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The Strand Language; Scientific Computing meets Concurrent
Logic Programming.

Timothy G. Mattson
Strand Software Technologies Inc.
15220 N.W. Greenbrier Parkway, Suite 350
Beaverton, OR 97006

Abstract

This paper introduces a relatively new member of the concurrent logic
programming family known as Strand{1]. While Strand is being used for
traditional applications in symbolic computing [2], it is breaking new ground for
languages in its class by it heavy use in scientific computing {3]. This feat is
accomplished through its interface to Fortran and C. Applications in protein
structure determination and weather modeling are presented to support the claim
that Strand is an effective tool for scientific computing.

1. Introduction

Parallel computing recﬁuires portable software development tools in order to
realize its full potential. This is particularly the case in scientific computing for
which application software frequently has a longer lifespan than the hardware
upon which it runs,

Among the most elegant approaches for portable parallel Progamming, are those
based on concurrent logic programming [4]. Unfortunately, the needs of scientific
computing do not directly map onto the logic programming model.

The commercial implementation of the Strand language, STRANDS8, has been
extended into the domain of scientific computing by interfacing to Fortran and C.
With this capability, the Strand language has been shown [3] to give numerically
intensive programmers access to portable parallel computing.

This paper is a review of the Strand language and its use for the numerically
intensive programs common to scientific computing. In particular, its use for
weather modeling [3] and protein structure determinations [5] is described.
2. Strand as a Concurrent Logic Programming Language
Strand is a concurrent logic programming language. It builds on the research in
Concurrent Prolog, Parlog, FCP and Guarded Horn Clauses to yield an efficient,
high level language for programming concurrent computers[6].
Within the taxonomy of concurrent logic programming languages, Strand:

1. Is a static dataflow language (as is Parlog)

2. Uses single assignment variable binding as opposed to unification.

3. Has a totally flat process structure.

A tutorial introduction to strand is provided in the appendix. Its key features
are:

Its computational model is based on extremely light weight processes.



forecasts over areas the size of the continental United States.The original
sequential program is a 25,000 line Fortran program developed over a ten year
period. For the sake of this study, the atmosphere was divided into 61x46km
columns each of which were further divided into 16 horizontal layers. For this
case, the original Fortran program poorly vectorized and ran at about 40
MFLOPS on a Cray X-MP.

The numerical method used in MM4 updates each grid point at time t+1 using
values at a small number of spatial neighbors at time t. Hence, the parallel
version of the program was produced by decomposing the three-dimensional data
into subdomains, initially in one dimension and subsequently in two dimensions.
Responsibility for each subdomain is allocated to a separate subgrid process. A
central manager process collates the information generated by the subgrid )
processes. The computation on each subgrid process alternately updates the time
for its own data and then exchanges boundary values with the neighboring
subgrid processes.

The bulk of the development effort was concerned with getting the existing Cray
code to run on a single processor of a Unix machine. Once this was achieved,
parallel versions were developed rapidly.

The parallel codes duplicate most of the functionality of the existing sequential
code. Hence,the concurrent component had to handle output of intermediate
results, collection of global error estimates, etc. Despite this added complexity,
the concurrent components of the codes totaled only 450 lines of Strand. Speedups
of approximately ten over the original sequential code were achieved with 15
subgrid processes on a Sequent symmetry shared memory computer.

5. Application: Protein Structure Modeling

The three dimensional shape of a protein is a critical property for understanding
the function of the protein. Full determination of protein's shape is a vast problem
taxing the abilities of the fastest supercomputers. A valuable preliminary step is
to predict where the protein folds into a particular shape known as an alpha helix.

Two Caltech chemists, Joe Bryngelson and John Hopfield [5] developed a

sequential C program that learns how to predict alpha Helix locations. The
rogram learns how to predict alpha helices for new proteins by carrying out a
arge nonlinear optimization calculation with known protein structures.

Stephen Taylor and Sam Southard [5] parallelized this sequential program using
STRANDSS to express the parallel parts of the algorithm. 75% of the original C
code was used in the final parallel program. Furthermore, Strand's management
of the parallelism was very flexible allowing easy experimentation with different
schemes for parallel execution.

Figure 1 presents a summary of the program's behavior on a Symult 2010

computer. The program displays linear speedup with up to 82 nodes. The drop off

from linearity at 64 nodes is an artifact of the protein data set divided among 64

ggdes‘.1 A larger data set would allow the program to show linear speed up beyond
nodes.

The logic required to manage fiamlleli:-'.m inevitably carries a cost. Asseenin
figure 1, the cost incurred by the Strand/C program is small and is overcome by
the time the second node is added.
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Appendix: A Strand Tutorial

The key to any portable parallel processing language isits architecture
independent view of the parallel computer. The Strand computational model is
based on a pool of light weight processes representing the state of the computation.

A Strand computation cycle begins when the Strand Abstract Machine (SAM)
removes a process from the pool. The SAM reduces this process into more
primitive processes using the information from the Strand program. These
processes are either placed back into the pool or, if they are so primitive as to be
immediately executable, they are executed. These executable processes are
referred to as kernels.

Strand kernels fall into two classes - user defined and language provided.

Lan a%e provided kernels consist of assignment, scaler arithmetic, and other

tcl)lw evel operations. User defined kernels are Fortran and C routines provided by
€ user.

In all cases, a process suspends until all of its required data is available. Hence,
Strand can be viewed as a data flow language.

As mentioned earlier, Strand processes are reduced according to the rules from the
Strand program. The Strand program consists of a collection of modules
containing Strand procedures. A Strand procedure consists of a collection of
clauses with the same name. The form of a clause is:

H:- 61, G2, ... GM | B1, B2, ... BP.

H is the head of the clause. It contains the clause's name and the procedure
arguments. G1 through GM are the optional guard kernels which provide tests of
the procedure arguments. Finally, if the head matches the grocess being reduced,
the guards all succeed, and all of the required data is available, then the

optional body calls, B1 through BP, are activated. The body calls can be other
Strand procedures or body kernels.

Strand variables are single assignment and are indicated by an initial uppercase
letter. Processes share variables to communicate with each other.



input listis split into its head and tail during the matching. If the guard succeeds,
Status is set to ok and the procedure terminates.

If the head matches but the guard from the first clause fails, the second clause is
attempted. If this guard succeeds, the member procedure is recursively invoked
on the tail of the list.

Finally, if the second argument of the process being reduced is an empty list, only
the head of the third clause can successfully match. This indicates that the key
was never found in the list and Status is set to the string fail.

This discussion implied that the Strand Abstract Machine considered the three
clauses in sequential order. This is not required by the language. The .
programmer just provides for all cases that can arise during process reduction and
does not have to worry about the order of the clauses.



Evaluation of the KL1 Language System on the Multi-PSI

Satoshi Onishij Yukinori Matsumotof
Katsuto Nakajimaj Kazuo Takij

1 Institute for New Generation Computer Technology
f Mitsubishi Electric Corporation

Abstract

The Multi-PSl is a loosely coupled multiprocessor, which has been developed in the
FGCS project for the purpose of providing a practical tool for research and develop-
ment of parallel non-numeric software. It also served as a testbed for implementation
of concurrent logic language KL1 on a loosely coupled multiprocessor.

This paper reports the cost measurement of intra- and inter-processor primitive
operations in the systems. They show the basic performance of our distributively
implemented concurrent language. Comments for the relationship to other language
systems are included. Utilization of measurement results in parallel programming are
discussed from the viewpoint of reducing the inter-processor communication overhead.
Measurements of performance and communication overhead in benchmark programs
are also shown.

1 Introduction

The Japanese fifth generation computer project has the target of building a highly parallel
inference machine (PIM) on which we construct large-scale knowledge information pro-
cessing systems. We have developed a prototype machine, the Multi-PSI system [Taki 88],
that provides a practical tool for the research and development of parallel non-numeric
software. It also serves as a testbed for an implementation of concurrent logic language
KL1 [Chikayama 88] for a distributed memory architecture.

The Multi-PSI is a non-shared-memory multiprocessor, whose processing elements
(PEs) are the same CPU hardware of the personal sequential inference (PSI) machine [Nakashima 87}
(the microprogram is different). Up to 64 PEs are connected in an 8 x 8 two-dimensional
mesh network with dynamic routing capability.

A distributed KL1 system was developed on the machine {Nakajima 89]. It is writ-
ten in microprogram for execution efficiency. The design goal was to obtain overall high
performance, taking into account garbage collection overhead, and to realize a distributed
language system with a decentralized resource management mechanism for good scala-
bility. The language system is easily expanded for a larger hardware than the current
Multi-PSI with its 64 PEs.

This paper gives the cost measurement results of intra- and inter-PE primitive opera-
tions in the system, which decide the basic performance of a distributively implemented
concurrent language system. Correspondence of those primitive operations to other lan-
guage systems is commented on. The cost of inter-PE primitive operations gives a guide-
line for a programmer to control the grain size for better performance. Measurements of
performance and communication overhead on benchmark programs are also shown with
a discussion referring to the guideline mentioned above. Section 2 and 3 outline the

1



The table has pointers to goal stacks corresponding to physical priorities. The processor
picks up the topmost goal of the highest non-empty goal stack and executes.

When a goal is executed, the guards of its defining clauses are tested. There are three
cases:

(1) I one of them succeeds, the body part of the clause is executed;
(2) If all of them fail, a failure exception is raised:

(3) Otherwise, if none of them succeed and some of them block - that is, some of the
input arguments are not sufficiently instantiated for guard test — the goal suspends
on the variable(s) to be instantiated.

In case (3), a pointer to the suspended goal is written on the variable cells (the goal is
said to be hooked onto the variables). When one of the variables becomes instantiated,
the goal can be put back to the goal stack for scheduling.

The body part of a clanse can contain body unification goals, body built-in predicate
goals, and user-defined predicate goals. In the execution of the body part, a body uni-
fication is done in-line. The body built-in predicate goal is also executed in-line, except
when one of its input arguments is uninstantiated. In this case, a goal which execute the
built-in goal is created and is hooked onto the uninstantiated argument. Goal records
are allocated for the user-defined body goals and pushed onto the top of the current goal
stack (thus the scheduling is depth-first), except for the last one goal which is executed
tail-recursively.

I the goal suspends, or succeeds but has no user-defined body goals, the next goal is
picked up from the highest priority goal stack for execution.

The programmer can attach pragmas to user-defined body goals to specify execution
priorities and where to move processor numbers. When a @priority pragma is attached
to a goal, the goal is pushed onto the goal stack corresponding to the specified priority,
not the previous one. When a @processor pragma is present, a throw message is sent
to the specified processor with goal information (code, arguments, priority, and so on).
Only the surface level of the arguments are encoded into the message. Nested elements of
lists and vectors are represented by external pointers. An external pointer is made up of
a processor number and an index into the indirection table in that processor (called the
ezport table). This indirection scheme was adopted, so that local garbage collection can
be done on one processor without affecting external pointers in other processors pointing
into that processor.

The value of an external pointer can be read by the ¥read/%answer.value protocol.
A write to an external pointer is handled by the %unify protocol.

4 Intra-processor Operation Evaluation

4.1 Append Speed

An append (list concatenation) program is often used as a benchmark program for logic
programming languages. An append program written in KL1 follows:

append([X1X1],Y,2) :- true | Z=[X{21], append(X1,Y,Z1).
append(,Y,2) :- true | Z=Y.

