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Abstract

The concept of interface construction kits has become become firmiy
established and well-accepted in recent years. Through both their popularity
and the perceptions of their users, they seem to offer solutions to the
programming complexity created by introducing user interface operations
into waditional programming languages. We argue in this paper that an
understanding of the productivity gain afforded by construction kits must be
shaped by separating programming language from programming
environment.

We also argue that abstraction and the creation of high-level languages,
particularly object-oriented ones, reduce programming complexity. We note
that when languages strive for abstraction they also strive for generality,
thus losing programming power and expressiveness. Our own research,

the QUICK user interface construction kit extends this research by
exploring the middle ground in language abstraction. Our use of the
prototype model of object-oriented languages rather than the class-based
system is a relatively unique contribution.

We also describe characteristics of user interface construction kit
programming environments making a distinction between weak direct
manipulation environments and strong ones. Weak environments
essentially support the program text as the object of interest and allow text
object, menu and dialog box selection of programming language
components. Structure editors are an elaborate version of this. QUICK is
definitely a weak direct manipulation environment. Strong direct
manipulation environments feature elements of visual programming and
programming by demonstration. QUICK is also a strong direct
manipulation environment, allowing the programmer to continuously
display the product user interface and directly specify programming
constructs by positioning and movement of those objects. We also note that

T An carly, condensed version of this paper will appear in the Proceedings of the Third Annual Symposium
on User Interface Software and Technology. This paper has been submitted to the 24th Hawaii International
Conference on System Sciences.






some programming environments allowed rapid switches between
programming and testing. This supports the concept of rapid prototyping in
design. QUICK is one such system.

1.0 Introduction: Complexity in User Interface Programming

With the advent of bit-mapped displays and mice, programmers are faced with ever
increasing design complexity as graphics and sound supplement text displays, windows
allow multiple contexts for user tasks, and pointing devices join keyboards. On
sophisticated systems such as Interlisp on the Xerox 1100, the interface programming
effort has been informally estimated to consume about 80% of the total programming time
(Smith, 1984). The long delay experienced in software development for even less complex
machines such as the Macintosh can similarly be attributed to the complexity of composing
over 600 ROM-based interface functions into useable interactive programs.

The basic problem, then, is that user interface programming is becoming ever more
complex. Therefore, the purpose of any interface design aid is to somehow control that
complexity. One solution, the concept of an interface construction kit has received
considerable attention in recent years for several reasons: A toolkit allows interfaces to be
constructed with relative ease, abstracting the interface construction task and providing an
efficient means of exploring large numbers of interface designs by exploiting rapid
prototyping. The commercial applications of such toolkits are obvious.

While many researchers and commercial developers have focused attention on the need and
feasibility of a construction kit approach to user interfaces (cf. Fischer & Lemke, 1987),
these discussions have often failed to distinguish between innovations in the programming
environment and those in the underlying representation of the user interface. We feel that,
while innovations in either area can help to streamline interface design, they are
conceptually different and each support design in distinct ways.

In this paper, we work to establish a framework for understanding complexity in user
interface design tools by characterizing the domain along two orthogonal dimensions,
Language and Programming Environment. The nature of the interface language
establishes the concepmal and ontological framework of a user interface design 1001 and
plays the most prominent role in determining the complexity of interface design. The
programming environment provided by the design tool plays a crucial supporting role,
often helping to maintain an abstraction barrier imposed by the language. In the following
sections we will dissect these issues in detail, motivating the discussion by presenting our
own research efforts which are illustrated in the QUICK (Quick User Interface
Construction Kit) system.,

2.0 Language Issues

In the past, when string oriented textual interfaces predominated, interface programming
was trivial: computer languages included a handful of “I/O” functions and procedures to
allow the machine to accept, process, and produce from simple data types such as
characters, integers, etc. The read and write line operations of PASCAL are good
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examples. However, this equation changed drastically with the introduction of complex
graphical interfaces with pointing devices. As Mary Shaw (1986) has so eloquently
pointed out, this signals the move from language constructs oriented towards program state
to those oriented towards I/O state. In modern languages, the number of functions and
procedures having to do with the interface has grown enormously to become, in some
cases, the largest class of operations in the language. The Macintosh Toolbox with over
600 functions and procedures was cited earlier. Similarly, Figure 1 gives an example of
this complexity for the InterLisp D language: determining whether the cursor is in a
particular graphic region or not. Thus, the complexity of interface programming,
associated with indexing, selecting, and combining statements from this enormous pool of
low-level functions, has increased exponentially.

(SETQ WorkWindow
(CreateWindow 205 307 185 295 2))
(while {InRegionP (MouseCoords)
(fetch ImageRegion
AndGateDescr)
and not (KEYDOWNP 'LSHIFT)
do
(replace CurrentCursorCoords
(MouseCoords))
(if (EQ (BUTTONSTATE) 'LEFT) then
(RETFROM "Tracker]

Figure 1: Typical User Interface Code

2.1 Abstraction & Programming Complexity

The answer to this problem, as has traditionally been the case in programming languages,
is abstraction. By introducing a conceptual framework specifically oriented towards
interface programming, the myriad low-level functions can be composed into more abstract
functional units, thereby reducing the complexity of the design space. This attractive
feature is the fundamental motivation behind the concept of all high-level languages. We
can conceptualize these relationships in Figure 2.
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Figure 2: Abstraction versus complexity

In this figure, we place general programming languages with their large number of fine
grained interface programrmng primitives at one end of the spectrum. For example, X-
window and the Quickdraw primitives from the Macintosh toolbox appear in the low end of
the spectrum. We call languages at this extreme low-level languages. In general, low-
level languages are characterized by a lack of direct support of any ontological structure
specific to interface programming. At the other end of the spectrum, we define high-level
languages, which exibit a highly structure ontology in which the primitives are complex
interface entities with concretely defined behaviors. For example, Smalltalk has complex
interface objects such as windows, menus and browsers. High-level languages are
typically object-oriented languages. Thus, it appears as no coincidence to us that current
trends in managing complexity in user interface programming have directed more and more
effort to object-oriented language developments.

