Systematic Generation of Linear
Allocation Functions in Systolic
Array Design*

Xiaoxiong Zhong, Sanjay Rajopadhye
University of Oregon

Ivan Wong
Sun Microsystem, Inc.

CIS-TR-90-10a**
July, 1991

Department of Computer and Information Science
University of Oregon

*Supported by NSF grant MIP-8802454
** Revised version of CIS-TR-90-10

Systematic Generation of Linear Allocation
Functions in Systolic Array Design*

Xiaoxiong Zhong, Sanjay Rajopadhye
Computer Science Department
University of Oregon
Eugene, Oregon 97403-1202

Ivan Wong
Sun Microsystems, Inc.
MTV 1-40, 2550 Garcia Avenue
Mountain View, CA 94043-1100

Abstract

Linecar allocation functions are commonly used in mapping programs expressed
as systems of recurrence equations to systolic arrays. The interconnections in a
systolic array are usually required to belong to a small set of permissible vectors.
Thus, the space of all systolic arrays that can be derived from a given system of
recurrences (program) is limited, regardless of the program being mapped. By in-
vestigating the nature of this constraint, we derive upper bounds on the number of
possible systolic arrays that can be derived. These bounds are surprisingly small:
there can be no more than 4 linear systolic implementations of 2-dimensional re-
currences, and no more than 13 (purely systolic) planar arrays for a 3-dimensional
system of recurrences. We present an efficient procedure to utilize these bounds to
generate all possible linear allocation functions for a given system of recurrences,
and show how it may be used for the computer-aided design of optimal systolic
arrays.

*Supported by NSF grant MIP-8802454. Authors’ email address: (lastname]@cs.uoregon.edu

1

1 Introduction

Systolic arrays can be designed systematically by applying affine (or linear) transforma-
tions to algorithms that are expressed as systems of recurrences. Typically [CS83, Mol83],

the design consists of three components:

1. A recurrence to specify the computation.

2. A timing function (or schedule) specifying the time instant for each computation

in the recurrence.

3. An allocation function that maps computations to processor locations.

For the purpose of this paper, we assume that the initial algorithm is a system of Uniform
Recurrence Equations (UREs) [KMW67, Qui87] or Regular Iterative Algorithms
(RIAs) [Rao85) and we are interested in finding valid timing and allocation functions.
Even with a generalization of UREs called Affine Recurrences (AREs), there are now
standard methods to transform them into a system of UREs [Raj89, Roy88]. In practice,
the user is often interested in arrays which are optimal with respect to a number of crite-
ria such as the total computation time, the number of processors and the block pipeline
rate [Kun88, CR91] or even the amount of interstage data movement in a multistage sys-
tolic array. Some of these criteria, such as the total computation time, depend exclusively
on the timing function. Some, such as the processor count, depend on the allocation
function alone, while most others depend on a combination of the timing and allocation
functions. The problem of finding an optimal (with respect to the computation time)
timing function has been studied extensively [SF89, Rao85], and under some standard
assumptions, can be formulated as a linear programming problem (or a sequence of linear
programming problems).

For an n-dimensional recurrence, the number of valid linear allocation functions is
infinite, even for a finite problem domain. This implies that it is impossible to enumerate

all possible allocation functions. Hence, for optimizing performance criteria that depend

on the allocation function, researches have been forced to develop strategies for pruning the
search space of allocation functions. These strategies have been specific to the particular
criterion. For example, in designing arrays with a minimal processor count, Wong and
Delosme [WD89] develop and utilize an upper bound of the length of the optimal projection
vector (a linear allocation function can be uniquely represented by a projection vector).
Thus the projection vectors can be generated in a sequence of nondecreasing length,
and when the length exceeds the bound, the procedure can stop and claim that the
best solution produced so far is the optimal one. In general, to develop such a strategy
for a particular performance criterion, one must be able to systematically generate the
allocation functions in an order by which one can guarantee that the optimal solution will
be found. It is not always clear how to find such a strategy for any given performance
criterion, nor is it usually easy to combine the strategies, if multiple criteria are being

considered.

It is therefore very important to clearly understand the nature of the space of linear
allocation functions, and to first prune it as much as possible independently of the per-
formance criterion. In this paper, we obtain upper bounds on the number of possible
allocation functions, based on the following constraint: the interconnection links of the
derived arrays must belong to a (usually small, and always finite) set of permissible in-
terconnections. The bounds that we obtain are surprisingly low: there can be no more
than 4 linear systolic implementations of 2-dimensional recurrences, and no more than
13 planar (purely systolic) arrays for a 3-dimensional system of recurrences. If diagonal
connections are not permitted the number is 9, and if eight nearest neighbors are allowed,
it is 25. For an arbitrary set of permissible interconnection vectors, we also develop an
algorithm to determine the set of distinct “topologies” that can be constructed from these
interconnections. We then show how these bounds can be used to systematically generate
all allocation functions for a given system of UREs. This is achieved by introducing a
normal form for these topologies. The average time complexity of the procedure is of the
same order as the bound, which is the best that we can expect to do. We conclude this

introduction by formally describibg the problem and then giving an outline of the paper.

Moldovan, [Mol83] used the permissible interconnection matriz in a very early paper,
and a number of authors have proposed similar methods. Recently, Kothari et al. have
also viewed the choice of allocation function as the solution of systems of diophantine
equations [KOG89]. Both these methods require manual inspection of the derived arrays
to remove duplicates. We show that these correspond to precisely the unimodular affine

transformations of their allocation functions.

1.1 Problem Definition

For the purposes of this paper, a system of UREs is completely described by a set of
constant dependency vectors, {dy,da,...,di} (d; € 2™), and a convex polyhedral domain,
D. We denote by A = [d; | d2 | ... | dy] the n x k matrix formed from all the dependency
vectors. The timing function is determined by an integral n-vector, A, and the allocation
function is an (n — 1) x n integral matrix, A. There are two constraints that 4 must

satisfy.

e Non-conflict: It does not conflict with the timing function, i.e., no two points are
mapped to the same processor at the same time (this implies that A must be of full

row rank).