The cost of one reduction (iteration) of the first clause is 39 steps of the micro instructions
in the best case (no suspension, and so on), and the speed turns out 128 KRPS (Kilo
Reduction Per Second) assuming no cache miss.

3
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Figure 2: Cost of Typical Inter-PE Operation

the request. The returned data is a list whose CAR is an atomic data and the CDR
is an external pointer.

The routing hardware has 5M bytes/sec of the bandwidth for transmitting the mes-
sage. Compared with the network cost (hardware capability: 1.67/0.36/0.62 append-LI
for 65/14/24-byte), the sending and receiving cost of the microprogram execution is quite
large. It includes the cost of address translation, encoding and decoding messages, and
distributed goal management and other resources management.

5.3 Discussion

Let’s see the typical inter-PE operation in Figure 2, making an analogy to the discussion
in section 3.3. )

%throw operation corresponds to a process fork to a different processor. The cost of
the %throw operation gives a guideline for a programmer to control the lower bound of
the fork grain size thrown to a different processor.

%read and %answer_value operation correspond to a synchronization with a variable
placed in a different processor. The cost of these operations gives a guideline to control
lower bound of the synchronization grain size across a processor boundary.

Generally speaking, as the number of grains becomes larger, the load balancing be-
comes easier. In this case, the grain size tends to become smaller. A programmer divides
his problem into smaller grains and distributes them among processors to get better load
balance. But when the grain size becomes too small, the cost of %throw, or %read and
%answer_value affect overall performance significantly. It means that a programmer has
to keep the grain size larger than a certain size, which can be calculated based on the
Ythrow cost or read and %answer_value cost.

Let’s see an example of deciding a lower bound of grain size. We assume a program in
which only the synchronization grain size affects performance. Inter-PE synchronization
cost, a summation of ¥read and %answer_value cost, is 23 append-LI. When a program-
mer accepts 50% performance down caused by those costs, the lower bound of the syn-
chronization grain size becomes 23 append-LI. This means that interval of the inter-PE
synchronization should be larger than 23 append-LI to keep the performance degradation
below 50%.

There is an open problem whether the inter-PE operation cost shown in figure 2 is
too large or not, compared with the intra-PE performance. We expect that the cost

-1
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High-level Abstractions
for
Symbolic Parallel Programming

Kinson Ho

Paul N. Hilfinger

Computer Science Division
University of California at Berkeley

July 19, 1990

Abstract

This paper describes a way of making symbolic parallel programming on
shared-memory multiprocessors easier. It deseribes a toolbox of high-level pro-
gramming abstractions and data structures for writing sequential and parallel
programs with side effects. Programs writter using this toolbox will run on
uniprocessors and shared-memory multiprocessors without modification. Low-
level parallel programming issues are handled by the runtime system, which
provides good portable performance. The thesis of this research is that a small
number of high-level abstractions aze common to a large number of symbolic
programs, and that these abstractions have efficient parallel implementations.

1 Introduction

We are interested in the efficient execution of symbolic Lisp programs on shared-
memory (MIMD) multiprocessors. Lisp is being used for compilers, VLSI CAD
programs for logic synthesis and simulation, expert systems, Al programs and rapid
prototyping systems. These programs frequently take a substantial amount of time
to execute, and can definitely benefit from speedups arising from the use of paral-
lelism.

Techniques have been developed for the automatic detection of parallelism in
FORTRAN programs. Parallelizing FORTRAN compilers usually attempt to sched-
ule different iterations of a loop for execution in parallel on different processors,
taking advantage of the regularity of control flow in FORTRAN programs. These

1



Control of Parallelism A parallel program performs optimally only if the prob-
lem granularity (or parallel-serial cutoff) is chosen such that the overhead of in-
troducing parallelism (including process creation and scheduling) is justified by the
resulting performance improvement. This optimal granularity is strongly imple-
mentation dependent, and even depends on the number of processors on a multi-
processor. Ad hoc schemes have been used to determine the optimal parallel-serial
cutoff point for partitioning a problem. Measures such as the number of levels down
a tree, the number of levels of recursion, the size of the task queue and the number
of free processors are frequently used. These schemes do not generalize to other
problems, and must be hand-tuned for each implementation separately.

Compatibility of Serial and Parallel Code The source code for the serial
and parallel implementations of the same algorithm are often very different. This
creates a program maintenance nightmare, especially if the serial implementation
is still needed for portability and other reasons. For large programs this problem
may be serious enough to justify not pursuing a parallel implementation, even when
substantial performance improvements are expected.

3 Making Parallel Programming Easy

This research aims to make parallel programming easy for ordinary (sequential)
programmers, which we propose to do by making parallel programming similar to
sequential programming. In particular, we propose a toolbox of high-level abstrac-
tions for writing sequential and parallel programs. These abstractions represent
common, time-consuming operations that offer good speedup potentials for parallel
implementations. This section presents an overview of the toolbox. Details of the
toolbox are given in Sections 4 and 5.

Ease-of-use and Performance Tradeoff This toolbox is intended for sequential
programmers who need to utilize their multiprocessing hardware effectively, but are
not interested or experienced in parallel programming. It is not intended for expert
parallel programmers who are trying to achieve optimal performance on a given
platform. Most of the parallel programming issues are hidden from the programmer.
In particular, performance issues are handled by the runtime system. This toolbox
approach is analogous to the performance-simplicity tradeoff between standard cell
and full-custom styles of VLSI design.

The thesis of this research is that a small number of abstractions are common
to the solutions of a large number of problems, and these abstractions have efficient
parallel implementations.



Global:
foreach variable Vj
Vj := Uncomnstrained

foreach constraint Ci

Make-Task (Activate (Ci))

Termination condition:
No more outstanding task (activationm)

void Activate(Ci)
foreach variable Vj connected to Ci
Read value of Vj

Compute consistent values for all (unbound) connected variables
(new Vj 8) of Ci

foreach variable Vj connected to Ci
Unify new Vj (value) with SHARED (current) Vj, update (atomic)
if Vj is changed by unification

then

foreach constraint Cx (Cx != Ci) connected to variable Vj
Make-Task (Activate (Cx))

Figure 1: Fixed-Point Algorithm for Consat



7 Related Work

This section describes different approaches for executing Lisp programs on multi-
PIOCessors.

Automatic Detection of Parallelism This approach is used to parallelize dusty
deck FORTRAN programs by scheduling different iterations of a loop on different
processors, making advantage of the regularity of control flow in FORTRAN pro-
grams. These techniques are much more difficult in Lisp because of the pervasive
use of pointers, and the irregularity in data structures. Curare[8] and PARCEL(5]
are examples of systems that reorganize sequential Lisp (Scheme) programs for
execution on multiprocessors. In the absence of high-level knowledge about a pro-
gram, these analyzers are often forced to make worst-case assumptions, limiting the
amount of parallelism that can be extracted.

Paralle]l Lisp Dialects Most parallel Lisp dialects are extensions of Common
Lisp or Scheme. They provide facilities for introducing multiple threads of control,
and mechanisms for communication and synchronization. They differ as to whether
threads share the same address space, whether they may be created dynamically,
how synchronization is performed, and whether the communication is synchronous
or asynchronous.

Multilisp: Multilisp[4] introduces the concept of future, which is a placeholder
for the undetermined value of a computation. Futures are used to introduce
parallelism between the computation of a value and its use. They can be
inserted into sequential programs easily, but must be used with care in code
with side effects. It is not clear a¢ priori where they should be placed for
optimal performance.

Qlisp: Qlisp[2] provides explicit ways for the programmer to control the degree of
parallelism in a program. Qlet may be used to evaluate the variables of a
let in parallel with the evaluation of the body. Qlambda may be used for
client-server style interactions.

SPUR Lisp: SPUR Lisp supports explicit processes in a shared address space.
Processes may communicate using shared variables, mailboxes (asynchronous
communication using shared memory queues), and asynchronous signals. SPUR
Lisp mailboxes provide a convenient interprocess communication mechanism
not found in other versions of parallel Lisp.



Meta-Parallelism in Prolog*
(Extended Abstract)
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Division of Computer Science
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1 Overview

A variety of approaches toward parallelism in Prolog are under current
investigation. Many of these deal with the detailed comstruction of effi-
cient low-level machines for parallel Prolog execution (cf. [Borgwardt 84,
[Hermenegildo 86}, [Warren 87}, [Lin and Kumar 88}, [Lusk, et al. 89]).
Although these have been carefully engineered for performance, they fail to
expose at the programmer’s level the exact mechanism being used to exploit
parallelism, making it difficult for the user to understand and predict the
performance of a particular Prolog program.

The direction of the current paper adopts the viewpoint that we wish to
expose the execution model as much as possible, and even make it possi-
ble for the user to modify that execution model. This flexibility is viewed
as important, since there are many semantic models for Prolog-like lan-
guages, offering a range of trade-offs with respect to logical completeness
vs. efficiency. Thus, we present translation methods for taking source Pro-
log (having expected implicit parallelism) into Prolog endowed with simple
primitives for explicit parallelism. One means of doing this is via a meta-

"This work was sponsared in part by a gift from Texas Instruments, Inc. The author
thanks Quintus Computer Systems, Inc. for the use of Quintus Prolog, which was used to
build the prototype implementations.



for the language.

3 The Knowledge-Server Semantic Model

The "knowledge server” model for parallel execution best represents our
understanding of Prolog execution, and can be extended to incorporate par-
allelism. In this model, a Prolog program is viewed as a black box which
accepts a query in the context of its knowledge base. The query will gen-
erally be a conjunctive term containing predicate constants and individual
variables. Prolog tries to solve this query, where a solution is constituted by
binding the variables in the goal to actual values. A solution then represents
a term provable in the formal system represented by the Prolog program.

Since a query may have more than one solution, Prolog goes a step beyond
and allows additional solutions to be requested. This can continue ad infini-
tum if the set of solutions is infinite. The knowledge server model shows this
aspect of Prolog behavior by permitting the result of a query be a finite or
infinite sequence of terms. The sequence can be empty, meaning that there
is ro solution to the query. This model is similar to that of [Debray and
Mishra 88].

A denotational semantics of pure Prolog can be given based on the notion of
knowledge server. In knowledge-server semantics, each clause of a procedure
within a program defines a knowledge server. The semantics of a given
procedure is defined recursively. Given an input goal, the sequence of results
is the concatenation of the sequence of results from each clause individually.
The sequence of results for a goal input to a gingle clause is defined as follows:

e If the goal does not unify with the head, then the result js the empty
sequence,

¢ Proceed assuming that the goal is the most general instantiation of the
original goal which unifies with the head of the clause and assuming
that any bindings resulting from this unification have been substituted
within the clause.

— If the clause has an empty body, then the result is the sequence
of one term, the (modified) goal itself.



parallel combinators which are interpreted at the meta level. We has-
ten to note that programming meta-interpreters within a fine-grain
parallel implementation is not precluded.

e Executable specifications of various parallel processing interpreters
provide performance comparisons with a common technology base.