To illustrate: Several systems have been developed specifically as object-oriented
construction kits for interface design. We initially began work on this research with a
great deal of inspiration from an system called Programming by Rehearsal (Gould &
Finzer, 1984). Programming by Rehearsal uses a subset of Smalltalk classes with which
the designer must begin. Gould and Finzer also introduce and develop the programming
by demonstration paradigm. Trillium (Henderson, 1986) written in LOOPS is limited to
the design of copiers but uses object composition. Fischer and Lemke's WLISP (1988) is
a construction kit for windows based on an object-oriented class inheritance Lisp called
ObjTalk. Fischer and Lemke's FRAMER (1988) adds design critics to the WLISP
construction kit and has more of a direct manipulation environment for programming.
Barth's GROW (1976) is an inheritance object-oriented system for creating graphic
displays as objects (grid, text, box, icon). It supports both composition of objects and
dependency between object atributes. It does not have a direct manipulation interface and
does not integrate user actions. Although Cardelli's (1987) direct manipulation interface
designer is not explicitly object-oriented, its dialog box components act like objects.
Myers' (1987) Peridot combines programming by demonstration with active value objects.

A large number of commercial interface construction applications have evolved from these
research efforts. While it would be impossible to review them all, several stand out as
landmarks. Prototyper (SmethersBarnes, 1989) represents the stereotypical interface
construction kit. The designer is presented with a small fixed palette of standard interface
entities (eg. windows, buttons, etc.) from which to choose components of the interface.
There is no abstract interface language to specify how the entities interact. Instead, the user
must specify all interface behavior by extending the code generated by the system using a



low-level language, either PASCAL or C. Hypercard (Apple, 1987) overcomes some of
the rigidity inherent in Prototyper-like kits by recognizing that a higher-level interface
programming language is desirable to allow the user to easily describe basic interface
functionality. This language is called Hypertalk. However, this toolkit still constrains the
designer by providing a small set of predefined interface entities. Serius89 (Serius, 1989)
takes this notion to an extreme: It attempts to overcome the flexibility constraints imposed
by providing only predefined entities by simply giving the user an enormous set of entities
to choose from. While this undoubtedly does allow a wider range of interfaces to be
constructed, the complexity of indexing, selecting and combining the appropriate entities to
implement a particular interface is nothing short of overwhelming. Thus, we feel that
systems like Serius89 represent a “brute force” approach to the flexibility problem
analogous to the PL1 language of the 60's. By focusing on simple aggregation instead of
abstraction and careful design, they produce a language too large and complex to be truly
useful.

2.2 Abstraction & Generality

The issue of programming complexity is not the only one that must be considered in
language design. Generality must also be taken into consideration. If a language
prepackages interface behaviors as objects (that is, behavior is abstracted to the point where
a particular functional unit, or interface entity, embodies exactly one set of very specific
behaviors), those objects must be generally useful to most language users since their
overhead is expensive. Thus, most object-oriented languages and interface toolkits support
only the most common interface objects, windows, menus, icons, buttons, etc., in a library
usually organized in a hierarchical taxonomy from which the user may select to create new
interfaces. This leaves the rest of the interface, in particular the conrents of the various
windows, without any abstraction support. If the designer is happy with this constrained
rigidity, then it clearly reduces programming to the simple task of identifying the entity that
embodies the behavior. On the other hand, if the designer wants to modify the behavior,
then he or she is forced to descend to the composition of single functions and procedures.
In other words, to retreat to using low-level language. Figure 3 illustrates that generality
becomes more important as one moves towards reducing programming complexity through
abstraction.

Programming

Complexity i
(# statecmenis) Gcnclahty

High ¢ High
X-window GROW Smallalk
Muoc Toolbox WLisp
Low sy
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“Funclions®” “Objects™”

Abstiraction

Figure 3: Abstraction versus complexity & generality



In sum, both ends of the spectrum have positive aspects: low-level languages offer
maximum expressive power while high-level, object-oriented languages offer absiraction
and efficient (though very constrained) interface construction. However, observe that there
is a middle ground at the cross over point of Figure 3. In this area, programming
complexity is reduced by introducing some abstraction while at the same time maintaining
expressive power.

This observation is the prime motivation for our interest in this largely unexplored central
area. We claim that systems in this area, which we call the median level, are extremely
promising. They offer both structure and flexibility, and support the construction of a wide
range of interfaces while requiring designers to understand only a very simple ontology and
a compact high level interface programming language. By settling on an intermediate level
of both ontological and functional abstraction, interface construction at the median level
becomes a mixture of composition and programming: Abstract prototypical objects are
elaborated (programmed) to exibit a particular behavior and are then composed to create the
interface as a whole.

2.3 The QUICK Difference

Our QUICK system is the result of our exploration of this unique central area of the
language spectrum. In particular, the QUICK language has several important features:

Simple Ontology: the Prototype Object.