¢ Dense array The derived array must be dense i.e., every integral point in the
processor space must be the image of an integral point in the index space of the

problem.

Each dependency d; of the URE is mapped to an interconnection link, v; = Ad; in the

target array, and we define the interconnection matrix, as follows.
P=AA=[y|12|...| W (1)

Although there are apparently n? — n degrees of freedom in choosing A, this is not really

true. Many different matrices yield arrays that are equivalent in that they are just a

4

relabeling of the processors. It is well known [RKS86] that A is fully determined by a
projection vector, u. Any two matrices, A and A’ which satisfy Au = A'u = 0, yield
arrays that are equivalent. Moreover, the non-conflict constraint can be satisfied simply
by ensuring that ATy # 0. Other than this, any choice of u yields exactly one distinct
array (some care must be taken to ensure that u is reduced (the ged of all its elements is
1), and has a positive leading element). There are thus infinitely many valid allocation
functions for a given system of UREs.

This approach for choosing the allocation functions does not take into account a very
common, important constraint. The interconnections in the derived arrays are often
required to belong to a set P, of permissible interconnections. The following are four
commonly used candidates for P, representing respectively, the linear array, the two-
dimensional mesh (four neighbors), the mesh with two diagonals (i.e., hexagonal arrays),

and the mesh with eight neighbors.

P o= {O:il} (2)
(0] [o] [1]

P, = ,+ L+ 3

? {_o_ | 1] _o_} 3)
(0] (ol T[1] [1]

Py = s ,+ ,+ 4

s {_0_ 1] o] _1_} 4)

Pd = { 0 ,:I: 1i ! $:|: ! a:I:|: 1]} (5)
o]’ 1] o) T] -1

If we impose an additional constraint that for each dependency, d;, Ad; = ; must
belong to P , we no longer have the freedom to choose any matrix that satisfies Au = 0 as
our allocation function. Indeed, for many values of u, there may be no A for which v; =
Ad; € Pfori=1...k. For others, only some of the matrices satisfying Au = 0 may yield
an array with permissible interconnections. We may now state our problem as follows.

Given a set P of permissible interconnections, develop a systematic procedure to choose

valid allocation functions (i.e., satisfying the non-conflict and dense array constraints) for

a URE that will yield arrays whose interconnections belong to P.

Our approach to tackle this problem, and the organization of the paper, is as follows.
First, in Sec 2 we investigate the properties of valid interconnections for a systolic array
by using integral matrix theory. We also introduce the notion of congruence and similarity
relations. In Sec 3, we give a procedure to enumerate all possible “topologies” for a given
permissible interconnection set, and in Sec 4 we show that the bounds for the above
four common interconnection sets (i.e., Py, Py, P3, Py) are fairly small. Then, in Sec 5
we develop procedures to utilize these bounds to systematically generate all allocation
functions for a given system of UREs. We show how we can use “normal forms” to reduce
the time complexity of the procedure to the same order as the number of bounds we derive.
Finally we discuss the implications of these results on the development of practical CAD

tools for optimal systolic arrays.

2 Notation

We shall now introduce some formal notation which will be used throughout this paper.
Many of the ideas are fairly well known, but it is essential to treat them rigorously
in order to explain the later development. First, we extend the standard definition of

unimodularity* to non-square matrices.

unimodular) if the gcd of the determinants of all its m x m submatrices is 1.

Definition 1 A m x n matrix U (m < n) is said to be e-unimodular (for extended

It is well known [Sch88] (pp. 47, Cor 4.1c), that a system of diophantine equations
Uz = I has an integral solution for any integral vector I, iff U is e-unimodular. Hence,

the dense array constraint is satisfied iff the allocation function A is e-unimodular.

*A square matrix is unimodular if its determinant is 1.

Lemma 1 The column Hermile form of an e-unimodular m x n matriz, A, ist [I,, 0].

Proof: By definition of column Hermite form there exists some integral unimodular
C such that AC = [L 0], where L is a non-negative lower triangular matrix whose
diagonal entries are the unique maximal entries of the corresponding columns. Since
column operations preserve the gcd of all order i subdeterminants, and A is e-
unimodular, L must be unimodular. Hence all its diagonal entries are 1. Moreover,
all other entries in any column are strictly less than this, i.e., 0. Hence, L=1,. 1

Lemma 2 If A and B are two e-unimodular matrices, their product, AB is also
unimodular,

Proof: From Lemma 1 B = [I,, 0]C~! for some integral unimodular C. We have
AB = A[l,, 0]C~! = [A 0]C~. Hence, we need to show that [A 0] is e-unimodular.
This is obviously true, since adding any number of additional columns to an e-
unimodular matrix still yields an e-unimodular matrix. |

Lemma 3 For two e-unimodular m x n matrices, A and B, if there exists a m x
rational matriz, U such that A = UB, then U must be integral and unimodular.

Proof: From Lemma 1, BC = [I,, 0] for some integral unimodular matrix. Hence,
AC =UBC = U[l, 0] = [U 0]. Since AC is integral, U must be integral. Further-
more, AC is e-unimodular, but the only m x m submatrix of [U 0] whose determinant
is not zero is U. Hence U must be unimodular. |

We are interested in UREs whose computation graph (for a given parameter instance)
is fully connected. If this were not so, the URE would describe a number of independent

computations. Such a URE can always be rewritten as an equivalent one which has

a connected computation graph. The following lemma gives necessary and sufficient

conditions for this.

Lemma 4 The computation graph of a URE is connected iff the dependency matriz A
e-unimodular.

11; denotes the i x i identity matrix.

5

Proof: The dag of the computation is connected if and only if that any index point I
of the computation space Z" can be represented by an integral linear combination
of the dependency vectors dy, d3, ..., d; (i.e., every point is connected to the origin),
i.e., the following equation has an integral solution L for any p € 2.