5 Conclusion

We have presented a meta-parallel approach to parallel logic programming
and discussed a variety of ways in which we feel it to be useful. These
include: elucidation and understanding of various parallelism strategies for
declarative and other languages, use of meta-interpreters as executives for
coarse-grained parallel computation, and as a point of departure for new
ways to express programs with clearly separated declarative and parallel
control components.
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1 Introduction

A number of research proposals have been made in the area of parallelizing Prolog along the lines of And, Or, and
And/Or parallelism [1,3,5,7]. The two major obstacles in executing efficiently logic programs in parallel are the control
of the proliferation of processes and the consistent binding of variables in each process. Considerable amount of overhead
is spent on resolving these issues [12,2,11]. In this paper, we do not propose a new strategy to improve resolution of
binding conflicts nor do we propose a new scheduler, but rather, we propose a parallel execution model for pure Prolog
where binding conflicts may be avoided during execution and the number of processes created is controlled during the
entire duration of execution. We turn to speculative computation for performance speedup.

2 Definition: Speculative Computation

Speculative computation is the precomputation of results or partial results of a subunit of a program before it is known
whether the computed results or partial results may be necessary. 1t is a form of eager evaluation [20] and in the case
where the result is useful and necessary for the computation of the program, it is hoped that it has been computed
already when it is needed. An example is the statement in a program:

if a then b else ¢

During the execution of the program, either the code segment b or ¢ will be executed, but before the actual execution, it
is not known whether the evaluation of a will be true or false. Speculative computation of the program will attempt to
precompute the code segments b and ¢ as much as possible either during compile time or in parallel when the program
begins execution. When the statement is actually executed, it is hoped that a performance gain can be realised over
that when no precomputation of b and c is done. Speculative computation has been used to achieve speedup in parallel
execution of processes in lisp. Osborne in [20] proposed a acheme to support speculative computation in Multilisp.
Multilisp [9] features the use of the future construct where (future X) (X is an arbitrary expression) creates a task
to evaluate X and also creates an object which will eventually hold the value of X which is called a future. Parallelism
using the future construct is possible by allowing processes to return a future as its value without waiting for it to
resolve to the final value. This is implemented in the Mul-T parallel lisp system [17].

3 Speculative Parallelism in Prolog

In this section, we propose a framework for speculative computation in pure Prolog. According to the definition in the
previous section, we need to 1) identify what is a subunit of a Prolog program and 2) the process of precomputation
that may take place. A subunit of a Prolog program is the maximum subset of all the clauses that make up the program
where the head of each clause in the subunit has the same predicate name. The precomputation of a subunit of a Prolog
progam is a form of the unfolding rule proposed in {24] and an unrecursing rule which will be described in the next
section. Before we do so, le} us give an example of a program:

append(f], X, X).
append([X|X0),Y,[X|Z2]) :— append(X0,Y, Z).

member(X, [X|Y]).
member(X,[Y|Z]) = member(X, Z).

with the query:



3.2 Model of Computation

Speculative computation results during execution when clauses are continually being unfolded and unrecursed. As
mentioned earlier, the results or partial results from the speculative process may be unnecessary during the execution
of the query. So the clauses being unfolded may be not used at all. However, we speculate that some of the clauses
being unfolded (or at least one of them) will be used eventually. When an unfolded clause is needed, it is hoped that
it would have been already generated.

Or parallel processes can be created for each alternative clause but fully unfolded and unrecursed clauses are usually
mutually exclusive to each other. Thus efficient implementation and compilation of unfolded clauses may benefit more
from the overhead cost incurred by Or parallelism. We will expand on this in section 4.

3.3 Use of Unfolding and Unrecursing Rules

The unrecursing rule is used to unfold predicates defined with one recursive clause. The partial-unrecursing rule is
used to unfold predicates defined with more than one recursive clause. An example of the latter is the split(H, L, U, B)
predicate where the list L is split into two lists U and B such that all elements in U are greater than H and all elements
in B are less than H.
split(H, [H1|T1),[H1|U1),U2) -
H1 < H, split(H,T1,U1,U2).
split(H,[H1T1),U1,[H1|U2]) :—
H1> H, split(H,T1,U1,U2).
aplit(‘l [I: I]! ﬂ)'

The two unrecursing rules are invoked to generate clauses unrecursed from depth 1 to depth N where N can be
determined during the execution or specified by the user. The unfolding rule unfolds each predicate in the body by
resolving each predicate and then unifying arguments with adjacent predicates and generates clauses with sometimes
fewer predicates and less data dependency among them. See examples later in this section. Arithmetic and system
predicates are not unfolded away.

The distinction in using the unrecursed and partial unrecursed rule is that unfolding a recursive predicate which is
defined by more than one recursive clause can result in exponential number of clauses due to the explosive combination
of the choices of clause to be unfolded. To generate the clause that may be needed to solve a goal predicate may require
a long time. The partial unrecursed rule alleviates this problem by keeping the recursive predicate in the generated
clause. This allows the process which succeeds in unifying with the generated clause to continue executing with the
recursive predicate until the goal clause is solved. Clauses generated by the partial unrecursed rule are more efficient
than the original clauses since they are partially unfolded and thus avoid additional clause invocation. It should be
noted that unfolding a recursive predicate defined by only one recursive clause results in N clauses if the unrecursed
rule is invoked for depth N. Hence, for predicates defined with more than one recursive clause, partial-unrecursed rule
is used. Speed up will not be as significant as that results from using the unrecursed rule. However, in terms of space
allocation and other implementation details, this may turn out to be more efficient for parallel execution.

It should also be noted that unfolded and unrecursed clauses do not replace the original clauses since, unless extra
information is provided, it is unknown whether the unfolded and unrecursed clauses are “expanded” to the required
depth for the entire duration of the execution of the program. We give here a few examples to illustrate the use of the
unfolding and unrecursing rule.

Example 1
The append/3 predicate is unfolded into the following clauses:

append([X], Y, [X|Y])).
append([X, X0],Y,[X, X0[Y]).
append([X, X0, X1),Y, [X, X0, X1|Y]).

Example 2
The predicate a checks if X is a member in the list Y, and if so, the list is processed by the predicate c.
a(X,Y) = member(X,Y), (Y).

member(X, [X|Y]).
member(X,[Y|2]) :— member(X, Z).



split(H,[H1, H2|T1),[H1, H2|U1},U2) :—
Hl < H, H2 < H,split(H,T1,U1,U2).
split(H,[H1, H2|T1),U1,[H1, H2{U2]) -~
Hi1>H, H2> H,split(H,T1,U1,U2).
split(H,[H1, H2|T1), [H1|U1), [H2|U2]) =~
Hl < H, H2> H,split(H,T1,U1,U2).
split(H,[H1, H2|T1),[H2|U1), [H1|U2]) -
H1>H, H2 < H,split(H,T1,U1,U2).
split(H,[H1, H2, H3|T1}, [H1, H2, H3|U1), U2) -
Hl< H, H2 < H,H3 < H,split(H,T1,U1,U2).
split(H,[H1, H2, H3|T1),U1,[H1, H2, H3|U2]) :—
Hl>H, H2> H,H3> H,split(H,T1,U1,U2).

The use of unrecursing rule eliminates the recursive call in append in Example 1, member in Example 2, double and
reverse in Example 3. The unfolding rule unfolds member and unifies its arguments with ¢ in Example 2. In example
3, arguments from the unfolded double and reverse are unified. Example 2 also shows that dependency between the
predicate member and c is unfolded away.

3.4 Order of Unfolding

We now address the issues of when to unfold and which clauses should be unfolded in our model after clauses are
unrecursed. Given a Prolog program, a Predicate Dependency Graph (PDG) is created. Each node represents a
predicate and a directed path between node a and b (<a, b>) represents dependency of the variables used in predicate
a on predicate b. An example is the following 4-queens program:

queens([X1, X2, X3, X4]) : - permutation([X1, X2, X3, X4],[1,2,3,4]),
safe([X1,X2,X3, X4]).

permutation([], [I).
permutation([X|Xs], Ls) : — delete(X, Ls, Rs), permutation(Xs, Rs).

delete(X, [X|X 3], X5).
delete(X,[Y|Y 5], [Y|Rs]) : — delete(X,Y s, Rs).

safe([]).
safe([X]Xs]) : — noattack(X,Xs), safe(Xs).

noattack(X, Xs) : — noatt(X,Xs,1).
noatt(X,[], Nb).

noatt(X,[Y|Ys),Nb) : =T isY —Nb, X\==T, TlisY + Nb, X\==T1,
Nb1 is Nb+ 1, noatt(X,Ys, Nbl).

The PDG generated from this program is:

queens <-—— permutation <-* delete
l
#———-= gafe <-== noattack <-— noatt
lavel: O 1 2 3 4

Since the PDG is a directed graph, levels can be assigned to each predicate depending on its position in the graph.
The graph also shows the order which the predicates will be executed. Levels higher than the second level will begin
unfolding as soon as execution begins. More precisely, the highest level clause will start unfolding, followed by the next
highest level, etc.. The result is unification of variables and elimination of subgoals. The first few levels of clauses can
be compiled to generate unfolded clause of depth n before execution begins.
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Abstract

This paper describes the implementation of Concurrent Utah Lisp, a language sup-
porting distributed symbolic computation. Three different implementations of the lan-
guage have been completed: one running on the BBN GP1000, another running on
networked workstations, anld a third running on the Mayfiy, a distributed memory,
twisted-torus communication topology, parallel processor under development at the
Hewlett-Packard Research Laboratories. All of the implementations of the language
have been heavily influenced by the Mayfiy architecture, as will be shown.

1 Introduction

Concurrent Utah Lisp is an evolution of the Lisp language to support parallelism with tight
coupling of control and data. The language model was in large measure motivated by the
Mayfly processor, a descendent of the FAIM-1 Symbolic Multiprocessing System[DR85].
The intent in developing Concurrent Utah Lisp (CUL) has been to provide an efficient
concurrent Lisp for distributed memory multiprocessors, in particular for the Maﬁy ar-

chitecture. The approach adopted has been to minimize the addition of new syntax and

*Work supported by Hewlett-Packard Research Labs - Palo Alto.



between processors. For a variety of complexity and performance reasons, we have
chosen to copy data between processors. Copying that is simply an artifact of the
placement of interacting objects would potentially yield different results with different

placement strategies. Hence we chose to impose copying semantics at the language

level.

Architectural Support — The decision to avoid implementing external data pointers was
based in part on the expectation that concurrent Lisp would always be run on generai-
purpose processors (or at least not on special-purpose processors with support for
runtime detection and resolution of external references). It was expected, however,
that support ezternal to the processor would be available to absorb some of the cost

of communications.

Although we have introduced copying semantics at the inter-object level, CUL is not
intended to be a functional langnage. The objects themselves can be shared, albeit in a
mutually exclusive manner. This sharing is accomplished through the exported interface,
which in CUL is defined in terms of closures. Thus, when a closure is transmitted from
one domain to another, it cannot be copied, sinﬁe this would be tantamount to copying the
entire object and would preclude sharing of objects. Rather, the closure is transformed into

a gateway, which is an executable object that implements monitor-like access to the shared

closure.

