say, the equations input are (= i k) for (-1 0 0) and (= j k) for (0 -1 0). The intersection of the

dependencies with their corresponding input planes are solved.

e, (kjkfor(-1,0,0) and (= i K);
(i.k,K) for (0,-1,0) and (= j k).

e ————

——
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pl's for the two dependencies are then found by subtracting from the original

dependencies from these intersection points.

i.e. pit = (Kjk-1) - (kjk) ={0,0,-1);
pL2 = (ikK) - {ikK) = (0,0,0).
With the new pipelined dependencies, the original ARE specification is transformed into a

pipelined system of conditional URE's where f4 and {2 are the pipelining functions.

(fijk)
(cond {(= k 0) (input matrix-a i j))
(=KD U EijEk1)(RIjIN)
(else (- (1 (- k1) {* (1TjK) (RIJKNN)
fijk
(cond {(=jK) (¢T] k)
(else (i ¢-]N KM
{f2ijk)
(cond ((=ik) {Tij(-k 1))
(else (2 (-1 1) jk))

Notice the addition of two new functions, f1 and f2.
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Findi Optimal Timing Funcii

The constraint for valid timing functions is given by the following system of inequalities:

T([-1,0,0]) < 1
{ 7([0,-1,0]) < 1
7([0,0,-1]) < 1

Finding the optimal timing function involves first finding the vertices of the hyperspace
formed by the above set of inequalities. This can be done by running the diophantine

equation solver on the following system of equations:

T([-1.0,0]) = 1
{ T({0,-1,0]) = 1
7([0,0,-1]) = 1

This system has only one vertex, (1,1,1), which becomes the optimal timing function.

Finding Al Allocation Funcli

With the new pipelined dependencies added to the original uniformed dependency, the

new dependencies structure is:
100

[ |d2|d3]=| 0 -1 0 |
00 -1

A valid allocation function can be found as described before. It tumns out that 13 valid and

distinct allocation functions can be found:

[ 2023 S1[s 8 SIS}
T RN IAN



Generating the Final Architecture

After all the allocation and timing functions are generated, the cost of each architecture
(area times processing time) is calculated. This together with the general shape of the

architecture are presented to the user, using the dialog box interface shown in figure 5.4.

The user can choose from this set of archilectures an architecture he wants to simulate.
The allocation and timing function pair corresponding 1o the architecture chosen by the user
is then used to generate the final architeciure specification. An example of an architecture

specification generated in given in appendix C.
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Conclusion

Systolic arrays are a type of special-purpose parallel architecture. Their popularity has
been limited partly because of the tedious process in designing one. SASCOM is a CAD tool
built to automate the design process. Based on a systematic design methodology, SASCOM

accepts ARE's as input and generates target systolic archilecture specifications.

Systolic array generation in SASCOM can be summed up by three processes -- data
pipelining, generating transformation functions and deriving the target architeciure
specification. Data pipelining is required 1o transform the non-uniform dependencies in the
input ARE to uniform dependencies. The result is a conditional URE specification that

performs the same computation as the input ARE.

The derivation of an optimal timing function from a URE is well understood. Since, the
oplimality criterion is linear, the standard linear programming algorithm can be used to obtain
an optimal timing function. The generation of allocation function is more invoived. There is no
consensus in the research community on a single optimality criterion for allocation function.
However, by analyzing the properties of the set of permissible interconnection vectors, the
upper bound on the number of distinct systolic architectures is found to be small. This makes
it practical to generate all systolic archilectures and their associaled cost before an optimal

architecture is selected.

The process of generating a target architecture specification is rather tedious. It involves
analysis on the guard expressions of the pipelined URE specilication to generate control
signals and determine the different types of processors of an architecture. While there are

heuristics to perform these analysis, a general theory is lacking.

SASCOM is written in MacScheme+TS and is currently running on the Macintosh-I|
system. To date, SASCOM is completely operational and performs the three processes listed
above with satisfactory result. There are however some issues that SASCOM has not dealt

with and require more research. The following are a list of them:
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(1) SASCOM does not deal with infinite problem domains. Such problems require
analysis involving parameterized equations. SASCOM's mathematical analyzer is not capable

of handling them.

(2) In SASCOM, data pipelining is parformed before an optimal timing function is found?.
Recently, Quinton [14] has shown that it is possible to derive an optimal timing function
before data pipelining. This is a better arrangement since the timing function found imposes
an exira constraint on the data pipelines so that their directions can be determined

automatically and there is no need to prompt the user.