[didy...diL=p

This is true iff A = [d; d; ... di] is e-unimodular [Sch88] (p.47, Corollary 4.1c). &

Analogously, if the set of permissible interconnections is not rich enough that we can
express any integral point as a linear combination of the vectors in P, then it is impossible
to construct a dense array. Thus, we will henceforth assume that the matrix, P, whose
columns are the elements of P is e-unimodular. The following relationships will be used
to partition the interconnection matrices into classes which are essential to eliminate

redundant candidates,

Definition 2 Two full row rank integral matrices, M; and M, are said to be congruent
(denoted by My = M, if UM; = M, for some unimodular integral matrix, U.

Definition 3 Two full row rank integral matrices, M; and M, are said to be similar
(denoted by M; ~ M, if QM; = M, for some non-singular rational matrix, Q.

Note that both similarity and congruence are equivalence relations, and that congru-

ence is a refinement of similarity.

2.1 Topological Equivalence

In the following, we give a mathematical property for two processor arrays to be topo-
logical equivalent. The property is fundamental for the derivation of bounds later on.
First, let us recall the standard definitions of equivalence of processor arrays. A paral-
lel architecture is described by a graph, the nodes denoting processor labels and edges

denoting interconnections. Each processor has a finite number of typed I/0 ports. All

8

edges in the graph are also typed, so any interconnection in the array is between similarly
typed ports on two processors. Two parallel architectures are defined to be topologically

equivalent if their graphs are isomorphic to each other.

Regular processor arrays are parallel architectures that satisfy certain constraints.
The processor labels are m-dimensional index vectors (moreover, every coordinate is a
valid processor label), and the edges are of the form p « (p + ;) for all processors, p,
where the p;’s are constant, m-dimensional vectors. We assume (for the present) that
the space of the processors lables is infinite (there are no boundary processors), and all
processors have the same number (say r) of 1/0 ports. Since all processors have identical
interconnection links, associating a type to each edge of the graph is the same as typing
the 4;’s. Hence the topology of the array is defined by an ordered set of such constant
vectors, or equivalently, an m X r integral matrix, M = [| ... | p,]. We are interested
in arrays that are connected, and so M must e-unimodular (using an argument similar to

Lemma 4).

Theorem 1 Two regular processor arrays, A, and A, with topologies My and M, respec-

tively, are topologically equivalent (denoted by A, = A,), iff My and M, are congruent to
each other.

Proof: Let M) = [, ..., p,), and My = [}, ..., 4]

If Part: Consider the linear transformation that maps any processor, p in A; to
p' = Up. Since every edge is of the form p & (p+ ;) it is mapped to Up & U(p+ms)
ie, Up & Up+ Up;. The range of this transformation is the entire index space
(since U is unimodular), and so this represents a regular processor array with the

i-th ports of any processor, p, connected to p + Ug;. Since Uy; is precisely the i-th
column of Mj, this array is As.

Only If Part: The two arrays are topologically equivalent, and hence there exists
an isomorphism, say f between them. We first show that f must be linear. Any
edge, p < (p + p:) in A, is mapped to f(p) «~ f(p + u;) in As, and since fis an
isomorphism, this must be the edge f(p) = f(p) + pi. Hence f(p+ w) = f(p) + p!-

Similarly, f(p + ki) = f(p) + kp! for any integer, k. Because M, is e-unimodular,
any point p can be expressed as Y7_; k;ii;, an integral linear combination of its

columns. Hence,

f(p) = f(Zr: kip;) = O+ i k;u;) = f(0) + Zr: kjpe

j=1 j=1 i=1

Hence, f must be linear and rational, and must be described by a rational m x m
matrix. By Lemma 3, it must be integral and unimodular, i.e., UM; = M, for some
integral unimodular m x m matrix U. |

Thm. 1 implies that any sequence of elementary row operations do not affect the
topology of a regular processor array. However, elementary column operations are not
permitted. Intuitively, this is so because the topology is defined as an ordered set of
interconnections, and the order is crucial. For example, the two linear arrays [1,0] and
[0,1] do not represent the same topology: a convolution array where the weights stay in
the processors and the input values move is not the topologically the same as one where

the weights move and the inputs stay.

Procedure 1
Given: Two n x k matrices, M, and M,.
Output: trueif M; = M,.

1. Determine an n X n non-singular submatrix, I'; of M;. If such a matrix does not
exist, return false.

2. Check that the corresponding submatrix, I'; of M; is also non-singular. If not,
return false.

3. Determine @ = [T, If Q is not integral unimodular, return false.

4. If QM, = M, return true, else return false.

Procedure 1 above, is used to compare if two matrices are congruent. Note that
similarity can be tested either by modifying the procedure (removing the test in step 3
above), or as follows. Compute the right null vector v for the matrix, making sure that »

is chosen so that it is reduced and has a positive leading element. Then, similarity can be

10

determined simply by comparing the respective »’s. Another method is to use a canonical
form, and compare these for syntactic equality. This option will be discussed later. Note
that if a regular processor array is derived from a URE {A, D}, by an allocation function
A, its topology is T' = AA. Moreover, we have the following.

Remark 1 Two allocation functions A, and A, generate identical arrays iff the corre-
sponding 'y and T'; are topologically equivalent. Indeed, T'y = UT, iff A, = UA,.

3 Bounds on the Number of Allocation Functions

Our approach is based on the following simple observation. Instead of first choosing A and
deriving I' from it, if T is given, we can view Eqn (1) as a system of diophantine equations,
and solve for A. This system has (n — 1) x k equations (one for each element of I'), and

n?

— n unknowns in A (in fact, there are n — 1 independent systems of equations, one for
each row of A). Since n must be no greater than k for A to be e-unimodular, the system
is fully (or over) determined, and yields a unique solution (if any) for A. Therefore, if we
can enumerate the set of all such systems of equations that can possibly occur this will
constitute an bound on the number of allocation functions for the problem. Moreover, if
this set is reasonably small, we will also have an effective synthesis procedure: each such
system is solved to yield an array (if the system has no integral solution, we simply move

on to the next one).