1.2 Global Values.

Another major divergence from standard Lisp semantics involves CUL’s treatment of global
values. The language supports only single assignment of global values. Current implemen-
tations employ broadcast of these values to replicated symbol tables on each of the physical
processors. The language also specifies that global values may not be destructively modified.
The interactions of such modifications with copying semantics and with the distribution of
such modifications would require so much mechanism as to make any use of globals pro-

hibitively expensive,



each PE contains a communications processor (the Post Office)[SRD86], a dual ported data
cache, twin instruction caches, two uni-directional hardware queues, and a set of context
caches. '

All message overhead is absorbed by the MP (except for the context switch required to
move a task from the EP to the MP). This includes copying the message out of “Lisp space”
into a message, packetization, and transmission for sending messages, and the analogous
functions for receiving messages. The MP also creates and destroys tasks and performs
scheduling duties.

The EP performs only application evaluation; whenever a message must be sent or a
synchronization action performed, the EP switches out of the current application task and
adds it to a hardware queue serviced by the MP. The EP then begins evaluating the next
available task, supplied to it from the MP by means of a second hardware queue. To
minimize context switch time, each task has associated with it one of the context cache
blocks (a special purpose memory). Task private variables in the CUL implementation are
assigned slots in the context cache; thus a context can be switched in just a few cycles by
changing context caches. Examples of context cache-resident values are the heap allocation
pointers. The context blocks are also used for passing arguments and results between the
EP and MP.

The data cache consists of four sets. Two sets are handled as “private” to a particular
processor (one each for the EP and the MP). A “private” set is not accessible to the
other processor. Both these private sets respond only to the (same) particular portion of
the address space reserved for “task private” data (e.g., stacks). The other two sets are
managed as a 2-way, set associative cache.

The Mayfly architecture is intended to achieve high utilization and efficiency. It attempts
to achieve this in three ways:

e by overlapping message overhead with evaluation of application code;
e by providing fast context switching to minimize required task granularity;

e by supplying sufficient interprocessor message bandwidth to prevent PE starvation.



2.3 Memory Management

The choice of copying semantics has had mixed results in its effect on memory managment
for CUL. The encapsulation of data within domains provides the opportunity for very fast
garbage collection within the “mini-heaps” thus created. This effect is enhanced by the
encapsulation of all global data within a distinguished domain: the symbol table ceases
to be a root for tracing in the process of collection for all other domains, dramatically
decreasing the amount of work involved in a collection. Encapsulation also ensures tha..t
garbage collections need not be system-wide events, avoiding one requirement for global
synchronization.

A further advantage to disjoint heaps accrues during the process of “lispifying” messages
(copying them into the Lisp heap). The MP can gain exclusive access to the target heap; No
global garbage collections exist to interfere (or require synchronization) and tasks running in
other domains are free to execute (and allocate and garbage collect) on the EP, concurrently
with the MP's copying activities.

Offsetting the benefits of encapsulation, though, comes a need for mechanisms to support
export of placeholders and “gateways” (closures). This mechanism entails use of import and
export objects and tables of indirection pointers to export objects. Together, these make it
possible for tasks on one node to refer to objects existing on another node. These objects
are managed using reference counts. The possibility exists that circular refences can result
in persistence of unreachable objects. In addition, the maintenance of these reference counts
does entail communicating changes in the counts to the owners (possibly on other nodes)
of the referenced objects.

Finally, another level of storage management is introduced to handle explicitly allo-
cated /deallocated objects. Currently a very simple buddy system (implemented at the Lisp
level) is used. The objects thus managed have included the space used for the mini heaps,
stacks and descriptor for tasks, export objects, and message buffers. Allocating all objects
from a single space has the advantage of avoiding fixed and possibly unbalanced dedication
of space to any particular use. The micro kernel can invoke the buddy system allocators
deallocators, though the cost is rather high because of the differing function calling and

register use conventions of Lisp and C. For this reason, some micro kernel allocations now
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Abstract

Speculative parallelism arises frequently in many symbolic computations. It is the paral-
lelism between two sub-computations, only one of which may be necessary to complete the top
level computation. Many Artificial Intelligence computations involve problems for which many
solutions are possible, and any one solution is adequate. We present an overview of our work
on two different domains - state-space search and Logic Programming - that involve speculative
parallelism.

1 Introduction

Consider the parallel execution of a heuristic search computation, where one is interested in any
one of the possibly many solutions. Although searching alternate branches of the search tree may
seem to be an obvious and highly parallel approach, it turns out to be quite tricky to get consistent
speedups. We have developed a technique that uses priorities that ensures consistent (from run to
run) speedups which increase monotonically with the number of processors (i.e. without anomalies).
This parallel scheme was implemented using the Chare-Kernel parallel programming system {3],
and shown to yield excellent speedups. The scheme was further extended to apply to the iterative
deepening A* (IDA*) algorithm [7).

Substantially different extensions were needed to apply this technique in a process based OR
parallel execution of Logic Programs {2], due to the way the OR tree gets mapped onto the process
tree. We will summarise these techniques. Adding AND parallel execution, and dealing with
distributed memory machines add new dimensions to this problem. We will describe our preliminary
efforts in this area.

2 State-Space search

In a state-space search problem, one is given a starting state, a set of operators that can transform

one state to another, and a desired state. The task is to find a sequence of operations that transform

*This research has been supported in part by the National Science Foundation under grant number CCR-89-02496.
tAddress from Sep. 1990: Dept. of Computer Science, Oregon State University, Corvallis, OR-97330



facilities. With this, were able to obtain very good speedups for many depth first search problems.
Other work on dynamic load balancing for this problem includes that of Kumar and Rao [12, 8].

When one is interested in any one solution, this parallelization technique leads to problems. If
we search two successors of a state (assume there are only two for simplicity), the solution may
lie in the sub-tree of either node. If it lies in the sub-tree of the first node, the work under in the
second sub-tree will be wasted. Exploring the two subtrees in parallel is thus speculative - we may
not need both those sub-computations. This fact, and the resultant speedup anomalies were noted
in a branch-and-bound search which is closely related to depth-first search, by Lai and Sahani [9]

Orne may get deceleration anomalies where adding a processor may slow down the search process
in finding a solution. This may happen because the added processor may create some “red herring”
work that other processors wasted there time on. In extreme cases, this may lead to detrimental
anomalies, where p processors perform slower than 1 processor doing the search. It is also possible
to get acceleration anomalies: a speedup of more than p with p processors. This can happen because
the added processor picked a part of search tree that happened to contain the solution. Kumar et
al noted this in the context of parallel depth-first search. they reported a speedup varying between
2.9 to 16 with 9 processors for a 15-puzzie problem [12].

We started with the dual objectives of (1) ensuring that speedups are consistent - i.e. do not
vary from run to run and (2) ensuring that the speedups increase monotonically with the number of
processors, preferably being as close to the number of processors as possible. With that objective,
it is clear that all the work that is done by the sequential program is “mandatory” whereas all the
other nodes not explored by the sequential algorithm are “wastage”.

Our scheme, described in [15] is based on bit-vector priorities. Each node in the search tree is
assigned a priority. Priority bit-vectors can be of arbitrary length, and their ordering is lexicographic
- the lexicographically smaller bit-vector indicates higher priority. The priority of the root is a bit-
vector of length 0. If the priority of a node is X, and it has k children, then the priority of the i'th
child is X appended by the [logk]-bit binary representation of i. (Thus, if a node with priority
01101 has three children, their priorities will be 0110100, 0110101, and 0110110, from left to right.)
It can be shown that lexicographic ordering of these priorities corresponds to left-to-right ordering
of the nodes in the tree. To be sure, there is a loss of information in the bit-vector representation: A
node with priority 0110110 may be at level 7 of a binary tree, or level 3, with the top-level branching
factor of 2, and the next two (grand-parent and parent of this node) with a branching factors of 7
and 5 respectively, among many other possibilities. Fortunately, this loss of information does not
destroy the left-to-right ordering in a specific tree, and saves much in storage and comparison costs

over a scheme that assigns a fixed number of bits to each level.



factor, the duplication cost is at most 100%, which is tolerable considering the significant memory
savings.

As each iteration of IDA* is a depth-first search, it can be parallelized using the techniques
described above. Kumar et al in [12]. were the first to demonstrate parallel schemes for this
problem. Their results did exhibit speedup anomalies, and they reported speedups to all solutions
(as their primary interest was to demonstrate the efficacy of their load balancing scheme). Note
that there may be multiple optimal solutions in the last level. Even when there is one, it may bfe
found before the whole tree up to that level is explored. Thus the notion of speculativenass prevails
in this context too.

Our prioritization techniques described above were successful at getting consistent and mono-
tonic speedups for this problem. However, the speedup with these techniques alone are not as high
as they could be, (although for each iteration, we obtained close to the best possible speedups).
The difficulty is that the parallelism in this problem increases and decreases in waves with each
iteration. At the beginning of each iteration the parallelism is low. It increases quickly to occupy
all the processors, and then trails off toward the end of the iteration. A substantial improvement
~ was obtained by allowing multiple iterations to run together. This has to be done with some care,
as work in iterations beyond the iteration containing the optimal solutions contributes further to
wasted work. This was handled by assigning a non-empty increasing bit-vector priorities to the
root nodes of successive iterations using an interesting encoding scheme. (See {4] for details.).

This encoding scheme solves the problem of assigning increasing priorities to successive roots,
without knowing an upper-bound on how many iterations there will be. The encoding must also
ensure that each node in one iteration receives higher priority than all nodes in the next iteration.
With that, we were able to “soak up” the computing resources during the previously idle periods

without increasing the wastage, and produce almost perfect speedups even for small-size problems.
3 Logic Programming

A Pure Logic Program is a collection of predicate definitions. Each predicate is defined by possibly
multiple clauses. Each clause is of the form: H : —L,, L,...L,, where the L;’s are called the body
literals. (A literal is 2 predicate symbol, followed by a parenthesized list of terms, where a term
may either be a constant or a variable, or a function symbol followed by a parenthesized list of
terms). A clause with no body literals is called a fact.

A computation begins with a query, which is a sequence of literals. A particular literal can
be solved by using any of the available clauses whose heads unify with the goal literal. In the

problem-solving interpretation of a Logic Programs, each literal corresponds to a {sub) problem,



literals. For example, consider a clause with four literals, with the dependence graph represented
by:

R(I,TY : = p(I,X) = (¢(X,Y) [/ (X,2Z)) = s(Y,Z2,T).

when an instance of this clause is activated, an initial binding tuple with I bound to some value,
and other variables unbound, is created. One OR process for solving p with this initial binding of
I is then fired. For every value of X returned by p, one g and one r process is fired immediately.
Thus there may be multiple ¢ (and r) processes active at one time. Each value of Y returned by q
is combined with compatible values of Z (i.e. those that share the same X value) returned by the
corresponding r process, and for each consistent combination, a s process instance is fired. Each
OR process, given an instantiated literal, simply fires off REDUCE processes for each clause that
unifies with the literal, and instructs them to send response to its parent REDUCE process. Thus,
the process tree looks similar to a proof tree, rather than to an OR tree (or SLD tree). This fact
is important in understanding (as well as designing) the scheme we proposed.

