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Abstract

We view planning as a constraint-based compaosition problem: design a structure
(i.e., a plan) by selecting and arranging elements (i.e., operators) from a pre-defined
set of alternatives, such that the resultant structure satisfies certain constraints. We
show how generalized operators allow for partial commitment to operator selec-
tions. Using generalized operators gives the advantage of allowing constraints to
be introduced and propagated without requiring an arbitrary choice to be made. The
generalizations can be incrementally specialized as propagated constraints reduce
the number of alternatives.

We describe OPIE, an implemented planner that uses incremental selection. We
illustrate OPIE s performance on a small blocks world example. We also show how
altering the control strategy allows OPIE to replicate the behavior of a variety of
previous planning systems.






1. Introduction

Previous research has shown that over-commitment can lead to unnecessary search in
planning problems. For instance, linear planners commit to a particular ordering of oper-
ators whenever a new operator is added to the plan, requiring search to find the correct
ordering. Non-linear planners such as NOAH [Sacerdoti 77], on the other hand, delay
committing to a particular ordering until forced to do so. By eliminating the need to
choose between two possible orderings, non-linear planners do less search.

Similarly, early planners frequently over-committed by selecting specific objects to fill
roles in operators. Later planners such as MOLGEN [Stefik 81] delayed commitment to
a particular object. Instead, the planner maintained a list of constraints that described the
class of objects that could fill the role. As constraints were propagated from other design
decisions, the class of possible role fillers was gradually reduced. If enough constraints
could be accumulated to reduce the class of possible role-fillers to one, the choice be-
came deterministic. Even if the number of choices was more than one, any reduction in
the number of options would reduce the need for search.

One area of over-commitment that remains is selecting the operators for a plan. If more
than one operator is available which achieves a particular goal or precondition, most
planners must try each operator in tum. This is over-commitment in the sense that the
planner commits to the first operator in the list, and may go to a lot of work developing a
plan that includes that operator, only to find that the solution requires using one of the al-
ternative operators. A planner over-commits by choosing a specific operator from a set
of alternatives.

In this paper we propose a method for delaying commitment to a particular operator. The
fundamental idea is the same as that used in delaying commitment to a particular object.
Rather than selecting a particular operator, we use an abstract operator that generalizes
all of the alternative operators that achieve the same goal. The abstract operator repre-
sents a partial commimment: a commitment to a class of operators, but not to a particular
operator within that class.

Our method is closely tied to our representation of plans. Therefore, a relatively large
portion of the paper is devoted to describing key aspects of that representation. We then
describe the basic search algorithm used by our system, named OPIE. This is followed
by an example, demonstrating the system as it solves the Sussman Anomaly from the
blocks world.

OPIE can be considered a planner ‘shell’ in the sense that it can replicate the behavior of
most well-known planners by adjusting its control strategy. We describe how OPIE can
be tailored to mimic other planners. Finally we discuss the strengths and limitations of
our approach.



2. Representation

We view planning as a composition process. Our approach is based on the notion of
search in a plan space [Charniak et al. 87], [Chapman 87], [Georgeff 88]. A plan is grad-
ually composed by selecting components from a pre-defined set and arranging them so as
to satisfy a set of constraints. In our view a plan describes three kinds of entities: objects,
persistences, and actions.

An object is anything which can be acted upon.

A persistence is an n-ary relation between objects that holds over some continuous peri-
od of time [McDermott 82, Dean and McDermott 87). We treat persistences as individu-
als, making it possible to distinguish between different occurrences of the same relation.
For example, if block A is on block B, then is removed, and later is replaced, two sepa-
rate persistences of ON(A,B) have occurred. This is slightly different from approaches
that treat the fact ON(A,B) as an entity that can hold over discontinuous intervals [McDer-
mott 82, Shoham 87, Chapman 87].

Finally, an action is any event in which a persistence is produced or consumed. In this
paper, we only discuss actions under the control of the planner, called operators.

We also distinguish between fypes and instances. An instance is an individual object,
persistence, or operator. A type is a class of individuals that share a set of common char-
acteristics. The defining characteristics of a type are the possible relations between in-
stances of that type and of other types.

In the blocks world domain which we will use to illustrate our system, the object types
are BLOCK and TABLE. Figure 1 presents the persistence and operator types for the do-
main. Objects are defined by the persistences and operators in which they may be in-

Clear on1 on2
Predicate: Clear Predicate: On Predicate: On
Objects: Block Objects: Block, Table Objects: Block, Block
Producers: BB, BT Producers: BT Producers: TB, BB

Figure 1a. Persistence types for the blocks world domain.
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Objects: Block,Table,Block Obijects: Block,Block,Block Objects: Block,Block,Table
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Clear(3) Clear(3} Uses: Clear(1)
Uses: Clear(1) Uses: Clear(1} Produces:  Clear(2)
Produces:  On2(1,3) Produces:  Clear(2) Oni{1,3)
On2(1,3)

Figure 1b. Operator types for the blocks world domain.
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volved. Persistences are defined in terms of the objects they relate and the operators that
can produce and consume them. OPerators are defined in terms of the objects they in-
volve and the persistences they produce, consume, and use. An operator produces a per-
sistence if the corresponding relation becomes true during the action. An operator
consumes a persistence if the cooresponding relation becomes false during the action. An
operator uses a persistence if the corresponding relation must be true for the action to oc-
cur, is true throughout the action, and continues to be true after the action.

It may seem redundant to have two ON persistence types: one for blocks on blocks and
one for blocks on tables. However, this allows us to specify exactly what can and cannot
be stacked: a table is not allowed to be on a block or on another table.

Temporal information about a persistence may be given by a pair of time points indicat-
ing the time the persistence begins and ends [Dean 88]. Alternatively, the beginning time
point and the duration of the persistence may be used [McDermott 82]. In this paper, we
are not dealing with scheduling problems, and therefore are not concerned with the exact
time points at which persistences begin and end. However, we do need to keep track of
which operators produce and consume each persistence.