As a very crude approximation, we see that for a given problem, the set of all systems
of equations of the form AA = T is precisely the set of all (n—1) x k matrices T that can be
formed from the elements of P. Hence, it is easy to see that the number of possible linear
allocation functions is no more than the number of the system of equations. However,
this is fairly large (]P|*), and we should use additional constraints that can reduce the
size of this set. In particular, we know that these I'”s must represent valid interconnection
matrices, and hence must be e-unimodular. Moreover, many such matrices represent

topologically equivalent arrays. This yields the following procedure to determine the set

11

of candidate equations of the form of (1).

Procedure 2
Given: A set P of permissible interconnections.

Output: A set Sf of all interconnection matrices that represent distinct arrays.

1. Construct the set, S of all e-unimodular (n — 1) x k matrices whose columns belong
to P.

2. Partition & into equivalence classes under =, and let 8¢ = {[;} where I; is a
representative of each class. S is constructed incrementally by comparing each
candidate from S with the elements of (the partially constructed) S§, and adding
it if it is distinct from the ones so far (as in the sieve of Eratosthenes).

Proc 2 runs in O(|P|*[8°|). For arbitrary P this is as bad as O(IP)**) (we can con-
struct pathological cases where |5¢| = |S[). However, most commonly occurring sets of
permissible interconnections have much more regularity. Thus the set of candidate inter-
connection matrices is the set of e-unimodular (n — 1) x k matrices whose columns are
in P, under the equivalence partition induced by congruence. Hence an upper bound on
the number of possible allocation functions is simply |S§|. This bound depends on %, the
number of dependency vectors in the URE. In addition, when & grows, it can grow very
fast. For example, when the permissible interconnection set is P, defined in Section 1.1,
|85 is 25 but |S5| is 349! Therefore, if we intend to use these bounds to systematically

generate all the arrays, we need to further reduce the bounds.

By observing that Eqn 1 depends on A, the dependency matrix, we can further
tighten this bound as follows. First, we notice that the dependency matrix A must
be e-unimodular. Since e-unimodularity implies full row rank, A must contain an n x n
non-singular submatrix, say A;, (wlog, we assume that A, consists of the first n columns
of A). Let A = [A; | A,], and correspondingly, I' = [Ty | T 2]- Equation (1) may therefore
be written as:

12

T, = AA, (6)
Pg = AAQ (7)

Since A is required to be e-unimodular, T'; must also be of full rank. Note that J
and I'; are not necessarily e-unimodular themselves (similarly for A; and A;). But (6) is
fully determined, and can yield a solution for A by itself. We can now tighten our bound

as follows.

Theorem 2 Let ' and I’ be two candidate interconnection matrices in Sk ie, =T |
Iz] and I' = [T} | T3] where Ty and T are of full row rank. IfT; ~ [} then T and I
cannot yield distinct allocation functions.

Proof: SinceI'; ~ T}, '} = QT for some non-singular rational matrix, ¢}. Let, if pos-
sible there be two allocation functions, A and A’, induced by T and I" , Tespectively,
Then, since Eqn 6 is fully determined,

A == P] Al-l
A = TAT' = QAT =04
and A and A’ must be e-unimodular (even though AT! may not be integral). Hence,

by Lemma 3, @ must be integral unimodular, i.e., the two allocation functions are
not distinct. 1

Hence, the number of distinct allocation functions is no more than the number of
equivalence partitions of the set of all full row rank (n — 1) x n matrices whose columns
are in P, under the similarity relation. This is denoted by S*. Two points should be
mentioned regarding this bound. First, for an erbitrary (finite) P, it is not always possible
that, given an (n—1) x n full row rank matrix whose columns belong to P, we can always
find k —n additional column vectors belonging to P such that they form an e-unimodular
(n — 1) x k matrix. This implies that the bound may not be tight, i.e., for every clement

in §*, there may not be a candidate solution T However, for many common cases such as

13

P1, ..., Py, this is always possible. Second, since the bound is independent of the actual
dependency matrix, it is also possible that for an (n ~ 1) x n full row rank matrix T,
(partition), there is no valid allocation functions for all e-unimodular (n—1) x k matrices
whose submatrix of the first n columns is similar to T'y. In the following, however, we will
show that for the degenerate case where P is Z"-1 (i.e., any integral n — 1 dimensional
vector is a permissible interconnection), one can always find an e-unimodular solution
to Eqn 1 for any T'; € &§°. This indicates that our bound is tight for arbitrary P. The
following lemma first shows that any integral matrix is similar to some e-unimodular
matrix (and that the similarity transformation involved is integral).

Lemma § Any (n — 1) X n integral matriz T with full row rank is similar to some uni-
modular mairiz I'. Moreover the matriz, T such that ' = TTY, is integral.

Proof: Any integral matrix T with full row rank can be transformed into its Smith
Form by elementary row and column operations[Sch88], i.e., RTC = § = [D0] =
D[I,-,0], where R and C represent elementary row and column operations, and
D = diag(6,,8s,...,6n-1) is a diagonal matrix. Therefore, I' = R~!D[I,_,0]C~1.
Take, T = R7'D, and I = [I,_,0]C~. Since elementary column operations do
not change the ged of the determinants of the submatrices and because [In-10] is
unimodular, I'¥ is unimodular too. 1

As an aside, the above Lemma indicates that if we restrict our similarity relation to
only integral transformations, then, this relation is a strict partial order. Any set of (full
row rank) matrices that are congruent to each other has a subset which are minimal under
this partial order. Moreover, if the set is closed under congruence, the minimal subset
is a singleton. The following theorem gives us a method to determine an e-unimodular

solution to AA; =T, for some I’} similar to any candidate T',.

Theorem 3 For any candidate interconnection matriz Ty € &?, there exists T ~ T,
such that AA, =T has an e-unimodular solution.

Proof: The following procedure yields the desired solution.

14

e Solve 6 as a system of linear (rather than diophantine) equations. So, A =
T3 AT! which is, in general, rational.

o Let A’ be the integral matrix obtained by multiplying A by d, the least common
multiple of the denominators of all the entries of A

¢ By Lemma 5 there exists e-unimodular A” such that A’ = TA” and T is a
non-singular integral matrix.