In the compiled implementation of ROPM, the requests for firing processes were stored and
serviced in LIFO fashion. On (small) shared memory system, this was done using a central shared
stack, whereas on distributed memory machines, a separate stack was used on each processor, and
a dynamic load balancing scheme moved such requests from one processor’s stack to another’s.
Although this strategy resulted in good use of memory space, it had one drawback (if one is
interested in just one solution): all the solutions tended to appear in a burst toward the end of the
computation, for problems that involve AND as well as OR parallelism. It is easy to see why, with
an example. Suppose there is a clause with two AND-parallel (i.e. independent) literals, p and gq.
When the clause fires, it pushes p and ¢ process-creation requests on the stack. Assume p is on top,
without loss of generality. Literal p may have a large sub-tree, with many solutions, and so all the
processors in the system may be busy working on p. This will result in productior of all solutions
to p before any solutions to q. (Of course, toward the end a few processors will be working on ¢
while others are finishing up p). However, from the point of view of reporting first solution faster,
the system should focus attention on q as soon as one solution from p is obtained. In addition, if
there are two alternative computation-intensive clause for p, we should have the system concentrate
its resources on one clause (and its subtree) rather than dividing them arbitrarily among the two.

The solution we proposed used bit-vector priorities, with the root having a null-priority. An
OR process with priority X assigned a priority to each of its child, by appending the child’s rank
to X (as described in the section on state-space search). A REDUCE process used a more complex
method for assigning priorities. The AND parallel literals, such as p ard g in the example above,
received identical priorities. The literals closer to the end of the dependence graph received higher

7



only for OR parallel programs. A synthesis of these is needed. We are currently working on this
problem. We already have a simple scheme [14] that is sufficient to ensure consistent and linear
speedups for many AND/OR problems. Other schemes, that involve dynamic changing of priorities

are being developed and implemented.

4 Distributed Memory Machines

As mentioned above, priorities decouple scheduling from the tree representation itself. On dis-
tributed memory machines, this property is useful. We can now concentrate on how to make sure
that high-priority nodes (are more likely to) get processed before the low priority ones. A scalable
strategy involving multiple priority queues (instead of a single centralised one) has been designed
to work for large shared shared memory machines, and is being implemented. A series of strategies
are being designed, analyzed, implemented and tested for the distributed memory machines. The
preliminary results are promising. A certain degradation, compared to small shared memory ma-
chines, is to be expected because without a central quene, processors are more likely to miss the
highest priority nodes. However, we believe that such effects can be contained to a small constant
degradation, allowing us to retain the important properties of scalability, monotonic speedups and

(relative)} consistency.

5 Discussion

We have outlined some of the ongoing work already. In addition, we plan to work on many other
domains where speculative work is present. These include theorem proving, branch-and-bound
computations, game-tree search etc. Each of these domains presents a different sets of constraints
and challenges. For example, a left-to-right strategy will be harmful for game-tree search, because
it will often carry out work that is pruned in sequential alpha-beta search. Unlike the state-space
search, the wasted work is not separated by a left-to-right boundary.

The implementations of all the schemes were done in a machine independent parallel program-
ming system called Chare Kernel. It supports dynamic creation of medium grained processes that
communicate via messages and via the “specific information sharing primitives” provided in the
Chare Kernel language. The kernel also supports bit-vector priorities.

The strategies described in this paper have been embodied in software that is available for
researchers to use. ROLOG, the parallel Prolog compiler, SearchPack, a package for State-Space
search for first solution, and the Chare Kernel parallel programming system are all available from
the authors.



Killing Processes in Qlisp

Ron Goldman
Lucid, Inc.

Abstract

Qlisp, a dialect of Common Lisp, is a multiprocessing programming language which is
suitable for studying the styles of parallel programming at the medium-grain level. After
a brief description of the Qlisp language this paper discusses various issues involved in
terminating processes that are no longer useful. Various methods to identify and kill
processes are described.

1. The Qlisp Language

Qlisp, a dialect of Common Lisp, is 2 multiprocessing programming language which
is suitable for studying the styles of parallel programming at the medium-grain level.
Qlisp was initially designed in 1984 by John McCarthy and Richard Gabriel [2] while they
were affiliated with the Lawrence Livermore National Laboratory’s S1 Project. The Sl
was to have been a 16-processor multiprocessor, with each uniprocessor being a Cray-
class supercomputer. Until 1987 the only implementations of Qlisp were interpreter-based
simulators. Since late 1987 we have been engaged in implementing Qlisp [3], first on an
Alliant FX/8 parallel computer and now on an Encore Multimax. Our implementation is
based on Lucid Common Lisp, 2 commercial Common Lisp system.

Qlisp uses queue-based multiprocessing. The programmer must indicate explicitly
when parallelism is possible by inserting special parallel constructs in the program. When
a running program executes a statement specifying parallelism, it adds a collection of new
tasks to a queue for subsequent evaluation. When a processor completes a task it goes to
this queue for its next task. Basing parallelism on runtime queues means that a program
is not written or compiled for a specific number of processors. The number available could
even change during the course of a computation. Tasks need not be of similar length, since
a processor finishing a short task merely takes another from the queue.

1.1 Futures

Whenever a new process is created to perform some computation, the process will
have associated with it a special datatype called a future [1). This future is a promise to
eventually deliver the value that is being computed by the process. Initially the future
has no value and is unrealized. The future is realized when the process associated with it
finishes its computation. If some other process needs to know the value of an unrealized
future in order to perform some operation (such as addition), then it must block and wait
until the future has been realized. However many operations, such as cons, assignment,
or parameter passing, only require a pointer to the future and do not need to wait for it
to be realized.

This research was supported by DARPA under contracts N00039-84-C-0211 and DACA76-89-C-0003,
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1.3 QLET

The primary means of introducing parallelism into a Qlisp program is the glet con-
struct, which is used to evaluate a number of arguments to a let-form in parallel. Its form
is:

(qlet (:parallelp prop) ((z; arg)...(zn arg,)) . body)

The form prop is again a propositional parameter that is evaluated first. If its value
is nil, then the qlet behaves like an ordinary let in Common Lisp: The arguments
arg, ...arg, are evaluated, their values bound to z;...za, and the statements in body
are evaluated.

I prop evaluates to any non-nil value, then the glet will spawn a number of new
processes, one for each arg;, and add them to the queue of processes waiting to run. If
the value of prop is not the special keyword :eager then the process evaluating the qlet
will wait until all of its newly created child processes have finished. When the values
for arg, ...arg, are available, the parent process will be awakened, the values bound to
Z; ...Zn, and the statements in body evaluated.

The following is an example of one way to write parallel factorial using qlet:

(defun pfact (n depth)
(labels ((prod (m n depth)
(if (= m n)
m
(let ((h (floor (+ m n) 2)))
(qlet (:parallelp (> depth 0))
({(x (prod m h (- depth 1)))
(y (prod (+ h 1) n (- depth 1))))
(* x )N
(prod 1 n depth)))

Note that labels is a Common Lisp construct used to define locally named, mutually
recursive functions, in this case one called prod. This internal function prod computes the
product of integers from m to n inclusive. It does this by dividing the interval m-n into
two approximately equal parts, recursively computing the products of the integers in those
two intervals, and then multiplying the two results.

The cutoff depth is used to control the number of processes created. Because two are
created for every recursive call in prod, at most 2depth+l _ 9 processes will be spawned.
Notice that the propositional parameter to glet simply looks at the value of depth.

In the case that prop evaluates to the special keyword :eager then the process evalu-
ating the qlet will not wait for the processes it has just spawned to complete the evaluation
of the arguments arg, . .. arg,,. Instead, it will bind each glet variable, z; ... zn, to a future
and then proceed to evaluate the forms in dody. If in evaluating body the value of one of
the qlet variables z; is required, the process evaluating the glet will wait for the spawned
process computing arg; to finish. If the value has already been computed, no waiting is
necessary.



1.5 Process Synchronization

Qlisp also provides a number of lower-level constructs such as locks, events, and
semaphores to allow the programmer to specify explicit synchronization among processes.
As we continue to improve Qlisp it is hoped that new higher-level Qlisp constructs will
obviate the need for programmers to use the low-level locking functions.

2. Killing Processes

Because Lisp programs (and symbolic computation in general) are highly recursive,
they can very easily generate a large number of parallel tasks—the opportunities leap out.
Because any real multiprocessor will have only a finite number of processors, and because
the cost of creating and maintaining a new process is non-zero, all Qlisp constructs have
a parameter that can be used during runtime to limit the degree of multiprocessing. We
need only enough parallelism to keep all the available processors busy.

It is not enough to limit parallelism only at the time that processes are created. It is
also necessary to get rid of processes when they are no longer useful. Each process we create
consumes system resources and for efficiency we would like to elirninate a process as soon
as it is no longer contributing to the overall computation. For example, when searching a
large tree, once one process succeeds any remaining processes can be terminated. However,
determining when a process is superfluous is non-trivial.

The traditional way that Lisp reclaims resources that are no longer being used is via
garbage collection. When it can be determined that no pointers exist to an object in
memory, then that memory can be reclaimed for later use. Similarly when no pointers
exist to a future, then the value of that future is no longer accessible and there is no point
in continuing to work on computing it, so any processes associated with the future can
be killed?. A process closure can likewise be killed when there are no longer any pointers
to it, provided that it has completed all of the previous calls to it. There are several
problems with relying on garbage collection to kill no longer needed processes. First,
garbage collection does not occur frequently (one hopes), so the interval can be quite long
between when a future is no longer pointed to and when the process computing it is actually
killed so that it is no longer using system resources. Second, if a task was spawned for effect
no pointer to the associated future may ever be retained, as the value will never be used.
If a computation is known to be done for its side effects, then the keyword :for-effect can
be added to the parallel specifier list of the Qlisp form that created the future so that the
future is marked as not being subject to garbage collection. For example

(spawn (:parallelp t :for-effect t) (call-for-side-effect))

There is also the function execute-for-effect which takes a process or future as its ar-
gument and marks it so it will not be garbage collected. This way it is not necessary to

2 When a process is killed, before it goes away, it first runs any cleanup forms established by the Lisp
construct unwind-protect. While executing these cleanup forms the process is not allowed to create any
new processes using spawn or glet; it is as if the :parallelp argument is always forced to be nil.



glambda process closure does a throw, the catch frames of the process that called the
glambda are searched rather than those in the process that created the glambda.

When a throw affects several processes, they are all killed simultaneously. They all
begin executing any cleanup forms and then go away; parent processes do not wait for
their children to finish dying.

Exception handling can also cause processes to be killed and is treated similarly to
throw.

Another way we are investigating to identify when processes can be safely killed, is to
have the programmer indicate the processes involved in a computation, so that when it is
finished or no longer needed, all the processes associated with it can be terminated. We
are considering two approaches to this: heavyweight futures and process groups.

2.1 Heavyweight Futures

The construct glet is an example of AND-parallelism—where there is a set of tasks
to do and all of them must be completed. We also need a way to specify OR-parallelism—
where there is again a set of tasks, but now when the first task is successfully completed, the
other tasks can be abandoned. The initial design of Qlisp proposed to do OR-parallelism
by combining glet with the explicit killing of processes. This will work, but the resulting
code often seems unnecessarily awkward and unclear. We now feel that providing Qlisp
constructs to directly express AND/OR-parallelism will result in higher quality Qlisp pro-
grams that will be easier to write and will more clearly communicate the programmer’s
intent.