A major distinction between QUICK and other approaches to interface design lies in our
more abstract and flexible view of interface components. As noted previously, most
toolkits provide a predefined set of interface entities (e.g. windows, buttons, etc.), each
with certain behavior and attributes inherently associated with it. That is, the definition of
a particular class of entity, say, a button, tightly constrains how instances of the class look
(i.e. their screen representation), what kinds of interface events they respond 10, and the
nature of that response. Thus, an instance of the burton class might be able to respond to
single-clicking but not to dragging, double-clicking, or arbitrary user-defined events.
Under this approach, the interface designer chooses interface objects which provide the
desired functionality from the predefined set and instantiates them. Constructing an
interface is therefore primarily an instantiation task. Unfortunately, this approach severely

constrains! interface design: one can only build interfaces specifically supportied by the
predefined abstractions. In QUICK, we explore a less structured approach. Unlike most
object-oriented languages, QUICK's objects are prototypical rather than classed (Borning,
1979; Borning, 1986; Ungar & Smith, 1987). That is, all interface objects are prototypes
of a single abstract prototypical object and are therefore identical at creation. The user then
builds on this abstract foundation, specifying the unique behavior of each object. There is
no notion of inheritance or class-based specialization. This design choice reflecis a
decision to support the initial bottom-up design of interface objects from a set of
fundamental parts as a construction kit (Fischer & Lemke, 1987), rather than as a top-down
taxonomic specialization using inheritance. We feel that this approach lends itself to
cognitive simplification. At the same time, we provide strong support for the two primary
advantages of the class-based approach, abstraction and reuse. Abstraction is supported in
that the user may define new “classes” by aggregating groups of objects, thereby defining a

1 Note that in the commercial world, where standardization is important, it may actually be advantageous 1o
have a firmly established library of interface objects. Thus, it may be desirable to sacrifice flexibility in
favor of uniformity in these contexts.



new type of object; reuse is supported in that objects (simple or aggregate) may be
duplicated and saved.

Thus, QUICK takes a more abstract view of interface construction: Instead of providing
predefined classes, we provide a single fully general interface entity, allowing the user to
define its specific attributes and behavior. The QUICK object may be viewed as a sort of
shell, a basic framework which the user elaborates into a functioning interface component.
This creative elaboration-based approach distinguishes QUICK from class-based systems
which embody the instantiation-based perspective.

In sum, our approach represents a commitment to a prototypical (vs. a classical) view of
objects, to user-defined object abstraction, and to reuse via a copy-edit approach.

Flexibility: An abstract interface language

With few exceptions, high-level toolkits do not allow the user to extend (by adding new
classes) or modify the behavior of the predefined set of classes. Even when such
taxonomic extension is possible (Goldberg and Robson, 1983), the user is forced to
immediately move to a low-level language to accomplish the extensions, Thus, flexibility is
highly constrained and extension is difficult or impossible. As noted above, the reasons for
these limitations are rooted in the instantiation-based philosophy of these construction kits.
In order to support the elaboration-based perspective taken in QUICK, which essentially
views all interface construction as extension, it is necessary to provide an abstract interface
specification language with which to accomplish the elaboration. That is, it would be of
little use to provide the designer with abstract, unfinished interface objects with the
expectation that they be elaborated using a low-level interface language. Thus, we have
designed an abstract language, tightly focused on interface functionality, to allow the user
to specify the behavior of individual interface entities.

To summarize, low-level languages offer a fully general interface language but provide no
abstraction to control complexity. On the other hand, high-level languages are very abstract
and structured, but provide little or no expressive freedom. In QUICK, we choose the
middle ground, providing a moderately abstract prototypical interface object to structure the
interface construction task, combined with an abstract interface language to maintain
flexibility.

3.0 The QUICK Language

In this section, we will describe in (much) more detail the QUICK language. However, we
begin with an example of an interface built with QUICK to serve as a firm foundation for
our discussion and to illustrate the highly interactive direct manipulation interfaces QUICK
is designed to produce.

3.1 An Example: The CardioLab

The following example illustrates the power and simplicity of the QUICK system and will
serve as a descriptive vehicle throughout the paper. The interface shown below is a
prototype interface for a cardiovascular toolkit, which we are developing in another project,

to be used? in biology classrooms to teach various cardiovascular concepts, ranging from

2 The CardioLab application has in fact been completed and has undergone exiensive protocal-based
evaluation. The application is now being used in actual biology lab classes and we are engaged in a final
evaluation.



basic hydraulics to oxygen transport to comparative physiology. The interaction depicted in
the following example reflects the relatvely guided pedagogical style adopted for users of
the application.

In a typical introductory session with CardioLab, the application user (student) is asked to
construct a cardiovascular topology depicted in a diagram in the lab manual, which is
accomplished by selecting icons from a “palette” of cardiovascular components,
instantiating them in the workspace, and arranging them to form the desired topology. In
particular, we specify for this example that a palette icon should become highlighted when
it is single-clicked presenting a text definition of itself and un-highlighting a previously
selected icon. Double-clicking the icon should cause a full graphic image of the component
to appear in the workspace so that it can be dragged to position by the user. When two
components are arranged so that they touch, both components should flash once to indicate
that a connection has been made. In this manner, users construct cardiovascular systems
with attached gauges to record behaviors of simulation variables. Finally, a control panel
of buttons should be provided which, when clicked, should cause the simulation 10
commence, stop, reset, etc. During simulation runs, graphically animated arrows should
indicate the direction of flow. Note that, since this is only a prototype of the interface, we
do not expect the simulation to actually run and produce values -- all we require is that the
presentational and user interaction behavior of the application, including object selection,
dragging, flashing, highlighting and some forms of animation, be intact.

The following figure shows a view of the running prototypical interface, which was
created in approximately one half hour (not counting time to draw the images).
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3.2 QUICK Language: Semantics

We have seen that QUICK provides a very simple ontology based on a single abstract
interface entity. This prototype interface object, through the mechanism of abstraction,
defines a number of powerful but general behaviors. Designers may elaborate any number
of such objects, using the compact and abstract QUICK language to specify the behavior of
each. The interaction of all such objects defines the interface. It is important to note that
from the point of view of QUICK, no difference exists between traditional but very general
interface objects like menus and buttons, and custom interface objects like animated objects
within a window.
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Abstractly, the QUICK prototype object consists of four components: graphic
representation, functionality, spatiality, and atiributes.

Graphic Representation. In QUICK, the notion of an object's representation on the
screen is disjoint from the object itself. That is, the object is viewed as a logical entity
that can be represented in a number of ways. Two representations are predefined: the
image of the object is an arbitrary picture created by the user in a drawing program; and
the zext of an object is an arbitrary string (initially the name of the object). Not only may
the user switch between representations of the object, but both the image and the text of
an object may be changed at any time. Indeed, one way to display values in QUICK is
to create an object, ask it to display its text representation, and then simply change that
text at run time.