Hence I'} = dT~'T'; is similar to T'; and A" is the desired e-unimodular solution (we
say V = dT~'). Moreover, since our proof is constructive, we can determine 7' and

AH . I

So far, all we have are the upper bounds for the number of allocation functions.
The problem of effectively utilizing these bounds to systematically generate all the valid
allocation functions still remains to be solved. This is not at all obvious, and in Sec 5,
we will develop a procedure to generate all the valid allocation functions which has space
and time complexity of O(|S{]). This can be improved by using various indexing schemes,
and standard data structures for searching. Before we discuss this, we first show that for

the common cases defined in Sec 1.1, the bounds are surprisingly small.

4 Interconnection Matrices for the Common Cases

Applying the above procedure to the standard sets of permissible interconnections Eqns 2-
4) we obtain the following results. There can be no more than 4 linear systolic arrays
with nearest neighbor interconnections for any two-dimensional URE. These correspond

to the topologies given as follows (see Fig 1).
Sy = {[01], 10, [12],[1 - 1]}
For P;, we have the following nine possible topologies (see Fig 2).
St o 010 1 00 100 10 -1
’ 0o1jfoot1f[o1of|lo1 o

15

R I | | S | P |

If hexagonal connections are permitted (i.e., for P;) the following 4 topologies are

possible in addition to &%, as shown in Fig 3.

s=sof[5 [0 2]l)

For eight nearest neighbors, i.e. P, there are twelve additional interconnections as

shown in Fig 4.

(1 -1 1][1 -1 =17]1 =101 =1 o]
Si=83U

1 rof[t 1 of|1 111 1 -1

(11 =1][-1t1 =101 =1][01 -1]

(01 ~1)Jf 01 —1f{11-1]|-11-1

(11 1][-1 =1 1][{-101][=1 o0 1]

1o1ff 1 o[1 11f[1-11]

Note that while §*(P;) has only 25 elements as shown above, S5{(P4) has 349 as can be
verified by running Proc 2. This grows very large as increases and so it is very desirable

to obtain a procedure that fully utilizes the tighter bounds.

5 Systematic Derivation of Valid Allocation Func-
tions

In this section, we describe systematic procedures to utilize the bounds obtained in Sec 3

to generate all the valid allocation functions for a problem. First of all, there is a naive

procedure to utilize the bounds given by the congruence relation (i.e., 8§). The procedure

simply tries to solve Eqn 1 for each T' € S§. Whenever an e-unimodular solution A is found,

16

it represents a valid allocation function. This procedure runs in time proportional to |Sg|,
and has space complexity of the same order of magnitude. Also note that since we have
assumed that the A, is of full row rank (which is always possible since we can rearrange
the dependency vectors), I'; must be of full row rank. Hence, we can immediately discard
those elements of Sf, whose first n columns are not of full row rank. We call this set the
reduced S;.

Improving this procedure to utilize our tighter bound is not as straightforward as it
may seem. As we saw in Section 3, we can first partition the reduced set S§ by the
similarity relation according to the submatrices formed by the first n columns. Formally,

we define the partition* as follows.

Definition 4 For any two elements I' and I" in the reduced set &%, they are in the same
partition class iff I'; ~ T} where I’ and T} are the submatrices of the first n columns of I
and I" respectively. We call this partition C.

Clearly, [C] < [5°|. Also note that two matrices T and I being in the same partition
class of C does not not necessarily imply that they are similar to each other, let alone
congruent (only their first n columns are similar). This raises a problem when we try to
improve the above procedure. Suppose that ' = [I'y I';] is the representative of a class R
of C, and there is no integral e-unimodular solution A for I'; = AA, (however, because T,
is full row rank, there will always exist a rational solution). We cannot simply discard T
as a candidate that can generate a valid allocation function. It is possible, that a rational

transformation of A may yield a valid allocation function for some other member I" of R.

Example 1 Consider the two candidate interconnection matrices (whose columns are in

Py)
110 0 ,_[r10]., _Jo
P‘=[—1 1 o] Fz:[l]“drl‘[o 1 o]ri‘[l]

*A partition of a given set, S, denotes a set of disjoint subsets of S whose union is equal to S,

17

and I' = [['; Tp), I = [T} T%]. It is easy to see that T'; ~ I}, since

Iy =Tr4
where
10
r=[3]

Hence, only one of them, say I will be picked as the representative of the class which
contains both I" and I". Now, consider a problem instance given by

1 10 0
A1= 0 20 a.lldA2= 1
0 01 0

and A = Ay A,. It is easy to verify that A is e-unimodular. Solving Equation AA, = A}
for A yields

1 00
"“[o%o]

which is not even integral, let alone e-unimodular. But if we use T as the representative
of this equivalence class, the solution is

100
A=l—1 1 0]

It is easy to verify that A is indeed a valid allocation function for T".

It is easy to see that, if two (n — 1) x n matrices I'; ~ I}, the corresponding rational
allocation matrices A and A’ derived by solving Eqn 6 are similar. Lemma 6 shows that
we do not need to solve Eqn 6 for A for each T € R.

Let R be an arbitrary partition class of C, ' be the representative of R and I’y be
the first » columns of I'. Furthermore, we know by Theorem 3 there exists Iy ~ T, for
which AA; = I'] has an e-unimodular solution. Let Ay = VT, AT be this solution (see
the proof of the theorem for details). We have the following lemma.

18

Lemma 6 There is a valid allocation function for class R iff Ao/ is congruent to some
element in R.

Proof: First of all, based on the proof of Theorem 3, Ay is e-unimodular regardless of
what T is. To prove the if part, suppose AgA is similar to some element I" in R,
i.e., UAoA = I" for some unimodular matrix U. It is easy to see that U Ay is a valid
allocation function for IV since U Ay is unimodular.