To do this we generalize the notion of a future to allow several processes to be as-
sociated with it, along with a combining function. As each process finishes, it calls the
combining function with the value of the form it has just finished computing. When all
of the processes have completed, the future will be realized. For example if the combining
function is 4, then the sum of all the values computed by the associated processes will be
the value of the future; if it is max, then the maximum value returned by the processes
will be the future’s value. OR-parallelism is accomplished by also associating an end test
predicate with the future: When the value computed by a process satisfies this end test,
then the future will be realized immediately, and any processes associated with the future
that have not yet finished will be killed. We distinguish between a simple lighiweight future
whose value is computed by one process, and the more complex heavyweight future where
several processes are involved in computing the value of the future.

Heavyweight futures are created by using an extended definition of spawn, which
accepts arguments to specify a combining function, an end test, and multiple forms to
be evaluated. Additional processes can be added to a heavyweight future by passing the
same future to several calls to spawn. The following illustrates this. The problem is to
find the minimum for a function of one real variable within a given interval. The strategy
is to break up the interval into n equal subintervals and to have each process search its
subinterval for a local minimum. The mesh should not be any finer than the value supplied
by the parameter delta.






An AND-Paralle] Distributed Prolog
Implementation

Ian Olthof*
July 23, 1990

1 Introduction

Few logic programming langnages designed to exploit AND-parallelism sup-
port both full parallelism and nondeterminism. Most languages either limit
the amount of parallelism (specifically, independent AND-parallel models like
RAP [Degr 84]) or restrict nondeterminism to the “don’t-care” variety (con-
current logic programming languages like Concurrent Prolog [Shap 83), GHC
[Ueda 85], and PARLOG [Clar 86]).

The problem that these and other AND-parallel languages face is that
of handling parallel backtracking, specifically among goals that share vari-
ables. Both approaches “solve” the problem by preventing its occurrence:
the concurrent or committed-choice languages by disallowing backtracking
of a shared binding; the others by disallowing the parallel execution of goals
sharing a variable, thus simplifying backtracking.

Backtracking in the presence of shared variables can be done, and at a
reasonable cost. The key to accomplishing this is to impose some (total)
ordering on the goals in the search tree and to establish binding precedence
based on that ordering. (In fact, sequential Prolog imposes just such an
ordering temporally - specifically, a depth-first ordering.} A goal with lower
binding precedence will be backtracked before one with higher precedence.
Only when a lower-precedence goal can find no more solutions does it require
a higher-precedence goal to backtrack.

*Department of Computer Science, The University of Calgary, 2500 University Drive
N.W., Calgary, Alberta T2N 1N4, Canada. ph: (403) 220-7194, (403) 245-0676; email:
clthof@cpsc.ucalgary.ca



¢ to provide a base upon which a number of optimizations can be built,
tested, and evaluated.

As it exploits stream AND-parallelism, the interpreter requires some form
of interprocess communication facility to pass information about variable
bindings between processes. For generality, the system was designed to
use message passing so it could run with little modification on a loosely-
coupled multicomputer or a shared-memory machine, as well as the system
of networked Sun-3s on which it currently runs. Jipc [JADE 85] was chosen
as the message-passing subsystem for its stability, reliability, and ease of
use.

The use of JIPC does, however, constrain the Prolog system. Since JiPc
runs under UNIX, JIPC processes are effectively UNIX processes; thus, the
system was designed under the assumption that processes are heavyweight
entities. Rather than having every goal become a process, only particular
goals do so (specifically, those designated as paralle] in the text of the input
Prolog program). Because of this, the parallelism available is lessened, but
the overhead of process creation and scheduling is drastically reduced. Goals
that are (largely or wholly) mutually independent, as well as goals in a
producer/consumer relationship, can be run in parallel with only minor
annotations: the clause

p(X) :- q(Xdep1, r(X).

indicates that when the head p(X) is unified, q(X) should be run as a sep-
arate process; r(X) is executed as part of the original process.

The system can also take advantage of another form of annotation to
prevent wasted execution: delays. These delay annotations take a form
similar to NU-Prolog’s when declarations [Thom 88), although they are cur-
rently only implemented as triggers {ie. no structures are allowed in the
declarations, only variables). For example, the declaration

?- p(A,B,C) when A and B or C.

allows a goal p/3 to be unified only if its arguments are sufficiently instan-
tiated: either the first two arguments or the last argument must be bound
to a nonvariable.

Beyond these annotations, parallelism is completely transparent to the
user; further, no preprocessing is necessary before running a program.



e it must cancel outgoing messages whose timestamp is greater than the
given time;

e it must restore its internal state to what it was at a time just before
the given time.

Clearly, then, some form of state-saving is necessary. A Time Warp process
uses three queues to do this: an input queue (IQ), and output queue (0Q),
and a state queue (SQ). The IQ contains (in timestamp order) incoming
messages for the process. The OQ holds negative copies of all messages
sent out by the process; a message is cancelled simply by sending out its
corresponding anti-message. The SQ contains “snapshots” of the process
at various virtual times; the internal state can be reconstructed using these
snapshots.

Receipt of an anti-message may also cause a rollback. If its corresponding
positive message is on the IQ but not yet received, the two messages can just
“annihilate” each other; if the positive message has been recejved, the system
must perform a rollback to the time of that message before annihilation may
occur.

Given this description, it is clear that the mechanics of Time Warp are
well suited to a Prolog system. When a variable is bound, a positive “BIND"
message is sent; when backtracking a binding, a negative *“ANTI-BIND"
message is sent to annihilate the BIND. The state queue can be implemented
quite nicely as part of the backtrack trail; so too can the output queue, since
output messages are coincident with variable bindings. The input queue
must be kept separate, since the trail can contain only “received” messages.

The only addition that is needed is a FAIL message, so a lower-precedence

process that has exhausted its search tree can cause a higher-precedence pro-
cess to backtrack.

4 The Message-Passing Subsystem

One drawback to using the Jipc subsystem is that it is a synchronous proto-
col in which a process sending a message is blocked until the receiver replies.
The Prolog system requires an asynchronous protocol, allowing a process to
resume execution immediately after sending a message. Thus, some form of
mediation is required between the two systems.

In this implementation, such mediation is handled by ear processes -
Jipc processes whose purpose is to make communication between interpreter



Because of the delay conditions for =/2, dereferencing is greatly reduced:
A — 5B — 5;C — 5.

The optimization comes as a side benefit: long dereference chains are no
longer necessary — a variable can be dereferenced in no more than three
steps.

The second optimization involves trying to avoid rollback on receipt of an
out-of-order BIND message. Instead, the system should first check whether
or not the binding is compatible (noncontradictory) with the other bindings
to date. If the binding is indeed compatible, there is no need to perform
a rollback. Even if there is a conflict, it may not be necessary to roll back
all the way to the time of the out-of-order BIND; some other BIND with a
later timestamp may be at fault. This optimization should prove to be of
major benefit to the performance of the system: current testing has shown
that many “wasted” rollbacks are occurring.

The third optimization attempts a similar tactic to handle ANTI-BINDs:
when a binding is retracted, it may be advantageous to retain the current
execution path, particularly if it would just be recreated. This is more
complex than the BIND optimization, however, since previously-rejected
paths will have to be retried. (When a new binding is added, a path that
failed previously will still fail; this is not necessarily the case when a binding
is removed.)

6 Testing and Evaluation

Currently, a version of the system that implements the dereference optimiza-
tion (but not the others) is being tested. When it becomes more stable and
the statistics start looking meaningful, the BIND optimization will be put
in and that version tested. The ANTI-BIND optimization, being more spec-
ulative and more complex, will likely not go beyond the algorithm design
stage.

Statistics from the system will be compared with those from a sequential
version of the system (or from the parallel system running on input programs
that are free of parallelization annotations). Statistics gathered will include
the following;:

¢ running time — no earth-shattering execution times are expected here,
since the code is interpreted and communications are fairly slow. Still,
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Abstract

OM is a virtual machine for OPAL, a simple logic programming
language based on the AND/OR Process Model. This working paper
describes the methods to organize processes and messages, and ocut-
lines two approaches to reducing the process management overhead:
efficient implementation of task switching, and optimized communica-
tion patterns in the tree of processes. The paper also describes how the
scheme will be implemented on nonshared-memory multiprocessors.

1 Introduction

In 1987 Dave Meyer and I designed an abstract machine for parallel pro-
grams of the AND/OR Process Model. The machine is named OM, for
OPAL Machine.! Our goal was to design a machine that would support
our parallel model much the same way the WAM supports Prolog, mainly
by making unification and control more efficient by doing much of the work
at compile time. The next year we had a version that was running OR-
parallel programs, but was very inefficient in several areas. A few months
ago we finished a new implementation which includes AND-parallel control
and addresses most of the problems in the earlier implementations.
Process management remains a critical issue in the latest machine. The
AND/OR Process Model is an Actors style model, in which independent

1QPAL stands for Oregon Parallel Logic.




The basic cycle in the execution of a logic program is for a processor
to get the next message from its local message queue, install the process
that will receive the message as the current process, and then execute a
sequence of OM instructions that implement the process transformation.
Some of these instructions will create messages for other processes. These
instructions trap to the kernel, which determines whether the recipient is
local or not. Messages to local processes are added to the end of the local
queue, but nonlocal messages are forwarded to the kernel on the node where
the process resides.

The state of an OM processor is defined by sixteen registers. Several,
such as the program counter and instruction register, are self explanatory.
The E, A, R, and S registers point to stack frames, which are contiguous
vectors of terms. These registers are used in unification in the head of
a clause. The two registers which are of most concern to this paper are
the P and M registers, which hold pointers to the current process and the
message that triggered its execution. We use a notation in which either
symbolic names or integers are used to index portions of a structure pointed
to from a machine register. For example, P{self] refers to the process ID
of the currently executing process, and P[desc[2]] is the ID of the second
descendant of the current process.?

One of the fields of each process is the address of the virtual machine
code that implements process transformations. At the head of each process
is a vector of “port” instructions, which are always arranged in the same
order and indexed by message type. A process handles a message via a
branch to the port instruction for that type of message.

A task switch consists of pulling a message from the front of the message
queue and putting a pointer to it in the M register. Then the state vector
of the process that will handle the message, which is identified by M[to],
the “to” field of the message, is put into the P register. The last step is to
set the program counter PC to the address of the port instruction, which is
the address of the code for this process indexed by the type of this message,
i.e. Plcode] + M[kind]. The port instruction will restore more machine
registers as they are required. For example, when an AND process receives
a success message, the and_success_port instruction restores the current
process environment by putting a pointer to the environment into the E

2The notation used in the implementation depends on the programming language being
used. For example, in the current C implementations, the macros Self and Desc(i)
expand to p=>p.self and p->and.desc[i].id, respectively



3 Implementation of Task Switching

The newest implementation of task switching is a straightforward implemen-
tation of the method outlined above. Processes are arranged in an AND/OR
tree, where a pointer to a node is a four-tuple <PE,state,address,key>.
The PE field is the unique ID of the processor that owns the node, which is
not necessarily the processor that created it. This field is used when routing
inter-PE messages. The state and key fields can be ignored for now. The
address field is the local heap address of the state vector of the process; it
is this address that gets loaded into the P register of the machine.