THe objects involved in a persistence or operator type appear in an ordered list. We use
the position of the argument in the list as the local name of that object. For example, op-
erator TB would be interpreted as follows. For a block (1) to be moved from a table (2) to
a block (3), block (1) must be on table (2) and clear, and block (3) must be clear. The ef-
fect of the operator is that block (1) is no longer on table (2), block (3) is no longer clear,
and block (1) is on block (3).

We refer to a symbolic representation of a type or instance as a designator. Our designa-
tors are like frames, with slots indicating relations between entities. For any single prob-
lem, the set of type designators is fixed. Instance designators, on the other hand, are
created and manipulated during the problem solving process. Type designators serve as
templates for instance designators and also serve to constrain the potential slot fillers.

For example, a persistence of type ON1 would have two object slots: one requiring an ob-
ject of type BLOCK and the other requiring an object of type TABLE. It would also have a
producer slot requiring an operator of type BT. Note that persistence instances differ from
persistence types in that a persistence instance can have only one producer and only one
consumer, but a persistence type can have any number of possible producing and con-
suming operator types.

Traditional STRIPS-style planners rely on adding and deleting propositions from a state
description to indicate changing beliefs about the state of the world. In the plan composi-
tion approach, however, nodes do not contain a description of the world, but some ver-
sion of the plan. While the ‘produces’ and ‘consumes’ lists contain the same kind of
information as STRIPS add and delete lists, the interpretation is different. ‘Consumes’
and ‘produces’ are relations between entities described by the plan (i.e., between an op-
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erator and a persistence). Adding an operator to the plan which consumes a persistence
does not remove the persistence from designator from the plan, it simply fills in the ‘con-
sumer’ slot of the designator. This is a key aspect of composition problems: we are
monotonically adding information to the solution description. Our ability to utilize con-
straints to prune the search space relies on this monotonic nature of the composition pro-
cess.

3. Plan Composition

Persistence designators with empty producer slots play a special role in planning. These
unproduced perisitences represent goals of the planner: relations which need to be
achieved, but are not yet attributed to a particular producer. The primary task of a plan-
ner is to find a producer for each unproduced persistence.

The traditional definition of planning is to find a sequence of operators which achieves a
goal from a given initial state. The input is a set of candidate operator types, a descrip-
tion of the goal, and a description of the initial state. OPIE takes the same input as other
planning programs. OPIE treats the goals as a set of unproduced persistences which are
consumed by a final consumer and the initial state as a set of unconsumed persistences
produced by an initial producer. The initial producer and final consumer are treated as
operators during the planning process: the first and last operators of the plan. OPIE’s task
is to produce a plan, consisting of operators, persistences, and objects, which contains no
unproduced persistences. Each persistence in the plan must be attribuzed to an operator
in the plan (possibly to the initial producer).
OPIE searches in the space of plans. We use the term node to refer to a snapshot of the
plan under construction. We refer to plan modification operations as node refinement.
The basic plan composition algorithm is:
0) Create a node containing the initial producex and final
consumer and place it in the search queue.
1) Select a node from the search queue.
1.a) If the search queue is empty, fail.

1.b) If the node satisfies the success criteria,
report success and return the node.

2) Refine the node:
2.1) Select a plan component to refine.
2.2) Generate a child node for each possible refinement.
2.3) Complete each new node by propagating constraints.
3} Evaluate each new node:
3.1) If any constraint is violated, reject the node.
3.2) Else add the node to the search queue.
4) Go to step 1.
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Every plan cycle starts with the selection of a node to be refined. We use a simple best-
first search strategy, where the value of a node is the number of operators in the plan. If
two nodes have the same number of operators, the one with the fewest unproduced per-
sistences is selected. If two nodes have the same number of operators and unproduced
persistences, the one generated most recently is selected (LIFO). OPIE can employ addi-
tional heuristics to focus the search; however, for purposes of this paper, we ignore them.

Once a node has been chosen, some plan element in that node must be selected to be re-
fined. One refinement method is to atrribute an unproduced persistence, that is, find a
producer for it. There are two types of attribution: simple attribution, in which the pro-
ducer is an operator already in the plan, and attribution with operator insertion, which re-
quires that a new operator be added to the plan. We will refer to the latter as ‘operator
insertion’ or simply ‘insertion’.

Potential producers already in the plan are found by comparing the unproduced persis-
tence with all of the persistences in the plan that have a producer but no consumer. If a
match is found, the two persistences are merged - a single designator is formed from the
unification of the two matching persistence designators. Thus, the previously unproduced
persistence acquires a producer in the merger. If there is more than one possible producer
in the plan, a separate node will be generated for each simple attribution.

Potential producers of a persistence are also found by finding all of the types of operators
that produce that type of persistence. For each relevant operator type, a separate node is
spawned by inserting a new operator of that type into the plan. This is really means-ends
analysis: if a persistence has no producer, insert an operator which produces it. For com-
pleteness, OPIE creates nodes using operator insertion even when a producer can be found

in the plan.!

Figure 2 presents a simple illustration of the composition process. The three operator
types are shown in figure 2a. A key is given in Figure 2b. The problem to be solved is to
stack block A on block B, given that both blocks are on the table and clear. The root node,
with only the initial producer (IP) and final consumer (FC), is shown at the top of Figure
2¢. The only refinement of that node is 1o attribute the unproduced ON2 (A, B) persistence.
No produced persistence designators in the plan unify with the unproduced persistence
designator, but two operator types can produce ON1: Move-Block-from-Block-to-Block
(BB) and Move-Block-from-Table-to-Block (TB). In addition, BB can be instantiated in
several ways.