Functionality. The issue of how to specify interface functionality is central in the design
of an interface. Each object has associated with it a set of actions, specified in the
QUICK user interface language, that define how it will respond to various events. Four
built-in events are I-click-event, 2-click-event, landing-events, and dragging-even:
which specify what should occur when that object is single-clicked, double-clicked,
dropped and dragged, respectively. For instance, in the CardioLab interface, the one-
click-action of each workspace object causes that object to be highlighted and all others
to be unhighlighted. In addition, the user may define new actions for any object along
with the conditions under which they should be activated.

Spatiality. Our commitment to direct manipulation and the object oriented viewpoint has
forced us to develop a clear framework for expressing spatial orientation and relations in
the QUICK system.

Each QUICK object incorporates an explicit representation of its position in the
interface, recording both its cartesian position the workspace and its plane, allowing the
system to provide a simulated three-dimensional environment in which the designer can
manipulate the relative “depth” of objects in the workspace. The explicit representation
of position provides the designer with a means for expressing spatial relations between
objects in the interface as well: it is possible to programmatically test spatial

relationships3 (e.g. in, above, left of, etc.) between objects. This feature has proved
invaluable in designing the direct manipulation interfaces that are the target of our work.
In the CardioLab example, for instance, the ability to test whether an object s in another
object is crucial.

Attributes. Just as the functionality component defines an object's behavior, the
attributes component defines its static characteristics. Built-in attributes specify whether
the object is visible, draggable, highlighted, and a number of user-level characteristics.
For instance, in the lifeboat example, the lifeboat's “draggable” attribute is set to false,
making it & stationary component of the interface, while all other objects have the
“draggable” attribute set to true, allowing them to be moved about. Naturally, the user
may define new attributes (of any data type) and test and retrieve all object attributes
programmatically,

3.3 Aggregation: Mechanism for partonomic abstraction

3n general, spatial relations (e.g. in, above, left of, etc.) have proven very difficult to define concretcly,
duc largely 1o a strong dependence on the context and nature of the objects being related. We base our
algorithms on past research in this area by Douglas eL. at (1987).
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This feature supports object abstraction. Though we do not support the class based view
of interface programming, we do feel that a powerful abstraction mechanism is desirable.
Thus, instead of providing built-in abstractions (i.e. classes), we provide a mechanism for
allowing the user to define abstractions. Using Group, the user can aggregate any number
of individual objects into a more abstract compound object. For instance, the user might
design a numeric keyboard in which the numbers, when clicked, flash and announce their
name. During programming, each of the keys would be represented by a QUICK object.
However, when complete, the entire set of keys can be aggregated into a new “keyboard”
object. Not only does this promote abstraction in the current interface, it creates a new
resource for later reuse: the entire aggregate can be saved and later reloaded as a component
of other interfaces. For instance, one might use the same keypad for a calculator, a
telephone answering machine, and a day&night teller machine.

3.4 Animation and Sound

An important aspect of QUICK, closely related to spatiality, is the incorporation of
animation. Each object may have associated with it a path, which the user records in a “by-
rehearsal” style (Gould & Finzer, 1981), by asking the system to watch (record) and then
dragging the object through the desired motions. The object can be asked to run its
animation, moving itself along the predefined path.

We have invested considerable effort in exploring how best to support the user in
specifying animation in the interface, an area that has received no attention up until now.
For instance, it should be possible to specify that a given motion is to be repetitive, cyclic,
relative to the current position or to some fixed point, and so on. QUICK accomplishes
these goals by allowing the user to edit the recorded path, to specify the number of
repetitions, and to select animation characteristics along three orthogonal dimensions:
mode, continuity, and orientation. Briefly, mode is either Jump or Drag and specifies
whether the object moves between adjacent path coordinates in a single leap or whether it
moves more slowly along an interpolated line between them. The continuity may be I-way,
cyclic, and 2-way specifying what happens when the object reaches the end of its path
with one or more repetitions left to go. In the first case, it runs its course? again, starting
where it left off, in the second it first jumps back to where the animation originally started,
and in the third, it simply reverses its path. Finally, the orientation may be either fixed or
relative specifying whether animation should start from the object's current position (at the
time it is asked to animate itself) or from some user-specified fixed point every time.

Taken together, these features provide a powerful and flexible means off specifying how an
object should behave when asked to animate itself. Note that it is possible to ask several
objects to simultaneously animate themselves. While this is very nice in that it allows
multiple interface components to be in motion at once, it raises a new challenge: How can
we allow the user to specify timing constraints to synchronize the activity. For example, the
user may want to express “animate objects Foo and Fum, but fix it so that they reach the
intersection of their paths ar rthe same time”. Addressing this issue remains a part of our
agenda for the future.

Another unusual feature with extensive support in QUICK is sound. Most interface
construction tools, if they support the generation of sound at all, simply allow the user to
specify a file containing digitized sound to be played back at some point. QUICK iakes a
much more sophisticated approach by defining the concept of a phrasal lexicon which the
designer can load with snippets of sound from various files. The designer may then “paste

4 A path is represcnted by an array of offsets. Hence, movement can easily be initiated from any point.



together” various announcements using phrases in the lexicon. For instance, suppose the
chlcon had been loaded with the following phrases: “The circle”, “The square™, “is”,

“above”, “not”, and “below”. Then, by selecting different sequences of phrases, the
designer could produce announcements like “The circle is above the square” and “The
square is not below the circle”. Lexicons may be saved, allowing related phrases to be
grouped and loaded in together. Finally, lexicons may be linked to particular interfaces,
causing them to be loaded when the interface is loaded.

Thus, we have provided sophisticated means of producing sound and animation in the
interfaces constructed in QUICK. We see this as a natural consequence of our efforts to
create a more flexible interface construction environment.