Each message has at least two of these process ID structures, identifying
the sender and recipient of a message. Other process IDs, used for contin-
uations, will be described below. Since a message contains a direct pointer
to the process, and the process contains the address of the code to that will
process the message, the first level (process-independent) task switching is
straightforward:

M := next_message; /* trap to 0S routine */
P := M[to[addr]]; /» address of recipient */
PC := P[code] + M[kind]; /* address of port instruction »/

The next_message procedure is defined at the OS level, and simply unlinks
the next message from the front of a queue. If there are no messages, it traps
to a kerne] routine which waits until work (in the form of a message for an
existing local task or a new task) arrives from another node. In those cases
where there is a message in the local queue, the task switch is implemented
by four assignments.

As mentjoned earlier, the rest of the task switch after setting the PC
is process-dependent, and done in the port instruction that handles the
message. Some processes are very simple, and no further action is required
to restore the state, while others, like the start port of a process, require the
restoration of several environment register pointers.

In a nonshared memory multiprocessor implementation, the tree will be
spread across the local memories of the nodes in the machine. A dynamic
task allocation scheme we used in earlier implementations will be used again
in the new system. When a new process is created, it has very little state
information. We call these new states “seeds.” The start_port instruction
of a process expands a seed and initializes the state vector with information
specific to that instance, for example the number of potential descendants.



clause is a nonunit clause, the response frame is mailed to the new AND
process for the body, along with the initial environment for the process.

When a procedure call is in the middle of a clause, the argument frame
and the response frame are the same frame, and the process that will receive
the response frame is the parent AND process that is making the call. In
other words, the parent AND process is the success continuation, since it
is the process that will receive the success message from below when the
goal is solved. However, when the procedure that is being called is the last
goal in the body, the response frame is the frame that the AND process was
given by its own parent. In other words, when the new goal is solved, there
is no reason to send a success message back to the AND process, since it
will just turn around and send a success back up the tree. By sending a
different success continuation to the new OR process, it will mail its results
directly to an ancestor goal, and cut out several unnecessary messages and
task switches.

For calls to goals in the middle of a clause body, the new scheme saves
one message per call. Instead of four messages per call, there are now three:
one to start the OR process, one to start the AND process, and a success
from the AND that goes directly back to the calling process. When the goal
being solved is the last in a clause, the success message can go arbitrarily
far back in the process tree, and many more messages and process switches
are prevented.

The definition of “last call” is interesting. In Prolog, last call means
the last (rightmost) call in a clause body. However, in our AND-parallel
system, there may not be a last call in a clause. There are often situations
where an AND process might start two or more OR processes in parallel,
and then succeed when all have been solved. In these situations, none of
the OR processes can be considered a last call. The AND process has to be
a control point that makes sure all goals are solved before sending a success
back to its grandparent.

Our compiler generates data dependency graphs for every clause body. If
there is a single goal on the last level of the graph, it can be considered the a
last goal, and the OR process for this goal is started with a start_last_or
instruction. This instruction makes a new OR process and passes it the
AND process’s own response frame as a success continuation.
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one simply by backtracking up the public part of the branch. The team will only consider
working on other branches when all the work on the current branch is exhausted.

When a team runs out of or-parallel work on its branch, it asks one of the active teams
to provide it with access to another branch. Each active team maintains an estimate of the
number of live parallel nodes on its branch, known as its richness. The richest team is asked
to make all of its branch shared (known as making work public), allowing the team to start
work at the bottom of the branch. This strategy will concentrate teams in “deep” regions of ~
the or-tree, and by using backtracking, the teams should be able to find more assignments for
themselves before they need to look again to the richest team for work. In this way we can
minimise both the task switching overheads and also the amount of or-parallel “housekeeping”
work each team has to perform.

A goal of the Andorra-I system is to implement all standard Prolog built-in predicates,
preserving their sequential semantics. To achieve this, we delay the execution of a call to a
side-effect predicate until its branch becomes leftmost in the whole or-tree. We implement this
delay by allowing teams to suspend branches which are not leftmost. There are some special
predicates, for example those used in the implementation of bagof, where it is sufficient to
ensure that the branch is leftmost within a subtree.

To preserve the sequential semantics, 2 cut or a commit will not go ahead if there is a
chance of it being pruned by a cut with a smaller scope. In the present implementation we do
not maintain information on branches being in the scope of a cut. We ensure the semantics
of cut and commit by delaying their execution until they are leftmost in the proper subtree,
which means that currently commit is implemented as a cut. The most recent interface
provides information about the presence of pruning operators in clauses. We plan to use this
information to improve the implementation of cut and to implement commit properly.

When executing a pruning operator we need to prune branches, some of which may exist
as unexplored alternatives while others may already be in the process of being explored. To
prune a partially explored subtree we need to know which teams are working there. For this
purpose, all nodes have an ownership field, giving the identity of one team which is working
at or below that node. A team wishing to prune a subtree will send a cut signal to the
owner of the subtree’s root node, passing on responsibility to the owner to similarly find and

interrupt all other teams in the subtree. These teams will then backtrack out of the pruned
subtree.



3.1 Engine Speed

Table 1 compares Andorra~I/single_worker with C-Prolog to show the basic speed of Andorra~
I regardless of parallelism. The first column for Andorra-I refers to a version without support
for or-parallelism, while the second refers to the full implementation. The programs used were
naive reverse of a list of 200 elements, a Boyer theorem prover [6], a muiu theorem prover that
was taken from an idea by Hofstadter [8], and a Prolog parser. The results were obtained on )
a Sequent Symmetry.

And-parallel Full

C-Prolog Andorra | Andorra
nreverse-200 3.45 3.98 5.81
boyer 8.67 NA 8.37
muin 0.41 NA 1.15
Prolog_parser 1.15 NA 1.1

Table 1: RUNTIMES (IN SECONDS) FOR C-PROLOG AND ANDORRA

Looking at the times for nreverse we see that the and-parallel Andorra is comparable in
speed to C-Prolog. When we add in support for or-parallelism , we impose a relatively high
overhead, about 50% in average. We believe that we can reduce this overhead by further
optimisation of Andorra-I. Our system also has the added overheads of using a goal stack
and having to handle suspension.

3.2 Search space

One of the most interesting aspects of the Basic Andorra model is its ability to reduce the
search space. As an example, in Table 2 we compare the number of inferences needed in
Andorra-1I versus Prolog. We used programs for colouring 2 map, the zebra puzzle [12], two

versions of the eight queens problem, and the resource allocation program (fly-pan) described
by Bahgat [2].

Andorra-] Af’rolog
map 1047 5003

zebra 5757 19404
8queen.prolog 214918 | 383146
8queen.pandora 8496 133612
fily_pan.1 1517 10539
fly_pan_2 7800 358696

Table 2: NUMBER OF INPERENCES MADE BY ANDORRA-I AND PROLOG

The zebra puzzle deserves a more detailed explanation. Qur version is based on the CHIP
version as presented in [14]. For Andorra-I, we used an explicit representation of the domain



Number of teams
112 | 4] 6 11
queens 1(1913.7(54] 89
map 111.7|30}4.1]| 6.1
sendmoremoney | 1 [ 1.9 | 3.2 | 4.4 | 6.2
5x4x3 1/120]39]59] 103
zebra 11193343} 52
cypher 111935 (4.7| 7.1

Table 4: OR-PARALLEL SPEEDUPS

3.5 Combining And- and Or-parallelism

By varying both the size of teams and the number of teams we can assess the effects of
exploiting both and- and or-parallelism together. We did this on two programs, fly_pan and
sets. Sets is a program which computes a number of subsets from a larger set and then merges
the subsets into a single set.

Tables 5 and 6 show the speedups which were observed on these two programs. The
results for the combination of and- and or-parallelism were obtained by running the program
with all combinations of numbers and sizes of teams, the figures presented being the best time
for the specified number of processors, regardless of the organisation of teams and workers.
The same results are presented graphically in Figures 1 and 2.

Type of Number of processors

Parallelism 1 2 3 4 5 8 7 8 9 10
% Comb. and/for | 1 | 1.64 | 2.13 | 2.43 | 2.90 | 3.10 | 3.55 | 3.55 | 3.76 | 3.88
o or-Par. 1144 1165{1.83|1.87|1.99]2.04 211213 | 2.15
.0 and-Par. 111.64|2.08|2.42]265]|278)]292)299]3.01]|3.04

Table 5: SPEEDUPS OBTAINED FROM FLY_PAN_2

Type of Number of processors

Parallelism 1| 2 3 4 5 6 7 8 9 10
‘| %+ Comb. and/or | 1 | 1.71 | 2.61 | 2.89 | 3.45 | 4.52 | 4.77 | 5.35 | 5.88 | 6.17

© OT-par. 111.71|261)]221]246|3.23| 2.43 | 2.40 | 2.59 | 3.22

o and-Par. 1{1.401]| 242289 |3.26 | 3.50 | 3.74 | 3.89 | 4.04 | 4.08

Table 6: SPEEDUPS OBTAINED FROM SETS PROGRAM

We can see that in both cases the speedups when exploiting both and- and or-parallelism
are greater than the speedups achievable from either kind of parallelism alone.
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Extended Abstract
1. Introduction

A stream -based dara-driven execution model (LogDf) was proposed by Biswas
and Tseng [BiTs88) for OR-parallel and Restrictcd-AND- parallel execution of Logic
programs. This paper will cover a modified version of the model and a dataflow/ von-
Neemann hybrid architecture [BuEk87, Iann88] to support an cfficient implementa-
tion. This is not yet another architectute/execcution model for parallel exccution of
Logic programs. Our primary objective is to evaluate the performance of the LogD!
model to compare It with some of the existing parallel implementations on multiple
von-Neumann processors, In order to make a fair comparison, we have provided
minimal extensions to a RISC-like architecture for supporting the data-driven scheme
based on variable resolution macro-actors.

It was realized quite early in the LogDf project that a dataflow model with explicit
synchronization at the fine-grain instruction level [ArNi90, ItSh84] was not an efficient
scheme for parallel excution of Logic programs. This decision was based on the fact
that dataflow instruction sequencing for inherently sequential threads of computation
did not seem to provide any performance advantage. This led to the definition of the
LogDf with macro-actors to represent sequential threads of computation and explicit
data-driven synchronization for enabling the cxecution of these macro-actors. Typical
macro-actors (ie. datafiow nodes) In the earlier version represented unification, instan-
tiation. stream-Cons etc.

Experiments with the earlier version of the LogD( model and the architecture
revealed that a definition of a fixed set of macro-operators and corresponding function
units (at the machine level) denied opportunities for several compile time optimiza-
tions that could normally be performed in a WAM based parallel im plementation on
von-Neumann processors. The current version of the multi-ring hybrid architecture is
based on multiple conventional RISC-like processing elements with the additional
capability to support split-phase memory transactions with l-structure stream
memories. The processing elements are identical and have 2 fixed instruction set. The
variable resolution (grain size) macro-actors representing scquential threads are com-
piled for these processing clements using standard register optimization techniques.

t This rescarch was supported in part by Texas Advanced Technology Program Con-
tract 3128 (1988) and 3 Research Grant from Texas Instruments (1988).
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To see how a logic program can be compiled into a dataflow graph using the
above mentioned actors, lct us consider a set of clauses as shown below (arguments of
each literal are not shown),

clause 1 : pi-qr.
clause 2 : p:-s
clause 3 q.
clause 4 q.
clause § : T
clause 6 Tt
clayse 7 :
clause 8 : s,
clause 9 : t.
clause 10 : t.