Here is the situation we would like to avoid: two (or more) operators are equally likely
candidates for selection. Each possible producer, whether an operator already in the plan
or a new operator being introduced, results in a separate node being generated in the
search space. This is one source of combinatorial explosion: each possible attribution rep-
resents an alternative branch in the search space. In a more complex example, there may
be a great deal of additional search required before one option can be shown to be the cor-
rect choice. The planner is forced to guess, and backtrack if the guess turns out to be
wrong. We next describe how partial commitment helps avoid the need to make guesses.

1. In section 7 we show that the part of OPIE described so far is equivalent to TWEAK.



Page 6

W' S ONZ[T2] |y ONai31 ) oM
> CLEARLS) Tl ON213) ) > CLEAR(S] [l CLEAR(Z) | _CLEARD) )
) GLEAR(T) ) CLEARIT]) Y CLEARI1

Move Block from Table to Block Move Block from Block fo Block Move Block from Block 1o Table
T bl - 3ipack  f:block  2:block  3:block  1: bock  2:block  3:lable

Figure 2a. Blocks-world operator types.

Consumed Used
[ operator  =——— Persistence  T—— Persistence g?&%ﬁg da“d
Produced Used —
—l— Persistence S

—{— persistence
Figure 2b. Key.

ONI(AT))
CLEAR(B})
d e  ON2{A B} RFC
[ONI(BT))
ONI(AT)) : ONHAT)
ON1(A ON2(A ONZ(AB
CLEAR(B E 0Pt CLEAR b {

Ip % CLEAR{BIf ‘ Fel e EAREY) §TEane m[&!ﬂﬂ") oA HEC
CLEARIA JCLERRIAD [CLEARIA) CLEARIAD
[OMIET)) oI

[ ]
L ]
-
{oN1A ol
lip CLEAR(B)I"| . FC
CLEAR{A
[ON1E.T))

Figure 2c. Partial view of search space for achieving ON(A,B).



Page 7

4. Partial Commitment via Generalization

The exponential nature of search results from indeterminacy: if we always knew which
choice to make, there would be no backtracking and search would be linear in the depth
of the solution. Frequently, making a commitment at one choice point introduces con-
straints that prune one or more options at another choice point. If the constraints are in-
troduced early enough, i.e., before one of the pruned choices is selected, some
unneccessary search is avoided. Thus, for some problems, the difference between linear
and exponential search is the order in which commitments are made.

The problem is that the only way to introduce new constraints is to make a decision. This
is catch-22: we want to delay making a decision until constraints can be propagated, but
constraints can only be propagated if a decision is made.

In some cases, there is a solution to this dilemma. It may be possible to make a partial
commitment to a set of alternatives. Partial commitment allows some of the consequences
of a decision to be explored. Partial commitment to a class of operators allows the planner
to go on to other planning decisions. If we are lucky, the constraints introduced by partial
commitment will be enough to determine the right choice for another decision. The out-
come of that decision, in turn, may rule out some of the alternatives for the first decision.
For example, rather than selecting a particular main course right away, one could decide
to eat seafood, order white wine, and then think about which fish dish to order. Then, the
price of the wine might eliminate some of the higher-priced seafood items on the menu
from consideration.

To be the most useful, partial commitment requires two things. First, there must be a way
to represent the set of operators that are candidates forinclusion in the plan. Second, there
must be a way of indicating the shared requirements of those operators. This is what
makes partial commitment better than no commitment: any requirement common to all of
the candidate operators becomes a constraint on the plan, allowing planning to go on
‘around’ the nondeterminant choice point. One way to accomplish both of these condi-
tions is to use abstract operators to represent the common aspects of a class of operators.

The first step in our approach to partial commitment is creating abstract operator types
from a given set of primitive operators. This is accomplished by organizing operators into
classes, where a class consists of operators that share one or more persistences on their
respective produces, consumes, and uses lists. An abstract operator is created which em-
bodies the common aspects of members of the class. This operator becomes the parent of
the members of the class. The result is a taxonomic hierarchy, with primitive operator
types as the leaves and abstract operator types as the internal nodes.

Figure 3 presents the taxonomy of operators formed from our three primitive blocks world
operators. The next two sections describe how OPIE automatically forms a taxonomy of
operator types from a set of primitive types.
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4.1 Pairwise generalization

Pairwise generalization extracts the commonalities of two operators to form a generaliza-
tion of the pair. The possible commonalities are matching persistences on the produce,
consume and use lists of the two operators. Persistences match if they have the same pred-
icate name.

For example, consider the operators TB and BB in Figure 3 . Generalizing these two op-
erators gives us PB which contains their common persistences. First, look at the used per-
sistences. Both TB and BB use a CLEAR persistence, so their generalization must also
produce a CLEAR persistence. Next, look at the produced persistences. ON2 is produced
by both TB and BB, but BB also produces a CLEAR persistence. The generalization pro-
duces an ON2 persistence, but not a CLEAR persistence.

Finally, look at the consumed persistences. CLEAR is consumed by both operators, and is
therefore consumed by their generalization. Both operators also consume a persistence
whose predicate name is ON, but TB consumes ON1 and BB consumes ON2. A new per-
sistence type is created as the generalization of ON1 and ON2. For convenience, in this
paper we have assigned the name ON to the new persistence. The general operator PB con-
sumes a persistence of type ON.
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Whenever two corresponding objects in matching persistences are not of the same type,
an abstract object type is also formed. For example, object 2 in TB is a TABLE and object
2in BB is a BLOCK. These two objects correspond by virtue of being the second argument
of the matching consumed ON persistences. A new object type is created as the general-
ization of TABLE and BLOCK. This object type is used in the new general operator PB. For
this paper, we have assigned the name PLACE to the abstract object type representing
things-that-a-block-can-be-on.

4.2 Forming the taxonomy

Pairwise generalization forms the core process in generating a taxonomic hierarchy. Each
primitive operator is added to the hierarchy one at a time. Since we are interested in
grouping operators that produce the same persistences, each new operator is compared
with every previous operator that shares at least one persistence on its produce list.