3.5 The Passive Background

One other QUICK components deserves brief mention. The background is simply a
bitmapped image (as created by any of the popular painting programs) which serves as the
passive backdrop for all of the action in the interface. This approach is much more efficient
than defining the various lines, boxes, and other passive background elements in the
interface as individual QUICK objects.

3.6 QUICK Language: Syntax

The QUICK language is extremely simple, compared to other approaches like data flow
diagrams (Serius, 1989), forcing the user to program in the underlying language (Goldberg
and Robson, 1983; Gould and Finzer, 1984), and even other high level interface langnages
(Apple, 1987). Thus the QUICK language is a simple linearly organized object-oriented
declarative language consisting of a small number of high-level commands. To further
simplify QUICK, the language is embodied in a structure editor which guarantees that user
programs will be free of syntax errors. The price we pay for this simple controlled
environment is a loss of expressive power. However, it is not our goal to allow the user to
express everything, but rather to discover and provide a minimal set of primitives that allow
our unsophisticated user population to design a wide variety of interfaces without resorting
to low-level programming,

The following figure outlines the QUICK language.

Animate <list of objects>

Flash <object>

Highlight <object>

Unhighlight <object>

If <test> <then> <else>

For-cach <list of objects> <code>
Set-atiribute <object> <atiribute> <value>
Say <list of sounds>

Move <object> <location>

Trigger-aclion <object> <action>

Brief descriptions of the most important commands follow:

Animate allows the user to programmatically initiate animation. The argument is a list of
objects which all simultaneously trace their user-defined animation paths.

1]



IF is perhaps the most powerful command in the QUICK language, allowing the user to
incorporate conditional branching into an otherwise linear language. Much of the power
of the QUICK conditional stems from the variety of options available to fill the <test>
argument. Among other things, the user may construct arbitrarily complex boolean
statements by nesting AND, OR, and NOT constructs, test boolean attributes of any
object, and test spatial relations between cobjects. The <then> and <else> arguments
contain arbitrary code including, potentially, further IF statements.

For-each is a simplified looping construct. Each object in the list is, in tumm, bound to the
self variable after which the code in the <code> argument is executed. The user may
select an all-things option to fill the <list of objects> argument, causing the loop to
iterate over all interface objects extant at the time the statement is encountered.

Set-attribute allows the user to programmatically adjust any object's attributes. Note that
the <value> slot may be filled by a constant or a computed expression.

Move causes the named object to be moved to the specified location. By default, the
movement is along an interpolated path between the current position and the specified
position. However, the user may change the speed and nature of the movement, just as
with animation.

Trigger-action allows the user to programmatically trigger any actions (built-in or user-
defined) listed for the named object. In other words, this command provides an
alternative means (other than interface events) of triggering actions defined for an object.
This has proved especially useful when used in conjunction with user-defined actions.

Trigger-action, in conjunction with the ability to create new user-defined actions for an
object, fulfills our commitment to bring the power of object oriented programming to the
novice interface designer. In object oriented terminology, the actions associated with an
object can be viewed as methods while the Trigger-action command implements a
message passing mechanism to activate those methods. As previously noted, we extend
this paradigm with a unique twist: actions may also be activated by interface events.

4,0 Programming Environment

In the previous section, we argued that the interface language defines the conceptual
framework of the interface programming task and determines its overall complexity.
However, the interface programming environment plays an important supporting role in
that it defines the presentation of the construction kit itself. Thus, the design environment
in no way affects the expressive power of the system, but may help to streamline interface
programming. Today, most interface construction kits rely upon various techniques that
are generally categorized under direct manipulation systems. Direct manipulation was
defined by Shneiderman (1983) to include three attributes: a) continuous representation of
the object of interest; b) physical actions or labeled button presses instead of complex
symbolic (typed) commands; and c) rapid incremental reversible operations whose impact
on the object of interest is immediately visible.

Direct Manipulation has proven to be particularly useful in recent years. The reason for this
success is that this feature is much more than simply a pragmatic environmental aid like
autosaving or multiple windows. It is a conceptual aid, a “visual macro™ that establishes a
higher level of abstraction to move interface programming from the symbolic programming
level towards a more direct visual model. In other words, direct manipulation provides a
WYSIWYG environment for interface programming.

I~
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However, the above definition of direct manipulation is still too broad to clearly describe
the differences between most user interface construction kits. We will attempt to develop
some characteristics which can further refine our analysis. Firstly, most construction kits
have some form of menu and/or dialog-box selection programming in which the object of
interest is the text of the program itself. This characteristic we will call weak direct
manipulation. Typically this form of direct manipulation saves the programmer from
having to type in the symbolic text in the programming language. Structure editors are a
more complex version of this type of programming in which the logic of the menu item
contents changes depending on the syntax and semantics of the underlying language.
Languages such as Smalltalk provide weak direct manipulation environments.

Strong direct manipulation programming environments add to the elements of weak
ones by including elements of visual programming (Myers, 1986) and programming by
demonstration (Myers, 1987). Visual programming refers to “any system that allows the
user to specify a program in a two (or more) dimensional fashion.” (Myers, 1986). Two
dimensional here assumes graphical display and pointing devices. Visual programming in
user interface construction kits often incorporates flow-chart style specifications of data-
flow and general program control. Serius 89 is such an example and uses graphical data-
flow specification. However, many user interface construction kits represent continuously
the end-product of the programming process (i.e. the graphical interface itself) and allow
the programmer to specify which object to program as a selection operation, or specify the
location and animation paths of objects as a dragging operation rather than as symbolic
coordinates. Prototyper and Hypercard illustrate visual programming techniques in
positioning of button and icon placement in windows. Programming by demonstration
involves having the programmer simulate the interactions of the user to indirectly specify
the logic of user interaction. Peridot (Myers, 1987) and Programming by Rehearsal
(Gould & Finzer, 1984) use programming by demonstration techniques.