Conversely, suppose that there exists a IV = [[,] in R such that there exists a
valid allocation function A’ (e-unimodular) for it. We prove that AgA is congruent to
I". Since I'y = I'{, there exists a non-singular rational matrix 7" such that Ag=TA.
But since Ao and A’ are e-unimodular, based on Lemma 3, T must be integral and
unimodular. Thus, we know that AgA is congruent to A’A = I". |

The above discussion implies that, in systematically generating allocation functions,
we can not simply discard the elements in a partition class R represented by a single
element. Therefore, it is difficult (if not impossible) to reduce the space complexity
(remember that as the number of dependencies increases, |S§| grows very fast). This
difficulty rises from the fact that for any finite permissible interconnection set P is not
closed under unimodular transformation. There is much room, however, to improve the
time complexity of the procedure. The following is the general skeleton of the procedure

to generate all valid allocation functions.

Procedure 3

Given: A set P of permissible interconnections, a dependency matrix A and a parti-
tion C.

Output: All the valid allocation functions.
For each class R € C,

1. Let T' be the representative of R.

2. Solve for Ay as in Lemma 6.

3. If U := Test(Ao,R) is not false, then UAy is the valid allocation function for R,
otherwise R does not yield a valid allocation function.

19

Here, Test checks whether AgA is congruent to some elements in class R and returns
false if it fails; otherwise, i.e., if it finds an element I’ such that &/ AgA = T' for some

unimodular matrix U, it returns U.

There are two places to in Procedure 3 which need to be refined: one is how to choose
a representative of the R’s, and the other is how to implement function Test, which will
dominate the time complexity of the algorithm (recall that for many common cases, IC),
the number of the iterations in Proc. 3, is much smaller than than |S§|. In the following,

we give several approaches.

The simplest approach is to randomly pick an element from R as the representative
and implement function Test as follows: sequentially compare all the elements of R with
AoA = VT4[I,—1,A7'A;] using Proc 1. As soon as we find one successful match, we
can skip the remaining elements of R and Test returns the corresponding element. This
is safe, since in any partition class R, at most one element can yield a valid allocation

function. The worst case running time of Test is proportional to |R|, and the average
time is half of this.

The implementation of Test in the first approach can be further improved as follows.
Note that any element in R can be written as [QT,T,], for some non-singular rational
matrix ¢}, which can be precomputed (as can @~!). To test whether [QT,) € Ris
congruent to AgA\, we have to see whether there is a unimodular transformation U such
that ApA = U[QT, I'z). It is easy to show that U = V@™, and so all we have to do is to
test whether V@~ is unimodular, and whether AgA, = VQ-T,. A necessary condition
for U to be unimodular is that det(V) = =+ det(Q). Hence we need not compare AgA
with all the elements of R, only with those whose Q component has the same (absolute)
determinant as V. Thus, if we further partition R into blocks with det(Q) as a key, we

can reduce the time complexity of Test. However, a linear search is still required within
each block.

It is possible to improve this to logarithmic (or constant) time, based on the following
observations. For each element of R, our procedure Test performs an operation which

tests for congruence. This is a binary comparision which simply returns true or false.

20

If we were able to refine this to an order relation—if while determining whether two
matrices were congruent, we were also able to determine which one was “greater”—we
could then sort our candidates according to this order and use a binary search (or some
hashing technique) to test for a match. We now introduce the concept of normal forms
of interconnection matrices which enables us to devise such an order, and to dramatically

reduce the average time complexity of the search procedure.

5.1 Normal Forms for Topologies

As described earlier, the particular candidate we use as our representative of each equiv-
alence class under = is not unique, and may depend on the way our algorithm was im-
plemented. It is useful to have a standard form which is a unique representative of each
partition. Furthermore, since the sets of candidate interconnections R are precomputed,
we can reduce the test for congruence to a simple syntactic test for equality if they are
stored in such a form. We now derive such a canonical normal form, and show that it is
unique. Since I' = I'" iff one of them can be reduced to the other using only elementary
row operations, we shall obtain a normal form that is similar to Hermite normal form
[Sch88} except that rather than column operations, only row operations are permitted.

We call this the row-Hermite norma! form.

Theorem 4 Every (n—1) x n (m < k) integral full row rank mairiz T, is topologically
A,‘ aip1 B Al' B
0 0 c | where 0 cl|= S

is @ non-singular, non-negative upper-triangular matriz whose diagonal elements are the

] is the (i + 1)-th column of T

equivalent fo its row-Hermite normal form, I'* =

iyl
0

mazimal entries in the corresponding column, and [

(for some 1)

Proof: Our proof is based on the following induction. Suppose we have transformed T
. A A . . . e
into the form 0 ! 32 } where A; is upper triangular and with positive diagonal.
2

We perform the following elementary row operations to B,. Make the first column

21

of B; non-negative (if the whole column is zero, proceed to the second column).
This can always be done because we can change the signs of a row by multiplying
by -1. Pick the smallest positive element s on this column (say it is in row l) and
repeatedly subtract row [from the other rows until all their entries in this column
are less than s. Repeat this, until all except one element in this column are zeroed
out (this is similar to Euclid’s algorithm). Exchange this row with the first row.

Since I' is of full row rank, the case when all the entries in the first column of B, are
zero will occur at most once. Hence, there are at most two columns with the same
“height” of nonzero elements, and all those elements on the diagonal are positive.
The final matrix will have the “shape” that we desire, but its off-diagenal elements
are not necessarily positive. This too can be easily accomplished by appropriate
elementary row operations. The final form is I.. 1

Theorem 5 For any two full row rank (n — 1) x n mairices Ty and e, Ty = Ty iff
I; =T3.