The algorithm for adding new operators to the hierarchy is shown below.

For each operator NEW in the input set:
Let set S be those leaf operators of the hierarchy which
share at least one add relation with NEW.
For each operator OP in §,
Let G-QP := PWG(NEW,OP) and
INSERT-BANCESTOR (G-OF,QOP) .

PWG is the pairwise generalization process described above. INSERT-ANCESTOR is used
to place the new generalized operator into the hierarchy. We know G-OP is a generaliza-
tion of OP, so we begin by looking at the parents of OP.

Define INSERT-ANCESTOR(G-OP,OP).
For each parent P-0OP of OP,
Case:
1. G-0Pp = P-CP,
Then MERGE (G-QP,P-0P).
2. G-0P is a specialization of P-0P,
Then LINK-PARENT-CHILD (P-OF,G-0OP).
3. G-0P is a generalization of P-0OP,
Then LINK-PARENT-CHILD (G-0OP,P-0P) and
INSERT-ANCESTOR (G-OP,P-0OP}.
4. G-OP and P-OP share persistences,
Then Let G-P-0OP := PWG(G-OP,P-0OP) and
INSERT-ANCESTOR (G-P-0P,P-CP).
5. {G-OP and P-OP have no shared persistences}.
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MERGE makes all children of GEN into children of AB and discards GEN. LINK-PARENT-
CHILD makes its first argument a parent of its second argument.

The major points of the algorithm are illustrated in the following example of how the op-
erator hierarchy shown in Figure 3 was constructed.

Suppose TB and BB are the first operators to be added. We have already seen that TB and
BB produce PB as a generalization. Next, BT is added. Suppose BT is first compared with
TB. Their generalization is PP, as shown in Figure 4.
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¢ _GLEAR(1)
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Figure 4. Building the taxonomy of blocks-world operators.

Now PP is inserted into the parents of TB. The only parent is PB. In this case, PP is found
to be a generalization of PB. PP is made a parent of PB. In addition, the direct parent-child
links from PP to BT and TB are dropped, since they are made redundant by the indirect
links through PB. This step guarantees that the same hierarchy is always formed for a
given set of primitive operators, regardless of the order in which they are added to the hi-
erarchy.

Next, BT is compared with BB. Their generalization is BP. BP is inserted into the parents
of BB. The only parent is PB. BP and PB are compared and have persistences in common.
Let their generalization, which is equivalent to PP, be called PP’. PP’ is inserted into the
parents of PB. The only parent is PP. PP’ is equivalent to PP, so the children of PP’ are
made children of PP and PP’ is discarded. The result is the operator hierarchy shown in

Figure 3.

4.3 Summary: Generalization

OPIE automatically creates abstract operator types while organizing a given set of prim-
itive operators into a taxonomic hierarchy. During this process, the system also creates
categories of abstract object types which allow abstract operators to apply to broad classes
of functionally similar objects. The input to OPIE is no different from the input to other
planners: an initial state description, a set of goals, and a set of primitive operator types.
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5. Using abstract operators in planning

The planning task must be revised to reflect the use of abstract operators. The success
conditions for a finished plan have an additional restriction. In addition to requiring that
every persistence in the final plan have a producer, we also require that every operator be
primitive.

We now describe how abstract operators and objects are used for partial commitment in
plan composition. Recall that when a persistence is attributed, one option is to introduce
a new operator into the plan. By tracing from the persistence instance to its type and then
to the producers of that type, we find all of the possible operators that might be added to
the plan.

Using partial commitment, however, we do not need to create a separate node for each
alternative operator type. For any persistence type, there is one ‘most general producer’
in the operator taxonomy. Itis the operator highest in the hierarchy that produces that type
of persistence. This operator has as descendants every primitive producer of the persis-
tence type. For example, all of the producers of ON2 are descendants of PB in Figure 3.
By introducing an instance of an abstract operator type into the plan, we have partially
committed to one of its descendants. Thus, we create only a single new node, instead of
a separate new node for every primitive producer.

Each abstract operator must be specialized to a primitive operator before the plan is com-
plete. In the worst case, the planner will have to guess at which specialization is correct,
resulting in no reduction in search. However, in many cases it will be possible to work
on other parts of the plan once a partial commitment has been made. By making commit-
ments (or partial commitments) at other choice points in the plan and propagating con-
straints, it is possible that the set of specializations will be reduced. If so, part of the
search space will have been pruned without search,

We require an additional node refinement method, that of specializing an abstract opera-
tor. Specialization consists of changing an operator instance from a general type to a more
specific type. For example, an instance of type PB could be specialized to either type TB
or type BB. A separate node is created for each specialization.
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Simple attribution is slightly different once abstraction is introduced. Not only should ob-
jects match objects of the same type; they should also match objects of a more general or

less general type. For example, an object of type PLACE should match blocks or tables.
The complete unification algorithm is as follows:

1. Match an unproduced persistence designator with each unconsumed
persistence designator which has the same predicate name.
2. Corresponding object designators from the two object lists
match if:
a. they are the same designator, or
b. at least one is not bound to a particular object, and
- they are of the same type, or
- one‘s type is a taxonomic ancestor of the other’s type.
3. If the entire match succeeds, replace each pair of matching
persistence and object designators with a single new
designator. The new designator’s type is the more specific of
the two types. Wherever either of the two designators appeared
in the plan description, replace it with the new designator.

Attributing a persistence places temporal constraints on the operators involved. The pro-
ducer of a persistence must precede the consumer. An operator that uses a persistence
must follow the producer of the persistence and precede its consumer.

One decision which we have not yet mentioned is selecting which plan element to refine
(i.e., an unproduced persistence to attribute or an abstract operator to specialize). Note
that this is a separate decision from which node to refine, and has a separate strategy. One
strategy for selecting which component to refine is the least branches / front-to-back
(LBFB) strategy. Potential refinements are evaluated as follows:

1) Apply arefinement that will produce the fewest new nodes.