Figure 1 shows a tree structure dataflow graph fepresenting nested.calls for an
execution of a goal p. In this graph "success” and “failure” of unifications have been
arbitrarily assumed to create the example. A success leaf is reached when there is no
more goal literal to be solved. For each success leaf, there is a corresponding stream
cell, e.g. cell 2, b, ¢, d. ¢ and f, which contains a pointer to solution bindings. These
cells are linked together and form a stream of solutions for the goal p. If a unification
required to enter a procedure for a candidate clause does not succeed, a failure leaf is
reached.

In a dynamic daraflow execution model, different actvations of the same dataflow
graph are distinguished by coloring of tokens flowing in the graph [ArNi90]. Different
colors are assigned to identify distinct invocations. A brief description of the token
coloring schéeme for the LogDf is essential for understanding how the return address
of a call can be passed from a Unify actor to any of its corresponding Return actors. In
the LogDf the address of a descriptor is used as a color of a token In the dynamic
datafiow execution [BiTs881. This color provides an identification of a particular
activation of a dataflow graph (e.g. invocation of a clause graph for a specific set of
input bindings). When a token activates a Unify actor, 8 new descriptor is created and
is used to store the color of the input token along with other relevant information
(including the return address). The address of the new descriptor Is used as the color
of the output token. The generated color is later used in the associated Return actor to
access the descriptor created by the Unify actor to retrieve the stored color for painting
its output token. ;
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1. The dataflow/ von Neumann architecture

In the original LogDf architecture [BITs88], each node in a dataflow graph of a
logic program is a macro-actor and is executed in functional units corresponding to
each type of macro-actor. Since the macro-operators have fixed resolutions, the sys-
tem inherits same deficiencies that plague conventional CISC architectures. Also any
specialization of any dataflow node to suit a particular invocation could not be per-.
formed duc to the fixed resolution of macro-operators. :

To alleviate these deficiencies, we adopt a system that supports variable resolu-
tion macro-dataflow execution, which represents macro-datallow nodes by threads of
instructions. The threads are executed by conventional RISC-like processing units, and
so fanctional units in a ring of the original LogDf is replaced with a set of identical
processing units.

The new architecture provides instructions that support frequently occuring types
of unifications in logic programs. Data in memories and registers are tagged to facili-
tate unification operations. The tags are checked and manipulated directly by some
specific instructions. The data-driven execution of the original LogDf model is still
supported by providing additional instructions that perform split-phase transactions on
I.Structure-like memories. i.e. descriptor, S-Stream, Vframe and List/Structure
memories. These split-phasc transactions would provide the synchronizations between
producers and consumers, and allow fast context switching during a delayed memory
operation. Figure 2 shows the organization of the new datafiow/von Neumann hybrid
architecture for a ring of the LogDf.
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code for the macro-actor. This address is sent along inside an activating token for the
actor. A frame will be allocated for the actor and the frame register will point to the
beginning of the (rame. When a context switching occurs during a split-phase transac-
tion on an l-structure memory, the content of the two rcgisters are sent along with a
request token to the memory. When the split-phase transaction has been completed, a
token with the continuation is sent back to reactivate the suspended execution, Upon
reactivation, the Iwo registers are restored with the values of the continuation and the-
execution can restart from where it left off.

Top of buffer stack

Frame register

Working ares

Buffer stack

Figure 3 ; Organization of a frame

Multiple rings of the hybrid architecture are connected by a hypercube intercon-
nection network. The communication section in each ring would provide the routing
services for the interconnection network. Instructions of the dataftow/von Neumann
Hybrid processor have been divided into the following categorics based on types of
their operations :

- §-Stream Operations

- Descriptor Opcrations

- Vframe Operations

- List/Structure Operations

- Register/Memory Operations

- Arithmetic/Boolean Operations
- Control Operations

- I/0 Operations
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scheduling stratcgy are not discussed in this paper. We will show speedup results
from the simulation based on the following configuration :

- 10 MHz clock cycle is used
- number of processors/ring is 4,

. communication delay between two adjacent rings in the hypercube interconnec-,
tion network is 2 clock cycles/ word. :

Speed ups on 7-Queen program (relative to performance on single processor in a ring)

90 -  With Heuristic = ——
80 — Without Heuristic .-
70 —
60 —
50 <
Speed l;% i
30 ~
20 -

10 =

First Solution o

All Sclutions

No. of rings

Additional results will be shown at the presentation.
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Abstract

An interesting and difficult problem facing the logic programming
community is the parallel execution of common side effect predicates
such as cut, asserta, asserts, and retract. Any system designed to ex-
ecute existing Prolog programs in parallel needs to handle these pred-
icates. In our previous work we have presented a method for the Or
parallel execution of Prolog programs with side effects. We have writ-
ten an interpreter for this system that runs on the Alliant FX/8, and
have gathered some encouraging performance data.

In this paper we briefly review our method, discussing the issues of
speculative parallelism and redundant computation as they arise. We
conclude by presenting some results gathered from our implementation.

*The work of L. V. Kale was supported by the National Science Foundation under Grant
NSF-CCR-8700988. The work of D. C. Sehr and D. A. Padua was supported in part by the
National Science Foundation under Grant NSF-MIP-8410110, the Department of Encrgy
ander Grant DOE DE-FG02-85ER25001, and a donation from the IBM Corporation to
the Center for Supercomputing Reseerch and Development. This work was undertaken
while D. C. Schr held a fellowship from the Office of Naval Research.



Figure 1 shows a three clause procedure that contains a cut. In a se-
quential Prolog system all of the alternatives from the first clause would be
tried first. If they either all failed, or successes were rejected by the user,
then the clause with the cut could execute. Hence, the cut does not effect
the clauses prior to the one in which it occurs. The second requirement for
the cut to execute is that f{X) must have a solution. If there was more than
one possible successful return from f(X), only the computation up to the
first is performed. The remainder is not performed on an invocation from
p(X). Moreover, if the cut executes, then the third clause for p is not tried.

In a parallel system executing the program of Figure 1 we might try
all possibilities for p simultaneously, and when f is invoked, try all of its
clauses as well (i.e. Or-parallel execution of p and f ). If we do this, there
might be some work done that would not have been in a sequential system.
For example, if we work through f(X) and find several solutions, then the
computation of all but the first is useless, because they will be discarded
by the cut. Similarly, if the cut is executed, then any resources devoted to
processing the last clause for p have been wasted. Because of this, some
researchers [1, 3] have proposed techniques that do not devote processors
to clauses lying below a cut. This can be restrictive when the cut does not
execute. In that case, the last clause must wait until the call f(X) has failed.

More recent work [4, 5, 2] have considered the question of speculative
parallelism as a scheduling issue. A speculative portion should be started if
there is not non-speculative work available to be done in parallel. Thus, if
there are sufficient processor resources, the third clause above might be pro-
cessed in parallel with the second. The compile-time detection of speculative
computations is an ongoing research probiem.

3 Assert and retract

The asserta, assertz, and retract predicates in Prolog allow the run-time al-
teration of a program. Used incorrectly, these can be significant impediments
to performance in sequential systems. However, in some cases they can im-
prove performance dramatically. In a paralle]l system these predicates can
similarly cause a number of dependences, seriously inhibiting parallelism.
There are cases, however, where large amounts of redundant computation
can be avoided by using assert and retract. There are also cases where an Or
parallel system using these predicates can exploit more consumer instance
parallelism than without them.



p(X) = f{X), o(Y), consume(Y,X).

q(A) :- compute(A), asserta({q(A) = ).

Figure 3: Parallelism and redundant computation

~ Processors

Name 1 2 3 4 5 6 7 8

fib.pl 1.16 | 1.13 [ 1.16 | 1.16 | 1.14 | 1.14 | 1.12
merge.pl 0.44 | 0.49 | 0.49 | 0.48 | 0.38 | 0.48 | 0.47 | 0.46
press.pl 053 | 0.59| 0.62 | 0.63 | 0.63 | 0.61 | 0.61 | 0.62
lips.pl 0.67 | 1.25 | 1.71 | 2.26 | 2.53 | 2.95 | 3.27 | 3.61
mapu.pl 0.64 | 1.23| 1.76 | 2.26 | 2.73 | 3.06 | 3.40 3.57
projgeom.pl || 0.45 | 0.77 | 0.87 | 1.01 1.08 | 1.13 | 1.21 | 1.29
q8.pl 1.01 | 1.96 | 2.82 | 3.55 | 4.19 | 4.79 | 5.29 | 5.39
regof.pl 0.28 | 0.39 | 0.57 | 0.55 | 0.58 | 0.62 | 0.61 | 0.60

bagof.pl Not available
bagofr.pl Not available

Table 1: Performance compared to C-Prolog

between consume goals. If the computation of f is relatively simple and
the computation of consume relatively long, this could reduce parallelism
considerably.

Our method allows the processing of predicates such as q whenever they
occur, and “backpatches” whenever asserts or retracts happen alter the pro-
gram. Thus, for only a slight book-keeping overhead, we are able to exploit
the parallelism present in this program. The speculative parallelism caused
by goals being processed and subsequently retracted is controlled by the
scheduler again preferring lexically earlier clauses.

4 Implementation and performance

An Or parallei Prolog interpreter that processes the standard Prolog
side effect predicates has been implemented on the Alliant FX/8, and some
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are variants of the eight queens with bagof implemented by assert and
retract.

Monkey.pl is the monkeys and bananas problem, a search problem where
a monkey tries to move a set of objects in order to reach a bunch of bananas
suspended above it. Because of the heavy use of the cut and if-then-else
constructs, this program exhibits little Or parallelism. The speedup is hence
marginal. Press.pl is an equation solver, and it also shows little modest,
in this case due to optimization to use clause indexing and many cuts.
Whereas monkey.pl begins to show some signs of processors contending for
locks, press.pl maintains a more level performance curve. This would appear
to be because less speculative work is done because the cuts appear very
early in the clauses of press.pl.

Next is the projective geometry benchmark from the workshop, proj-
geom.pl. In this benchmark we are trying to construct a perfect difference
set. On this benchmark we are able to obtain some Or parallelism from the
member predicate. Since the tests performed after this call are relatively
simple (at least in the benchmark version), the amount of OR parallelism
is somewhat limnited. We do, however, see a speedup of roughly 3 on 8
processors.

Regof.pl is a solution to the latin squares problem. We are able to extract
Or parallelism almost exclusively from the top-level branch that determines
which method to use to construct the table. The benchmark program had
several special case solutions to the problem, and the interpreter is able to
gain a speedup in this portion. Since there are a limited number of choices,
the speedup curve rapidly levels off to a constant speedup.

The last two problems are constructed using a bagof construction to
save the results of the eight queens problem. Because of the semantics of
C-Prolog retract, these could not be run under C-Prolog. The first ver-
sion, bagof.pl, calls the accumulating procedure to retrieve the results of the
computation. Because of our eager evaluation of dynamic predicates, more
processors working on the program increases the amount of speculative work
started (and hence terminated). Thus, the speedup is less than the second
version, bagofr.pl, which retracts the accumulator clause. The version used
in bagofr.pl has a speedup curve that looks very similar to the pure eight
queens problem presented in the last section.