Proof: If Pert: Ty =T} =T3 =T, = Iy =T, (by transitivity).
Only If Part: Let 'y = Ty, so I'; = U'T, for some unimodular /. Moreover, by
definition of row-Hermite normal form, I'y = I'} (so Iy = U;T}) and T, = I'; (so
I = UI3), for some Uy and Up. Hence T} = U 'U'U;T = UT for U = Urtu'u,.
We now show that this implies the U is the identity matrix, i.e., ['] =I5, Let

. _[Aam B . [A oy B o [A B . [4 B
Fl*[o 0 c;']’rﬂ‘[oJ 0 C’]’S_[O c]""nds‘[OJ C’]

Without loss of generality, let ; < i. We first prove that i = J- If it were not so,
! !
US is nonsingular, but the corresponding submatrix in T’ includes 615 gj"'l

which makes S singular. Therefore, i = j. Now, consider $' = US. First of all,
it is easy to see that U should be also upper triangular. Notice UPIUZ .+ Upeq]
= 1 (because U is unimodular), uysy = sy (for1 £1<n—-1)and su,8y > 0, we
have uy = 1. Further, consider $i_y = Si—u + w—usy. From sj_y; + u_ysy >0, we
have w;_y; > 0 (because sy is larger than s1-11) and from sj_;, < sy = sy, we have
u;_y; = 0. Now, consider Si 1141 = Si—ui+1 + Wim1i1S141041, using the same argument,
we have w_y41 = 0. Inductively, for 1 < &k < l, wi_x; = 0. Therefore, U is the
identity matrix. |

The definition of normal forms can be trivially extended to m x k& integral matrices

where m < k, and the submatrix formed by the first m+1 columns is full row rank (all our

22

candidate interconnection matrices in the reduced S§ are of this form). We simply convert
the first m + 1 columns to row-Hermite normal form, and apply the same transformations
to the remaining columns. It is also easy to show that these normal forms are unique,

and Theorem 5 can also be trivially extended.

We now improve the testing function Test in Proc. 3 as follows. We index elements
in a partition class R of C by their row-Hermite normal form. To test whether AgA
is congruent to an element I' in R, we first convert AgA into its normal form N and
based on Theorem 5, the testing of whether ApA congruent to I' is equivalent to testing
whether N is syntactically equal to the normal form of I' (which is the key of I'). Thus,
the testing problem reduces to a conventional search of an ordered list, and Test can
be implemented using standard techniques. A binary search tree improves the time to
logarithmic, and hashing may also be used to obtain a constant time algorithm for Test.
Proc. 3 for determining all the valid allocation functions will now run in O(|S?|), which
is a good as we can expect to do. Note that since the reduced Sf is not closed under
congruence, the normal form may not itself be a permissible interconnection. In this case
we also have to explicitly store the original interconnection matrix in reduced S§ to return

a correct unimodular transformation matrix /.

6 The Design of Optimal Systolic Arrays

The results presented in this paper have direct applications in the design of optimal

systolic arrays. We illustrate two such examples.

One of the most important criteria in systolic array design is the number of processors
of the array. In practice, we intend to minimize the processor count because Processors
occupy precious resources such as silicon area on chip for the array. Under the conven-
tional framework for systolic array synthesis, choosing different projection vectors (hence
different linear allocation functions) yields different processor counts. In general, the pro-

cessor count of the resultant array is the number of integral points of the image of the

23

computation domain under the projection. It depends exclusively on the projection vector
(linear allocation function) chosen for a given problem. Thus, to minimize the processor
count, it is desirable to search for the linear allocation function which yields the minimal
processor count. The number of valid linear allocation function for a given problem, how-
ever, is infinite even for a finite computation domain. Furthermore, since the processor
count cannot be formulated as a linear function (except for two dimensional recurrences),
linear programming techniques cannot be directly used as in the minimization of the total

computation time (i.e. choosing the optimal timing function) [SF89).

Wong and Delosme [WD89] considered this problem and proposed a method to prune
the search space of projection vectors. They proved that there exists an upper bound for
the length of the projection vector, u (recall that u is the basis for the right-null space of
the allocation matrix, A, i.e., Au = 0) which yields the minimal processor count. This
bound depends on the “shape” of the domain of computation, and Wong and Delosme
give a constructive method to find the bound. Using this, one obtains a processor-minimal
systolic array by enumerating all candidate projection vectors u that are smaller than (or
equal to) this upper bound, and picking the one that yields the best array among only
these. Note that since the bound depends on the shape of the computation domain, it

may be different for different sizes of the same problem.

In contrast with this, using our approach, one would construct all the arrays that can
be derived for the given problem und using a given set of permissible interconnections
(such as “pure systolic”) using (Proc. 3). Then one would choose the optimal one by
comparing the processor counts of each of the arrays. Because of the small bounds for
the number of these valid allocation functions, we expect that such a procedure would
be more efficient. TFurthermore, the search space of valid linear allocation functions is
independent of the problem size. One drawback of the method is that it is dependent
on the particular choice of permissible interconnections (this is our premise). If a user is
interested in the processor-minimal systolic array for a given problem, regardless of what

the interconnections are (i.e., if P = Z"~1) our procedure would be inapplicable.

In practice however, the absolute processor count may not be important. There are

24

many different performance criteria that may be used in systolic design, including through-
put, processor utilization, block pipelining rate, etc. [Kun88, CR91}, and many of these
are closely related. One such measure is the processor pipelining rate o (if every processor
is active in one out of every a clock cycles, the processor pipelining rate is a). It is well
known that & = A" u (recall that A" is the schedule vector). Ideally, one would like an
array where a = 1, it is also well known that by clustering adjacent processors together,
one can often achieve this. This problem has been studied by Zhong and Rajopadhye
[ZR91] who have shown that such clustering can be deduced automatically. Clustering
has the added advantage that the processor count is also reduced by a factor of a. Thus it
would seeem that the real cost measure that one sould minimize while designing systolic
arrays is not just V, the volume of the projection of the domain of computation, but V/a.
It is not obvious how the method proposed by Wong and Delosme can be adapted to this
new definition of processor count. Since our results enable the designer to systematically
enumerate the (finite) space of all possible arrays that can be derived, it can be easily
adapted to the new definition, and to any cost criterion (or indeed any combination of

criteria) that the designer chooses.

Another example of how our results can be applied in the design of optimal multistage
systolic arrays. Many practical algorithms in signal processing and numerical analysis
naturally have several different phases (i.e., there are several different nested loops in the
algorithm). For example, a multiplication of three matrices can be decomposed into two
multiplications of two matrices. There are two approaches to the array implementation of
such algorithms. The first is to design different arrays for different stages and the other
is to design a single systolic array for all the different stages. In the first approach, it
is desirable to minimize the interstage data movement which are caused because of the
mismatch of the input and output boundaries of the arrays for different stages. In the
second approach, besides the minimization of the interstage data movement, it is also
desirable to minimize the difference of interconnection structures caused by the difference
of the computation domains for different stages. Such minimization problems require an
exhaustive search in the spaces of linear allocation functions for different stages. By using

our results, an efficient procedure can be designed since the search space for each stage is

25

quite small,

To summarize, the results in this paper can be used to design optimal systolic arrays
for various criteria even for some fairly complicated design problem. This is because our
work shows that there exists an efficient procedure to systematically generate all possible

linear allocation functions, which are essential to optimize many design criteria.