Direct manipulation in interface construction kits contributes enormously to their popularity
and the perception of increased productivity which they enjoy. However, there are several
other features of programming environments which can also contribute to that goal. If a
construction kit language is implemented as an interpreter rather than as a compiler, a rapid
switch is possible between the programming tasks of specifying the program and testing it.
This switch allows the programmer to test the program by simulating the behavior of the
user. In addition, this switch also supports the rapid prototyping method of design.
Because there are no known analytic methods which can completely predict the behavior of
the user at the interface, designers frequently resort to rapid prototyping. Rapid
prototyping allows the programmer to quickly try a variety of design options by testing
them with users.

In summary, the interface programming language and the programming environment are
orthogonal. That is, the environment establishes the presentation of the user interface
construction kit itself, while the language the underlying conceptual model. In the next
section we will discuss the QUICK system programming environment in light of the
concepts we have developed here of weak and strong direct manipulation, since it
incorporates elements of both.

5.0 The QUICK Environment

5.1 The General Environment
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The Quick programming environment supports both weak and strong direct manipulation.
The objects of the user interface that the programmer is constructing are continuously
visible at all times. As aspects of weak direct manipulation, QUICK provides menu control
of its environment as well as a structure editor for using the QUICK programming
language. As aspects of strong direct manipulation, objects to be programmed are selected
by the mouse thus setting up internal program reference, objects are moved into position in
the window thus indirectly specifying their coordinate locations, and animation paths are
created by the programmer dragging the object rather than by symbolic specification of
coordinates.

5.2 Control

Control of the QUICK programming environment is primarily accomplished via a
hierarchically structure menu system while the elaboration of object behavior is specified
with a structure editor. The structure of the menus is shown is the following figure.

Menus Menu ltems Submenu Nems
New
Open
Close
Intesface Save
Save as...
Local Actions
Run Global Actions
Stop
Lexicon Set Init Pesition
Lower Plane
Quit Higher Plane
Edit
New
Duplicate
Actions Use Image
Attributes Use Text
Obiect Hepresentatlon Set Image
Animaltion Set Text
Group
UnGroup \Anributes
Record
Save Cbject
Load Object

In general, the items in the Interface menu are concemned with the QUICK construction
kit as a whole, while the items in the Object menu control operations on individual objects
or groups of objects. Though detailed discussion is beyond the scope of this paper, several
items warrant emphasis:

Run/Stop. These items control the mode of the system and implement the rapid
prototyping feature of QUICK. At any time during programming, the user may select
Run to instantly move the interface to run mode. In this mode, the interface behaves
just as the final product will. Selecting Stop causes the interface to move back into
programming mode. In this way, the user can quickly make changes, evaluate them,
and make further modifications. Thus, QUICK supports a very tight modify-test
iteration, a key feature of the rapid prototyping paradigm.

Duplicate. This important feature implements reuse in QUICK. The user can
completely program a given object and then use the copy-edit approach to create a similar
object.

5.3 The Structure Editor



Despite the simple nature of the QUICK language, programming would still be error-prone
for novice users in a free form environment. Thus, we provide a hierarchically structure
editor, which, at each stage, presents the user with only legal options to choose from. In
fact, the only time the user is actually asked to type anything is when an object or file needs
to be named.

culab Interface
2 Actions for heartl
I | tanding action
2= _—*¢ dragging action
landing aclion
Home: landing action
r a . 1 | NeaLw I
Coda [ | enpand
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than
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Parane terds lask current to raturn br2 @ ]
- [is <thing? tsralation’ current Cancal
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mus2 =
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= roser CRecest ]
<thing i
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The above figure gives the flavor of the structure editor. In the figure, we are in the
process of programming the landing-action of the workspace Heart object of the CardioLab
application. Recall that it must test whether it is connected to another workspace object,
and to flash itself and the other object if so. The stacking of the dialogs illustrates the
hierarchical nature of the editor: The user selects the landing-action to edit, is presented
with a code dialog, selects If from a popup menu (no longer visible in the figure), and is
presented with a specialized dialog for If. To fill the If's boolean test, the user has selected
an AND expression, with the purpose of first testing to see if an object is a workspace
object, and then testing to see that the Heart is IN that object. At the moment of this
snapshot, the designer is completing the second of these conjunctive tests and has just
depressed the mouse to display a popup menu of available objects to fill the <thing> slot of
the spatial relation test and has selected the object Heartl.

Thus, the structure editor combines the fill-in-the-blanks and multiple-choice paradigms to
create a highly constrained programming environment.

5.4 The CardioLab Revisited

In this section, we take a brief look at how a QUICK interface is actually constructed by
showing how the CardioLab interface described earlier was implemented. For the sake of
brevity, we will show only how the heart in the workspace is created and programmed.
All other workspace objects are very similar, and were, in fact, created by applying the
copy-edit approach to the heart object. The heart object is created and programmed in
three easy steps:

15
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1. Create the object. We simply select New from the object menu. The user is prompted for a
name and asked (o select an image for the new object.

2. Set the attributes. We want the heart to be draggable at run time so that the user can arrange it
in the workspace. Since the default value is non-draggable, we select the heart by clicking on it, and
then select Edit from the submenu of the Attributes item in the Object menu. This invokes an
attribute editor for the attributes of heart, allowing us 10 toggle the value of the draggable? auribute.
At this time, we alsc add a new boolean attribute, w-obj?, initially set to TRUE, which identifics the
new object as a workspace object, differentiating it from a paletie object and other objects we may create.
We will see how this is useful below.

3. Program the new object. According 1o the specifications above, we must provide programs
for two of the built-in interface events:

1-click-action. The heart should simply highlight itself and unhighlight all other workspace
objects.

Landing-action. When the object is dropped, it should determine whether or not it is touching
another workspace object and, if so, both objects should flash once and the system should produce an
audible “click” to indicate a connection.