2) If there is a tie, attribute a persistence before specializing an operator.
3) If there is still a tie, prefer persistences that appear earlier in the plan.
4) If there is still a tie, make an arbitrary selection from those tied.

The least branches / front-to-back strategy is based on two ideas for reducing search.
First, the least branches heuristic is intended to reduce the branching factor of the search,
which directly affects the size of the search space explored [Korf 87]. Second, the front-
to-back heuristic is intended to take advantage of existing constraints in the problem def-
inition. There are two sources of constraints: the goals and the initial conditions. OPIE
uses goals as constraints during attribution. The front-to-back heuristic propagates con-
straints from the initial conditions to guide the specialization process.

The actual strategy used by OPIE can be set by the user. By changing the strategy we can
replicate the behavior of many well-known planners, as described in Section 7, below.
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6. Example: Sussman Anomaly

We trace OPIE’s solution of a classic planning problem known as the Sussman Anomaly
[{Sussman 75]. The initial and goal states are presented in Figure 4. OPIE begins by
forming a plan node from the goals and initial conditions of the problem statement. This
node is the root node of the problem space. The root node contains an initial producer, IP,
and a final consumer, FP, which represent the problem constraints. The root node for the
Sussman anomaly problem is shown below.

Bm =

Figure 4. The Sussman Anomaly problem.

|_ONIAT) )
_CLEAR{B} )

Since initially the root node is the only node in the queue, it is selected for refinement. It
has two unproduced persistences, ON2 (A, B) and ON2 (B, C), and no abstract operators.
There are two ways to refine the plan: attribute ON2 (A, B) or attribute ON2 (B, C). In either
case, the only option is to add a new operator to the plan. Since each refinement is deter-
ministic, it does not matter which comes first.

OPIE arbitrarily selects the persistence ON2 (A, B} to be attributed first. Since there is no
matching produced persistence in the plan, the only way to attribute the persistence is to
add a new operator to the plan. The most general operator type for achieving an ON2 re-
lation is PB. OPI, an instance of type PB, is inserted into the plan. It is made the producer
of ON2 (A, B) as shown in Node 1.

:
Node CLEAR(B ONJ[AB
1 P oA ) 2 CLEARIE) kel
) _CLEAR{A} )
| CLEARIC} )
CoM@ED ) ) ON2(B.C) |

Since PB generalizes all of the operators that produce an ON2 persistence, there are no
other nodes created. Therefore, the only node on the search queue is Node 1. There are
four unproduced persistences in Node 1: ON (A, 2), CLEAR (B), CLEAR (A), and ON2 (8, C).
In addition, there is now one abstract operator (OP1) with two possible specializations: to
type TB or to type BB. There is a single matching produced persistence for ON (A, 2): ON
(A, T), produced by IP. IP also produces a CLEAR(B) persistence. The other two unpro-
duced persistences do not match any produced persistences.
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The point of partial commitment is to avoid guessing. Of the five components needing
refinement, three require guessing and two do not. Specializing OP1 requires guessing
which specialization to choose. Attributing ON (A, 2) or CLEAR (B) require guessing
whether to attribute to IP or to introduce a new operator. Attributing CLEAR (A) or ON (B,
C), on the other hand, would be deterministic. In both cases, the only option is to add a
new operator to the plan. OPIE selects CLEAR (A) to be attributed because it comes earlier
in the plan (since OP1 must precede FC).

An instance of BP is created, since that is the most abstract operator type which produces
a CLEAR persistence. The new operator is labelled OP2 in Node 2. OFP2 is constrained to
precede OP1 because the producer of a persistence must precede any users. Node 2 is now
the only node on the search queue.

Node

There are now five possible attributions and two possible specializations. None of the
choices are deterministic. Each of the unproduced persistences could be attributed to ei-
ther an operator already in the plan or to a new operator, and each abstract operator has
two possible specializations. Thus, we see that partial commitment does not guarantee a
deterministic, linear solution; rather, it is a tool that must be used with other tools to re-
duce search.

CLEAR (1), used by OP2, can be attributed to IP in two ways: it matches either CLEAR (B)
or CLEAR (C). ON2 (I, A), ON (A, 2) and CLEAR(B) can each be attributed to IP in one way.
ON2 (B, C) can be attributed to OP2: it matches ON(1,3). Using the least branches / front-
to-back (LBFB) strategy, OPIE selects ON2 (1, A) to be attributed. Two nodes are created
as a result of this refinement. In Node 3, ON2 (1, A} is unified with ON2 (C,A). In the other
node, an operator of type PB is inserted into the plan.

Node

There are now two nodes on the search queue. Node 3 contains two operators, the other
node contains three operators. Node 3 is selected as the best option.

Note that in attributing ON2 (1, A), object designator 1 was unified with designator C. This
is propagated to the other persistences of OP2. Thus, it is no longer possible to attribute
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ON2 (B, C) to OP2. This means that attributing ON2 (B, C) is now deterministic: a new op-
erator must be inserted. Node 4 shows the result of this refinement.

Node

Eventually, all of the remaining unproduced persistences will be attributed to IP. In each
case, a non-solution node will also be generated with an unnecessary operator. None of
these non-solution branches will be explored, because they all have more operators than
the correct solution.

When ON (B, 2) is attributed to IP it is unified with ON1(B, T), with 2 unified with T. Now
partial commitment pays off. When 2 is unified with T it becomes type TABLE instead of
PLACE. When this happens, only one of the specializations of OP3 is a valid option (refer
to Figure 3). BB is eliminated because it requires that object 2 be a BLOCK. Therefore,
OP3 is specialized to be of type TB. The result is shown in Node 5.