(3) Control signals pipelining leaves a lot of freedom in choosing the direction of the
control pipeline. SASCOM heuristically chooses the direction of the control pipeline to be the
direction of one of the existing data dependencies. While such a method guarantees that the
control pipeline would not be in conflict with the timing function, it might not generate an
optimal pipeline. In fact, it is an open question as io how to choose an optimal control

pipeline.

(4) The target architecture specification generated for simuiation is a hardware-level
specilication. It is designed to be compalible with the input language to the simulator which
can be used as a stand-alone application. This low-level specification langauge gives the
simulator the flexibility to specify non-systolic architectures. However, when used as the
output specification language for the generator, it creates a conceptual gap between the
input and output specification (ARE's vs. hardware specifications). Chen [3] has discussed a
language called Space-Time Recurrence Equations (STREQ). An STREQ is a recurrence
equation obtained by renaming the indexes of the original specification from the problem to
the space-time domain by means of space-time mapping funclions. There are two
advantages in using this language as the target architecture specification language: (iyitisa
subclass of ARE and thus eliminates the conceptual gap between the input and output

specification; and (ii) it characterizes all and only systolic architectures.

1 During the time when the SASCOM project first started, there was no other alternative.
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APPENDIX A

DERIVATION OF THE BOUND ON THE NUMBER
OF SYSTOLIC ARCHITECTURES

We now apply the constraints stated in chapter 3 to derive the number of valid

architectures possible for three different P's:

o n-{EIELELEIEVEIED
o (L ELEL BB EILIED) e
o n{EHELENELED)

-
-

o2 O
» L

-c_.ll

o A={ o] B}} GFHA1 ]S

To find the number of unique connection pattern matrix, we can apply the following

consideration.

First, we can group the column vectors in Pinto four groups:

—t
L L]
-L o- .Q c.

w
15
[ I Y
- | S ]
r W v
b
[ Il

F -9
Ry
[
[y

Then, consider the ways we can combine 3 vectors from these 4 groups:
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1) 3 vectors from each group (we can represent this as (1,1,1), (2,2,2) (3,3,3) and
(4,4,4)). These combinations cannot form any valid connection pattern matrix since the two

rows of the matrices formed this way are not linearly independent of each other.

2) 1 or 2 vector(s) from group 1 combined with 2 or 1 vector(s) from one group out of
groups 2, 3 and 4 {(1,1,2), (1,2,2), (1,1,3), (1,3,3), (1,1,4), (1,4,4)) will not generate any valid
conneclion pattern matrix because such a matrix either has a row with all zeros or has both of

its rows being equal.

3) 1 vector trom groups 2, 3, or 4 and 2 vectors from one group (different from the first
one) out of groups 2, 3 and 4 {(2,3,3), (2,4,4), (3,2,2), (3.4,4), (4.2,2), (4,3,3)) generate 6

valid and unique connection pattern matrices (applying the distinct architecture constraint).

4) 1 vector from group 1 and 2 vectors from two groups out of groups 2, 3 and 4 {{1,2,3),
(1,2,4), (1,3,4)) generate 3 vafid and unique connection pattern matrices (applying the distinct

architecture constraint).

5) 3 vectors, each from one group from groups 2, 3 and 4 ((2,3,4)) generate another 4

valid and unique connection pattem matrices (applying the distinct architecture constraint).

There are therefore a total of 3 + 6 + 4 = 13 unique connection pattern matrices. These

matrices are given below as reference:

From groups: (2,3,3), (2,44}, (3,2,2), (3,4.4), (4.2,2), (4,3,3)
0oo1Jotro][f100
[1 -1 o]-[1 0 -1]'[0 1 -1]'

001 010 100
110101 o111}

From groups: (1,2,3), {1,2,4), (1,3,4)
0cCc1 001 100
o100 Q100 )Lot10]g
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From groups: (2,3,4)
101 101YrM1 017101
o11Jlo11)lo11Jlo11)

@r-{ [o] [}o] [} S BHEIRIET

We can group these nine vectors into five groups:

[ 3N

1. g
L1
NilA
LG
s [

The derivation for the number of valid C's is essentially the same as in (i). Consider the

following cases:

1) 3 vectors from each group (we can represent this as (1,1,1), (2,2,2), (3,3,3), (4,4,4)
and (5,5,5)). These combinations cannot form any valid connection pattern matrix since the

two rows of the matrices formed this way are not linearly independent of each other.