The code for the heart object is shown in the following figure:

Landing action:
FOR-EACH All-Things DO ; For each object, each bound to CURRENT in turn
IF [AND
fthe value of CURRENT's w-obj? attribute is TRUE] ; check if it's a workspace object AND
[A-thing is IN Heart]] s check if iU's IN the heart
THEN
FLASH CURRENT
FLASH Hear
SAY [*Click-click™] ; Give audio feedback to indicate connection.

One-click-action:

FOR-EACH All-Things DO ; lterate over all objects, CURRENT bound 1o each in tum
IF [the value of CURRENT's w-obj? attribute is TRUE] ; If it's a workspace object
THEN

UNHIGHLIGHT CURRENT

HIGHLIGHT Heart

6.0 Discussion
6.1 Stretching limitations: How to have your cake and eat it

As shown in section 2, the extremes of the interface language spectrum each have unique
advantages and can be supported or not by the programming environment. The low-level
maximizes expressive power while the high-level provides maximum abstraction. By
settling on a middle ground, at the median level, we have minimized overall interface
programming complexity --- but this has obviously and necessarily resulted in a
compromise in terms of both expressive power and abstraction. Is there a way that a
toolkit can still maintain access to these features? We believe so and have worked to
incorporate features which allow the designer to “stretch” the functionality of the QUICK
system towards the extremes, as shown in the figure below.



Extensibility Aggregation
-

Low-level Madian High-level

Mechanisms for extensibilty and aggregation
provide access to the best features of ali worlds.

By providing mechanisms for aggregation, we support the assemblage of primitive
interface entities into more abstract ones. Strong support for extensibility allows the user to
easily incorporate fundamental level code in an evolving design. These aspects are
discussed in more detail in the following sections.

6.2 Creating high level interface entities through aggregation

A major theme of this paper has been that, by settling on a median level of abstraction,
somewhere between low-level and the high-level interface languages, an interface
construction kit can provide unusual flexibility without introducing overwhelming
complexity. While this feature is especially advantageous for non-programmers and
designers of non-standard interfaces, it is important to point out that one can easily model
standard interface entities like windows, menus, and buttons in a median level system as
well.

In this section, we present a short example that illustrates how QUICK can be used to
create a simple “pull-down™ menu. The approach is as follows: view the menu in terms of
its component pieces; create each piece as a separate QUICK object, specifying the
appropriate behavior; and juxtapose the components via direct manipulation. Importantly,
the set of component pieces may then be aggregated (partonomic abstraction) into a new
user-defined interface entity that can be stored and reused in later designs.

We decompose a pull-down menu into the following components:

A _meny title;
Representation: The descriptive title that appears in the menubar,
Behavior: When single-clicked, highlight itself and cause the menu background and items o become
visible.

A _men keround;

Representation: A blank oblong box large enough to contain all menu items.
Behavior: None.

Meny items:
Representation: Text items representing the choices in the menu.
Behavior: Single-clicking causes item text to flash and then initiates the action define for that item.

The figure below shows how primitive menu components are composed to create an
interface entity at the composite tool level. Now suppose the designer aggregates the five
component objects into a new compound object under the name menu-object. If at a later
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point (in the same design or during new one) the designer requires another menu, the
stored menu-object can be loaded in and trivially modified to fit the new task.
Modification would primarily involve changing the text strings of the menu title and items
and the assignment of appropriate actions to each item.

Edit Pasie Copy
\‘ Cut
Edit /
Cut
Copy

Paste

8} Juxtapose the components Lo create the menu object

BOIt ket m cnsgar T
—> |cut —_—
Cepy Copy
Paste

b) The new Menu object 1n ection

In sum, the less-structure approach to interface design taken in QUICK in no way impedes
designers of “standard” interfaces. By way of partonomic abstraction, designers may
compose an unlimited variety of higher level interface entities, including widely used
entities like windows, menus, and buttons. In this way, QUICK provides all of the time-
saving power associated the composition-based approach to interface design, in which
predefined interface components are selected and composed, while at the same time
maintaining flexibility and the ability to design unique interfaces. Thus, QUICK is well-
suited to the needs of both designers interested in creating uniform, standardized interfaces
as well as designers wanting to explore new concepts in interface design.

6.3 Extensibility for greater expressive power

For some programs which are interface intensive, with very little underlying computation to
be done, the interface generated by QUICK is the finished application. That is, there is no
further programming to be done. However, in the case of more complex software, like the
CardioLab example presented earlier, which may involve intricate data structures and
elaborate computations, there are inherently cases where desired behavior cannot be
specified by the toolkit. To see this, recall that the interface design toolkit reduces interface
programming complexity by introducing a set of abstractions, specific to the interface
programming domain. These abstractions structure and constrain the space of possible
programs to varying degrees, depending on the specificity of the abstraction. For instance,
the windows and menus available in high-level interface design kits are highly specific
abstractions, and therefore rigidly constrain the nature of interfaces that can be produced.
QUICK, which provides a median level of abstraction, is accordingly less rigid and allows
a wider range of interfaces to be specified. But irrespective of the level of abstraction
chosen, the sophisticated design kit user will, at some point, need to implement
functionality which simply is not supported by the abstractions embodied in the design
toolkit. At this point, the designer must resort to a less abstract specification language,
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most commonly the low-level language on which the toolkit is based. Thus, a toolkit
which supports design at a lower level of abstraction (but one above the low-level) may
postpone, but not avoid, the need to resort to low-level programming.

In these cases, the interface construction kit must become a tool to streamline the mundane
aspects of interface construction, freeing human programmers to focus on unusual interface
effects and computational aspects beyond the scope of the interface toolkit. The QUICK
system strives to support this goal through a variety of features:

* QUICK is a generates fully functional Lisp code which can be arbitrarily extended and
modified by the designer.

+ Unlike many other toolkits, code the has been modified by the user may still be loaded
by the QUICK system allowing further changes to be made.