Next, CLEAR (C) used by OP2 and CLEAR (C) consumed by OP3 are attributed to IP. This
forces OP?2 to precede OP3, since a user of a persistence must precede the consumer. Sim-
ilarly, CLEAR (B) is used by OP3 and consumed by OP1, so OP3 precedes OP1. The plan is
now completely ordered. Finally, ON (A,2) is attributed to 1P and OP1 is specialized to be
of type TB, just as OP3 was specialized above. The result of these six refinements is shown
in Node 11.

Node
11 e

[ CLERRCL
ON1{B.T)
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The only remaining refinement is to specialize OP2. At this point, the plan says to put C
somewhere and then put B on it and then A on B. For the plan to be executable, we must
decide where to put C. OP2 can be specialized to either BB or BT (refer to Figure 3). Ifit
is specialized to BB, a new unproduced CLEAR persistence will be introduced. On the
other hand, if OP2 is specialized to type BT, no new persistences are introduced. Since our
best-first heuristic prefers specializations which do not introduce new requirements, this
specialization is selected. Therefore, the option of moving C to the table will finally be
selected. '

In this example, we see both the power and the limitations of partial commitment in plan
composition. Some decisions can be delayed long enough for all but one alternative to be
pruned, e.g., attributing ON2 (B, C) and specializing OP1 and OP3. This directly reduces the
size of the space to be searched. However, it is not always possible tofind a deterministic
choice point using partial commitment. In addition, even if we delay a choice until the
end, there may still be more than one option to explore. Thus, heuristics and/or domain
knowledge are still generally required to avoid search completely. However, partial com-
mitment is domain independent; it can be used when domain knowledge is not available.
As we have seen, partial commitment can be combined with relatively general heuristics
to reduce to linear complexity some problems that would be exponential with either one
alone.

7. Replicating the behavior of other planners

We have been able to replicate the behavior of well-known Al planning systems by alter-
ing the refinement methods and control strategy employed by OPIE. By implementing
various planners in a single planner ‘shell’, we are able to examine the similarities and
differences among these systems. In the following discussion, we focus on the commit-
ments made by each system during the planning process.

7.1 Non-specializing planners

In this section we discuss STRIPS, HACKER, ABSTRIPS, INTERPLAN, Waldinger’s
planner, NOAH and TWEAK. None of these planners use specialization as we have de-
fined it, that is, as a method of selecting among alternative operators. They can be mod-
elled using variations of attribution.

STRIPS [Fikes er al. 72] uses two kinds of refinement: operator insertion and operator
application. In STRIPS, operator insertion adds a producer of an unproduced persistence
to the plan, but does not attribute the unproduced persistence. For example, in Node 2
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two operators have been introduced but no persistences have been attributed. This means
that a goal can be achieved early in the plan but undone before it is needed.

When all of the preconditions (i.e., used and consumed persistences) of an operator can
be attributed by simple attribution, they are all attributed at once by operator application.
STRIPS always considers the earliest unproduced persistences in the plan. OP2 is applied
in the initial state; OP1 is applied in the resultant state after applying OP2. The result is
shown as Node 4.

Node

e 1oF JLON2AS) )

If an unproduced persistence can be attributed by simple attribution, it is not considered
a goal in STRIPS. Since a produced instance of ON2 (A, B) exists, ON2 (A, B) is not a cur-
rent goal. STRIPS addresses the other unproduced persistence, ON2 (B, C). OP3 is added
to the plan to produce this persistence. STRIPS always inserts a new operator immedi-
ately preceding the persistence being addressed, as seen in Node 5.

ON1iA
g{ode .
| eeiorlsere) yowms
CLEARIC|

The CLEAR (B) persistence used by OP3 has no available produced persistence in the plan.
The CLEAR (B) persistence produced by IP is consumed by OP1. Since STRIPS cannot put
OP3 in front of OP1, a new operator, OP4, is added to produce another instance of CLEAR(B).

[onAT)] ' ON1EA
el TonziABH o K= -
\‘II =2 !i CLEARIA  GEn] = _ FT
=) [CLEAR(C) [ ON2[B.Cl) YoNz@EC

OP4 consurnes the produced ON2 (A, B) persistence. Another operator will have to be
added to produce another instance of ON2 (A, B). Thus, STRIPS fails to find an optimal
solution to the Sussman Anomaly.
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HACKER [Sussman 75] is like STRIPS, except that operator insertion is always accom-
panied by attribution, as in OPIE. Sussman’s use of protected goals is subsumed by our
notion of persistences. Node 2 shows the first two operators inserted in the plan. Unlike
STRIPS, the goals are attributed to their producers.

ﬁlggg' OP1] ONZAE

+—{ CLEAR(AY) CSREBET =
Now the operators are applied, as in STRIPS. The result is shown in Node 4..
ori] ONZIAD

[CLERD roEal =

The only remaining goal is ON2 (B, C). A new operator is introduced. However, HACKER
makes the same mistake as STRIPS, placing the operator gfter any operators that have
been applied. The result is shown in Node 5.

As with STRIPS, another operator must be introduced to produce a new instance of
CLEAR (B). This operator is placed within the protection interval of ON2 (A, B). Since it
consumes ON (A, B), a protection violation is detected. If a new consumer is inserted be-
tween the producer and consumer of a persistence, an anomalous situation occurs. Rather
than continuing, as STRIPS would do, HACKER tries addressing the goals in a different
order. Unfortunately, the alternative, solving ON (B, C) before ON (A,B), also results in a
protection violation. HACKER is unable to solve the Sussman Anomaly without allow-
ing a protection violation.
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ABSTRIPS [Sacerdoti 74] uses a domain-specific ordering of precondition criticality to
determine the order in which persistences should be attributed. For our example, suppose
ON persistences are considered to be of higher criticality than CLEAR persistences. All
unproduced ON persistences are attributed before any unproduced CLEAR persistences.
Node 2 shows the plan for producing all of the ON persistences.