2) 1 or 2 vector(s) from group 1 combined with 2 or 1 vector(s) from one group out of
groups 2, 3 and 4 ({1,1,2), (1,2,2), {1,1,3), (1,3,3), (1,1,4), (1,4,4), {1,5,5), (1,1,5)), will not
generate any valid connection pattern matrix because such a matrix either has a row with all

zeros or has both of its rows being equal.

3} 1 vector from groups 2, 3, or 4 and 2 vectors from one group (different from the first
one) out of groups 2, 3 and 4 ((2,3,3), (2,4,4), (2,5,5), {3,2,2), (3,4,4), (3,5,5), (4,2,2), (4,3.3),
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(4,5,5), {5,2,2), {5,3,3), (5.4.4)) generate 6 valid and unique connection pattern matrices
(applying the distinct architecture constraint).

4) 1 vector from group 1 and 2 vectors from two groups out of groups 2, 3 and 4 ((1,2,3),
(1,2,4), (1,3,4), (1,2,5), (1.3.5), (1,4,5)) generate 3 valid and unique connection pattern
matrices {(applying the distinct architecture constraint).

5) 3 vectors, each from one group from groups 2, 3 and 4 ((2,3,4), (2,3.5), (3.4,5))
generate another 16 valid and unique connection pattern matrices (applying the distinct

architecture constraint).

There are therefore a total of 6 + 3 + 16 = 25 unique architectures possible.

ors={ 5} [} [} [+1 [<1}

We can group the five vectors into 3 groups:

loq
0

+ [10]
> [o] ]

Again, by applying similar consideration:

1) 3 vectors from each group {we can represent this as (1,1,1), (2,2,2) and (3,3.3)).
These combinations cannot form any valid connection pattern matrix since the two rows of the

matrices formed this way are not linearly independent of each other.

2) 1 or 2 vector(s) from group 1 combined with 2 or 1 vector(s) from one group out of

groups 2, 3 and 4 ((1,1,2), (1,2.2), (1 ,1,3), (1,3,3)) will not generate any valid connection
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pattern matrix because such a matrix either has a row with all zeros or has both of its rows

being equal.

3) 1 vector from groups 2, 3, or 4 and 2 vectors from ona group (different from the first
one) out of groups 2, 3 and 4 ((2,3,3), and (3,2,2)) generate € valid and unique connection

pattern matrices (applying the distinct architecture constraint).
4} 1 vector from group 1 and 2 veclors from two groups out of groups 2, 3 and 4 {(1,2,3))
generate 3 valid and unique connection pattern matrices (applying the distinct architecture

constraint).

There are therefore 3 + 6 = 9 valid architectures possible for Ps.
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APPENDIX B

BNF OF THE INPUT SPECIFICATION LANGUAGE

The following the BNF of the input specification language.

<program> ::= (program <domain> <fun—def>*)
<domain> ::= (bounds <guard-expr>*)
<guard-expr> ::= (<relational-op> <linear-expr>
<number>)

| (<relational-op> <linear-expr>

<linear-expr>)
<relational—-op> s & | €= | = | >= | >
<linear-exp> S8

1= (+ <term>*) | <term>
<term> ::= (* <number> <index>)
| (* <number> <size param>) | <index>
| <size-param>
<fun-def> ::= (<fun-name> <formals> <fun-body>)
<fun-name> 1= <id>
<formals> ::= { <index>+ )
<index> se=1 ) 3 1 k
<fun-body> +1= (cond <clause>¥*)
<clause> ::= (<guard-conjunction> <clause-body>)
<guard-conjunction>::= {and <guard-expr>*) | <guard-expr> |
else
<¢lause-body> ::= <input-bedy> | <guarded-output> <body>
| <body>
<input-body> ::= (input <input-name> <linear-exp>*)

<guarded-output> ::= {output <output-name> <linear-exp>*)
| (if <guard-expr> (output <output-name>
<linear-exp>*))

<body> ::= <any Scheme expression>
<input-name> 1= <id>

<size-param> ::= [1, m, n}

<number> 1i= [0-9]*

<id> ::= la-z, A-2) [a-z, A-Z2, 0-9]*
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APPENDIX C
TARGET ARCHITECTURE SPECIFICATION

The following is an example of an architecture specification generated by the systolic array

generator.