» The QUICK language provides a mechanism for referencing values produced by
arbitrary Lisp objects. Requests for such values are simply incorporated into the
generated code and are resolved at run time,

+ The QUICK language is fully extensible. The user may create a library of personalized
interface functions to extend the primitives provided by the QUICK language.

The purpose of this section has been to emphasize that, while the simplicity of QUICK
makes it an especially promising tool for unsophisticated designers, this feature in no way
compromises 1ts power as an interface design tool. By aggregating simple interface
entities, it is possible to model more complex entities like buttons and menus. Though the
median level of abstraction adopted in QUICK allows a wide range of interfaces to be
created without leaving the QUICK language, the system provides a variety of mechanisms
to support low-level elaborations.

7.0 Designer's Evaluation of QUICK

We feel that formal evaluation of software has been greatly neglected in recent work and
have a strong commitment to reversing this trend. Thus, we are currently engaged in two
distinct evaluative efforts.

Our first study works to evaluate the utility of QUICK as an interface design tool for
programmers. We plan to gauge utility by combining several metrics: coding time, coding
correctness, and attitude. Importantly, we are interested in gaining insight into the
contribution of the direct manipulation and object-oriented aspects of QUICK to its overall
success as an interface toolkit. For instance, we are curious about whether subjects will
reuse objects and how they fare with the prototype model of copy and edit (as opposed to
the standard object-oriented model of class hierarchy specialization). A study by Lange &
Moher (1989) will give us classifications of coding strategies that pay particular attention to
Teuse.

The study involves ten pairs of subjects working in pairs. We have found this technique,
known as constructive interaction (Miyake, 1986), to be much more productive than the
well-known “think-aloud” approach (Newell and Simon, 1972) in providing insight into a
subject’s problem solving process. Each pair is shown a 30 minute videotape of how to
use QUICK and then asked to implement three distinct interface specifications. While



apparently quite different, the three problems are designed to provide opportunities for
reuse. The resulting videotapes are then analyzed to give the above performance measures.

Preliminary results indicate that, even with minimal training, programmers are able to
produce simple interfaces using QUICK. However, several disturbing trends are
beginning to emerge as well. First, though subjects have the opportunity for reuse, both
within (via copy-edit) and between interface design efforts, they generally fail to do so.
We feel that part of this is due to a failure to detect functional similarity between objects in
the same as well as different designs. This is an area where a more interesting study could
be done based on existing cognitive psychology research in analogy. We also note that a
major problem with reuse is that frequently designers fail to predict what might be useful in
a future design and consequently don't save objects either as individuals or aggregate
objects.

Our second study is more general and addresses the question of how useful QUICK is
when compared a) to low-level interface programming and b) to other interface design
toolkits. A problem in addressing the first objective is that the only expert QUICK
programmers available are the four designers, only two of whom are still at the University.
Therefore, we are able to report a very preliminary result. We asked a QUICK expert to
use the system to prototype a direct manipulation cardiovascular simulation interface
developed on another project. The programmer of the original interface, working in
Allegro Common Lisp, took approximately 500 hours (six months) to complete. Our
QUICK expert produced a prototype in approximately six hours. We believe that much of
this improvement is due to the direct manipulation technigues and the high level objeci-
oriented QUICK language. With object-oriented programming Schmucker (1986)
estimates that development time can be reduced by a factor of four or five.

8.0 Conclusions

The concept of interface construction kits has become become firmly established and well-
accepted in recent years. Through both their popularity and the perceptions of their users,
they seem to offer solutions to the programming complexity created by introducing user
interface operations into traditional programming languages. We have argued in this paper
that an understanding of the productivity gain afforded by construction kits must be shaped
by separating programming language from programming environment.

We have argued that abstraction and the creation of high-level languages, particularly
object-oriented ones, reduces programming complexity. We have also noted that when
languages strive for abstraction they also strive for generality, thus losing programming
power and expressiveness. Our own research, the QUICK user interface construction kit
extends this research by exploring the middle ground in language abstraction. Qur use of
the prototype model of object-oriented languages rather than the class-based system is a
relatively unique contribution.

We have also described characteristics of user interface construction kit programming
environments making a distinction between weak direct manipulation environments and
strong ones. Weak environments essentially support the program text as the object of
interest and allow text object, menu and dialog box selection of programming language
components. Structure editors are an elaborate version of this. QUICK is definitely a
weak direct manipulation environment. Strong direct manipulation environments feature
elements of visual programming and programming by demonstration. QUICK is also a
strong direct manipulation environment, allowing the programmer to continuously display
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the product user interface and directly specify programming constructs by positioning and
movement of those objects. We also noted that some programming environments allowed
rapid switches between programming and testing. This supports the concept of rapid
prototyping in design. QUICK is one such system.

The prototype object oriented language paradigm, weak and strong direct manipulation
programming environments, and rapid prototyping support combine in a highly simplified
system designed to reduce the implementation complexity of user interfaces. By avoiding
the limitations associated with a fixed, predefined library of interface entities often found in
other kits, and, instead, allowing the user to define new abstractions, we have created a
construction kit that is extremely flexible. Not only can we emulate the entities provided as
primitives (e.g. buttons, pull-down menus, etc.) in other construction kits, we are able to
incorporate unusual features like sound and animation. One side-effect of these features is
the creation of a user interface construction kit that is useful enough for experienced
programmers and novices alike while remaining easy for them to learn.

Our goal has been to identify a set of representational and functional abstractions that are
conceptually simple but powerful enough to allow construction of a wide variety of user
interfaces in a relatively short period of time. Our evaluation studies to date support that
claim.

The QUICK system is an interpreter implemented on the Macintosh II computer in Allegro
Common Lisp using Allegro's Object Lisp system. It generates Lisp code which can be
supplemented by additional LISP programming if necessary. Both graphic images and
digitized sounds are created by other pieces of software and easily imported into QUICK.
The source code is roughly 700K in length.
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