When ABSTRIPS begins to attribute CLEAR persistences, OP1 will have consumed
CLEAR (B) before OP2 can use it, forcing a new operator to be added to the plan to produce
a new instance of CLEAR (B). Thus, the final solution will be the same as that returned by
STRIPS.

oPi S ONEAEL

Our use of abstraction differs from the use of abstraction in ABSTRIPS. ABSTRIPS did
not use a hierarchy of operators, and did not specialize operators in the sense used in
OPIE. To model ABSTRIPS, we use a domain-specific criticality strategy for deciding
which unproduced persistence to address. High criticality persistences are addressed be-
fore low criticality persistences.

Although Sacerdoti described ABSTRIPS as using abstraction, abstraction is not required
to implement the notion of criticality. Everything that ABSTRIPS does can be done by
OPIE using only the attribution refinement and a precomputed partial ordering on which
persistences are to be atributed first. This strategy produces the same behavior as AB-
STRIPS: delayed consideration of certain preconditions in favor of more critical precon-
ditions.

As we mentioned earlier (p. 16), domain-specific heuristics for selecting which plan ele-
ment to refine (e.g., which goal to attribute) can be combined with partial commitment to
improve planner performance. Current work by Knoblock [89] is aimed at automatically
computing precondition criticalities for a given set of operators. Like Sacerdoti, Knob-
lock uses ‘abstraction levels’ as a way of indicating criticality. OPIE does not compute
criticalities; however, given the set of criticalities computed by Knoblock’s ALPINE,
OPIE could replicate ALPINE’s problem solving behavior without using abstraction.
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INTERPLAN [Tate 74] and Waldinger’s planner [Waldinger 77] are like HACKER,
except that a new operator can be inserted anywhere preceding the persistence being at-
tributed. A separate node is created for each possible position of the operator in the plan.
Unlike the previous planners, INTERPLAN and Waldinger’s planner are complete and
correct. If a solution to the problem exists, it will be contained in one of the nodes in the
search space..

Node
4

These planners are powerful enough to solve the Sussman Anomaly correctly, and, in fact,
are powerful enough to solve any Al planning problem for which a solution exists.

Having resolved the completeness and correctness issues, the focus now tumns to efficien-
cy issues. The problem with trying every combination of operators in every possible or-
dering is that there are many such combinations. The figure below shows the three
possible positions for operator 3 in the plan. Note that the branching factor is equal to the
number of possible operators (in this case, 2) times the number of possible positions. The
need for a more tractable approach for non-toy problems is apparent.
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NOAH [Sacerdoti 77] eliminated the requirement that operators be totally ordered.
Therefore, only one node was required to represent all potential positions of a new oper-
ator. NOAH delayed temporal commitments until enough constraints existed to deter-
mine the proper ordering. Node 4 shows the plan with OP3 unordered with respect to OP2
and OP1..

Node
4 13

@
Yy ONIBT}] | T

CLEAR(B/

NOAH avoids much of the unnecessary search required in INTERPLAN and Waldinger’s
planner because it does not commit to a particular ordering of operators. Thus, the
branching factor is reduced to the number of alternative operators that can be used to pro-
duce a particular persistence. This is the best that a non-specializing, general purpose

planner can do.

IP FC [ (0 Ed FC
0P34

The type of hierarchical planning done by NOAH utilized a partonomic (i.e., part/whole)
hierarchy but not a taxonomic operator taxonomy. For example, suppose OP2 and OP1
were combined as a macro operator which first clears a block and then moves it. This
macro could be added to the plan in a single step instead of two steps.

Macro expansion is not treated as a separate plan refinement in OPIE. When a macro is
inserted into a plan, it is immediately expanded. Because there is no choice involved,
there is no reason to consider macro expansion a refinement of the plan.

TWEAK [Chapman 87] is a formalized version of NOAH; therefore, its solution to the
Sussman Anomaly is the same as NOAH’s solution. However, TWEAK explicitly
searches in a space of plans, as does OPIE.
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TWEAK uses a small number of plan modification operators. In OPIE, these modifica-
tions are subsumed by the attribution operation. Establishment is equivalent to simple at-
tribution: unifying an unproduced persistence with an existing produced persistence. For
example, attributing ON2 (C, A) to IP is an establishment. Both step addition and Chap-
man’s White Knight correspond to OPIE’s attribution with operator insertion: adding a
new operator that produces an unproduced persistence. The use of persistences in OPIE
makes the distinction between step addition and White Knight unnecessary. In TWEAK,
the White Knight refinement is used in those cases where a relation holds early in the plan,
but then is denied during the plan. Since two occurrences of the same relation are separate
persistences, OPIE does not need a separate refinement for the two cases.

The rest of Chapman’s modification operators are handled by constraints on plan ele-
ments in OPIE. Promotion, placing a user before a consumer, is enforced by the con-
straint that all users of a persistence must precede its consumer. For example, OP3 is
constrained to precede OP1 because OP3 uses CLEAR (B) and OP1 consumes it. Separation
is realized by object type constraints that prevent two persistences from unifying.

7.2 Specializing planners

NASL [McDermott 78] used explicit selection rules to choose among alternative methods
for performing the same general task. These selection rules had to be written by the user.
McDermott’s policies served as a special class of heuristics that guided the specialization
process. However, NASL contained no mechanisms for delaying the selection of a meth-
od so that constraints could be propagated from other decisions.

Friedland’s MOLGEN planner [Friedland and Iwasaki 85] was the first planner to use
an explicit taxonomic operator hierarchy. Friedland’s work was based on observations of
scientists designing molecular genetics experiments. The operator hierarchy was defined
in advance by the user. Like NASL, Friedland’s MOLGEN used domain-specific selec-
tion rules to choose among alternative specializations.

Friedland’s planner retrieved complete “skeletal plans.” It would specialize the first step
in the plan to a primitive operator, then procede to the next operator in line. Friedland
provided task specific rules to delay specializing one step if the outcome always depended
on a decision later in the plan.