The following architecture is selected:

{(o10) (001 (111)

The following is the processor array data-structure:

#{#((ptype-14 ((acc12 float 1) (aco13 float 1)}
{(cB bool 1 data-input)
{c5 bool 1 data-input)
(y9 float 1 dala-input)
(x10float 1)
(y11 fioat 1 data-input))
{(c8 bool (1) (B 21))
(c5 bool (1) (c5 2 1))
(y9 float (1} (data-output))
{(x10float (1) (x102 1))
{y11 float (1) (data-output))))

0
0

}#((ptypeds ((acc12 float 1) (aco13 float 1))
((c8 bool 1)
{c5 bool 1)
(y9 float 1 data-input)
{(x10 fioat 1)
(y11 float 1 dala-input))
((c8 bool (1) (B 3 1))
(c5 bool (1) (c53 1))
(y9 float (1) (y9 2 2))
(x10 float (1) (x103 1))
(y11float (1 1) (y11 2 2))))
(ptype-14 ((acc12 float 1) (aco13 float 1))
{(c8 bool 1 data-input)
{c5 bool 1 data-input)
(y9 float 1)
(xi0float 1)
(yi1 ficat 1))
({c8 bool (1) (B 3 2))
(c5 bool (1) (c5 3 2))
(v float (1) (data-output))
(x10float (1) (x103 2))
{y11 float (1) (data-output))})

e L



0

)
#(ptype-15 {(acc12 float 1) (aco13 float 1))
((cB bool 1)
{c5 boal 1)
{y9 float 1 data-input)
(x10 fioat 1)
(y11 float 1 data-input))
((cB bool (1) (disconnected))
{c5 bool (1) {disconnected))
(vo float (1) (y8 3 2))
(x10 float (1) {disconnected))
(y11float (11) (y1132))))
(ptype-15 ({acci2 float 1) (aco13 float 1))
{{cB bool 1)
(c5 bool 1)
{ya fioat 1)
(x10float 1)
(y11 float 1))
((cB bool (1} (disconnected))
{c5 bool (1) (disconnected))
(ya float (1) (y333))
(x10 float (1} (disconnected))
{y11 float (1 1) (y11 3 3))))
(ptype-14 ((acc12 float 1) (aco13 float 1))
{{c8 bool 1 data-input)
{c5 bool 1 data-input)
{y9 fioal 1)
{x10float 1)
(y11 float 1))
({cB bool (1) {disconnected))
(c5 bool (1) (disconnected))
(y9 float (1) (data-output))
{x10 float (1) (disconnected))
) (y11 float (1) (data-output))))
)

The following are codes for each type of processor

{problem-16
({ptype-15
({{acc12) (aco13))
((cB) (c5) (¥8) (x10) (y11))
((c8) (c5) (y8) (x10) (y1 1)
((begin (set! y9.out (- y9.in (* x10.in acc12)))
{set! y11.out {- y9.in (* x10.in acc12)))
(set! x10.out x10.in)
(cond ((equal? c5.in 1) (set! acc12 y11.in)) (else))
(if (equal? c8.in 1) (set! aco13 y9.out))
(set! cB.out cB.in)
{set! c5.out c5.in))))
(ptype-14
(({acc12) (aco13))
((cB) (c5) (v9) (x10) (y11))
((c8) (c5) (y9) (x10) (y11)))
{{begin (set! y9.out {/ y8.in acc12))



(set! y11.out (/ y2.in acc12))

(sett x10.out y9.in)

(cond ((equal? c5.in 1) (set! acc12 y11.in)) {else))
(if {equal? cB.in 1) (set! aco13 y9.out))
(setl cB.out cB.in)
(set! c5.out cS.in))))))

The following are all input expressions

((y11 matrix-a
(((11)
(lambda{ijt)y {(+ (1) -1 ("-1)
(g:)wbda GIgc1on

(lambda ij1) (+ 19 -1 (-11)
(?:;-bda @iy ey

(31)
(lambda (ij1) (+(C 18 -1 (-11)
(lambda (ijt) (* 1))

{y9 matrix-a

(@n

(lambda (ijt) (+( 1) -1 (" -19))
glzarrbdau @igc1m

(lambda 1) (+{ 19 -1 (1))
gl;:mda ¢oc 1)

(larr)lbda G ECIN-1¢-1)
(lambda (ij8) " 1)) .
(c5 matrix-18
{((3 3) {lambda (i j 1) 1) (lambda (i j t) {+{ -9)))
{(22) (lambda (ijt) 1) (lambda (ijt) (+1-6)))
({1 1) (lambda (ij1) 1) (lambda (it} (+1-3)}))
(c8 matrix-17
(((3 3) {lambda (i j1} 1) (lambda (i 1) (+1-8)))
{(2 2) (lambda (i jt} 1) (lambda (i jt) (+t -5}})
((1 1) (lambda (i j1) 1) (lambda (ij 1) (+ t-2))))
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