7 Conclusions

We have shown that the problem of determining valid linear allocation functions for
a system of UREs has only finitely many solutions, if one considers the fact that the
desired arrays must have interconnections that belong to a (finite) set of permissible
interconnection vectors. Moreover, we have given an effective method for constructing a
sufficiently tight upper bound on the number of distinct valid solutions that can ever be
found. These bounds, for the common cases, are surprisingly small. By using the idea of
normal forms, we also give a systematic procedure to enumerate all possible distinct valid

allocation functions in a time complexity which is clearly the best we can do.

It should be noted that, although we have reduced the time complexity of the procedure
to enumerate all distinct allocation functions to the utmost, based on the tight bound,
5%, we have to store Sf instead of S* number of interconnection matrices. Therefore,
our precomputed interconnection matrices are related to the number of dependencies k
of the problem specification. One way to tackle this problem is to precompute S¢ which
depends only on n, the dimension of the problem domain and then generate S on the
fly. This will dramatically reduce the space required and make our procedure problem
independent, at the price of additional time costs. Note that the determination of Siisa
one-time computation, so it may be done off line for the common cases and the on-the-fly
approach can be used only when the system does not have this information (and this can

be stored for later use).

Notice that in the process of enumerating all the allocation functions, the equations

26

to be solved (i.e. the instances of Eqn 1) all involve only A;, the first n columns of
the dependency matrix, A. We expect that some properties of A (for example, the
determinant of A;) could impose additional constraints on the space of candidate I's.
By investigating these constraints, we may be able to further reduce time and space

complexities of the enumerating procedure. This is currently under investigation.

Our results also raise another question in systolic array research, namely what are
permissible interconnection structures for systolic arrays? One of the possible criteria
is distance. However, even for this simple criterion, it is still worthwhile to investigate
different notions of the distance (say, physical distance or the minimum number of integral
points). We expect that under different criteria, there will be different upper bounds on
the number of distinct valid allocation functions (and of course, different enumerating

procedures).

References

[CR91}] Peter R. Cappello and Sanjay V. Rajopadhye. Cost measures in systolic array
design. In IEEE Pacific Rim Conference on Circuils and Systems, Victoria,
BC, Canada, May 1991.

[CS83] Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI array designs with
geometric transformations. In H. J. Siegel and L. Siegel, editors, Proc. IEEE
Parallel Processing Conference, August 1983.

[KMWG67] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations
for uniform recurrence equations. JACM, 14(3):563-590, July 1967.

[KOG89] S. C. Kothari, H. Oh, and E. Gannett. Optimal designs of linear flow systolic

architectures. In International Conference on Parallel Processing, St. Charles,
11, 1989. IEEE.

[Kun88] S. Y. Kung. VLSI Array Processors. Prentice Hall, 1988.

27

[Mol83]

[Qui87]

[Rajg9]

[Rao85]

[RKS6]

[Roy88]

[Sch88]

[SF89]

[WDS9]

D. I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proceed-
ings of the IEEE, 71(1):113-120, January 1983.

Patrice Quinton. The Systematic Design of Systolic Arrays, chapter 9, Au-
tomata Networks in Computer Science, pages 229-260. Princeton University
Press, 1987. Preliminary versions appear as IRISA Tech Reports 193 and 216,
1983.

Sanjay V. Rajopadhye. Synthesizing systolic arrays with control signals from
recurrence equations. Distributed Computing, pages 88-105, May 1989.

Sailesh Rao. Regular Iterative Algorithms and their Implementations on Pro-
cessor Arrays. PhD thesis, Stanford University, Information Systems Lab.,
Stanford, Ca, October 1985.

Sailesh Rao and Thomas Kailath. What is a systolic algorithm. In Proceedings,
Highly Parallel Signal Processing Architectures, pages 34-48, Los Angeles, Ca,
Jan 1986. SPIE.

Vwani P. Roychowdhury. Derivation, Eztensions and Parallel Implementation
of Regular Iterative Algorithms. PhD thesis, Stanford University, Department
of Electrical Engineering, Stanford, CA, December 1988.

A. Schrijver. Theory of Integer and Linear Programming. John Wiley and
Sons, 1988.

W. Shang and J. A. B. Fortes. On the optimality of linear schedules. Journal
of VLSI Signal Processing, 1:209-220, 1989.

Jiwan Wong and Jean-Marc Delosme. Optimization of the processor count
for systolic arrays. Technical Report YALEU-DCS-RR-697, Computer Science
Dept. Yale University, May 1989.

28

[ZR91] Xiaoxiong Zhong and Sanjay V. Rajopadhye. Deriving fully efficient systolic
arrays by quasi-linear allocation functions. In Parallel Architectures and Lan-
guages, Europe, Eindhoven, the Netherlands, June 1991. Springer Verlag. An
extended version is submitted to J. VLSI Signal Processing.

— ofr—
g B

é
w

Figure 1: The only four linear arrays that can be derived from a two-dimensional recur-
rence: one data value (solid) stays in the processor while the other one (gray) moves, the

gray one stays while the solid one moves, both of them move in the same direction, or
they both move in opposite directions

29

i\ | {
t 1
A % 3

(ki 4 A

Tt 1 t

Figure 2: All distinct two dimensional arrays with pure mesh connections

t A1 ATy t

Figure 3: Additional two-dimensional arrays if one set of diagonals are permitted (Ps)

30

 —

o -)

- -)

f

W

-
~
“

ey [

<—-

.
v

Figure 4: Additional two-dimensional arrays for eight nearest neighbors, (Ps)

31