Stefik’s MOLGEN planner [Stefik 80, Stefik 81a, Stefik 81b] also used an operator hi-
erarchy defined by the user. Stefik provided a “refine-operator” mechanism, but did not
describe exactly how the mechanism worked. In the detailed example Stefik discussed in
his thesis ([Stefik 80]), MOLGEN apparently did not encounter any tasks that required
choosing among alternative operators.

Stefik focused on choices involving the selection of objects to be used in the plan. MOL-
GEN would suspend any non-deterministic choices it encountered. If sufficient con-
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straints were propagated from other decisions, the choice might become deterministic. If
so, the choice would be re-activated and the single remaining option selected. If at any
time in the planning process only suspended choices remained, MOLGEN would re-acti-
vate a suspended choice and make a guess. Domain-specific heuristics were used to de-
termine which of the choices to re-activate.

Stefik mentions in a footnote ([Stefik 80, p. 49]) that, were “refine-operator” to encounter
a non-deterministic choice, the choice would be suspended. However, the thesis does not
say whether constraints could be propagated from other choices to reduce the number of
alternative operators.

NASL, Friedland’s MOLGEN, and Stefik’s MOLGEN all depend to some extent on do-
main-specific rules. Therefore, it is not possible to predict exactly how they would solve
the Sussman Anomaly. It is unlikely that either NASL or Friedland’s MOLGEN would
be able to solve the problem correctly without backtracking, regardless of the rules pro-
vided. Stefik’s MOLGEN is the only one of the three able to suspend a choice because it
is non-deterministic and then re-activate that choice if it becomes deterministic. There-
fore, given the right selection rules and heuristics, Stefik’s MOLGEN could have pro-
duced the same solution as OPIE under the LBFB strategy. The main differences are that
OPIE generates the taxonomic operator hierarchy automatically, the user does not have to
supply any selection rules, and the LBFB control heuristic is domain-independent.

Tenenberg [86] focused on the operator taxonomy, but did not actually implement a plan-
ner that used his ideas. Qur implementation of operator and plan abstraction [Anderson
and Farley 88] was greatly influenced by his notions.

Alterman’s PLEXUS [Alterman 89] uses specialization for adaptive planning. Given a
new problem and a solution to a similar problem, PLEXUS adapts the old solution to fit
the new situation. This is accomplished by working through the steps of the solution in
order from beginning to end. If the step can be applied as is, no adjustment is necessary.
If the step is not appropriate in the new situation, PLEXUS finds an alternative by first
moving upward in the taxonomic hierarchy to a more general operator that has the same
effect. PLEXUS then specializes this operator to find a primitive operator that serves the
same purpose as the original operator but can be applied in the current situation.

PLEXUS could not solve the Sussman Anomaly as stated because it is not designed to
handle this type of problem. PLEXUS requires a solution to a similar problem as input.
However, the specialization mechanism is very similar to that used in OPIE.

Partial commitment has also been used in constraint satisfaction problems [Mittal and
Frayman 87]. That work is similar to ours in that a taxonomy of possible variable bind-
ings is used to guide successive refinements.
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7.3 Summary

STRIPS had two shortcomings that prevented it from being complete and correct. First,
it did not attribute goals when new operators were inserted, allowing persistences to be
consumed too early. This results in non-optimal plans. This shortcoming was corrected
by HACKER. The second shortcoming was restricting where an operator could be placed
in the plan, which resulted in incompleteness. INTERPLAN and Waldinger’s planner
corrected this and were shown to be complete and correct.

Subsequent planners addressed efficiency issues. NOAH was the first planner to use a
form of partial commitment, allowing operators to be partially ordered. Stefik’s MOL-
GEN allowed objects to be partially specified, and stressed the value of constraint propa-
gation. OPIE adds a third form of partial commitment: to the selection of operators used
in the plan.

8. Conclusion

All aspects of OPIE described in this paper have been implemented in ZetaLisp on a Sym-
bolics-3688=exies Lisp Machine. OPIE’s generalization module forms operator and object
hierarchies, generating the necessary abstract operators and object types. The planner
module uses the abstract operators to make partial commitments during planning.

We view partial commitment as a powerful planning tool. Unfortunately, it is not useful
in all problems. In'particular, certain classes of problems contain constraint cycles. That
is, the best choice for decision A depends on the outcome of decision B, but the best
choice for decision B depends on the outcome of decision A (possibly via a long chain of
dependencies). Puzzles such as cryptarithmetic and crossword puzzles are designed to
contain constraint cycles. Hamiltonian path problems such as the Traveling Salesman can
be viewed as one giant constraint cycle, in which every decision depends on every other
decision.

We suspect that many resource allocation problems and scheduling problems contain con-
straint cycles: a resource generally is either available or unavailable; conflicts cannot be
resolved if a resource is possibly available. Partial commitment will not prevent the need
to make guesses in problems containing constraint cycles (although it is still beneficial for
choices not in a cycle).

On the positive side, there are many other problems that do benefit from partial commit-
ment. We suspect that the vast majority of planning problems do not contain constraint
cycles. In problems which are not intrinsically exponential, partial commitment offers the
possibility of linear solutions.

We expect to find that partial commitment is most useful in rich domains with many in-
teractions. In such domains, constraints can be quickly accumulated. Any mechanism
that allows a decision maker to move past insufficiently constrained decisions to work on
other parts of the problem increases the chances that the insufficiently constrained choices
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will become fully constrained. We believe that planning with abstract operators as de-
scribed in this paper represent one such mechanism.

Delaying commitment alone will not force decisions to become deterministic. Therefore,
we are now looking at means for incorporating domain specific selection rules into the
specialization process. We believe that the generalization hierarchy provides an excellent
framework in which to index local rules that apply to a single choice point. We will com-
pare choice-point-specific rules with the global production rules used in many expert sys-
tems.
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