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Abstract

LaRCS is a graph description language which enables the programmer of paral-
lel algorithms to specify information about the static and temporal communication
behavior of parallel algorithms. The information contained in a LaRCS program
is used for the mapping problem: to assign tasks in the parallel computation to
processors, and to route inter-task messages along the links of the interconnec-
tion network. Many practical algorithms exhibit regular communication patterns
and LaRCS provides a mechanism for describing this regularity in a compact, pa-
rameterized manner. Static communication topology is expressed in LaRCS code
through node labels and simple communication functions on the nodes. Tempo-
ral communication behavior is represented by a notation we have developed called
phase ezpressions.

This paper introduces the LaRCS language and compares LaRCS with several
existing graph description languages. We introduce a new graph theoretic model of
parallel computation based on LaRCS called the Temporal Communication Graph;
and we show how information provided by LaRCS plays an important role in map-
ping.
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1 Introduction

The mapping problem in message-passing parallel processors involves the assignment of
tasks in a parallel computation to processors and the routing of inter-task messages along
the links of the interconnection network. Most commercial parallel processing systems
today rely on manual task assignment by the programmer and message routing that does
not utilize information about the communication patterns of the computation. The goal
of our research is automatic and guided mapping of parallel computations to parallel archi-
tectures in order to achieve portability and maximal performance from parallel software.

We have developed a unified set of software tools for automatic mapping of parallel
computations to parallel architectures. Qur system is called OREGAMI}, Two key fea-
tures of our system are (a) the ability to take advantage of the regularity present in both
the computation structure and the interconnection network and (b) the desire to balance
the user’s knowledge and intuition with the computational power of eflicient combinatorial
algorithms.

In this paper, we focus on one component of the OREGAMI system called LaRCS
(Language for Regular Communication Structures). LaRCS is a description language
which enables the programmer of parallel algorithms to specify information about the
static communication topology and temporal communication behavior of the computa-
tion to be mapped. The design of LaRCS was driven by the observation that many
parallel computations exhibit regularity in both static communication topology and tem-
poral communication patterns. LaRCS can be used to capture this regularity for use by
OREGAMI’s mapping algorithms.

Fig. 1 illustrates the relationship of LaRCS to the components of the QREGAMI
system, MAPPER and METRICS. MAPPER, our mapping software, is a library of al-
gorithms which map the computation to the architecture. The specific algorithm that
is invoked depends on the information provided by the LaRCS description. METRICS
is an interactive graphics tool which displays the mapping along with a range of perfor-
mance metrics reflecling load balancing, communication contention, and communication
overhead. f

LaRCS is designed for use in conjunction with parallel programming languages in

1For University of OREGon’s contribution to the elegant symmetric structures (contractions) pro-
duced by oriGAMI paper folding.
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Figure 1: Overview of OREGAMI
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which the programmer designs his or her computation as a set of communicating par-
allel processes. Candidates include OCCAM,. C*, Data Parallel C, and C and Fortran
with communication extensions. The underlying architecture is assumed to consist of
heterogeneous processors connected by some regular network topology. Note, however,
that OREGAMI is a front-end mapping tool and generates symbolic mapping directives
only. Development of back-end software to transform OREGAMI mapping directives to
architecture dependent code is beyond the current scope of our work.

Our software tools prototype is implemented in MacScheme and Think-C on a Macll
using color displays for visualization of the mapping. An updated version of QREGAMI
written in C for the Open Windows interface on Sun workstations should be available for
distribution Fall 1991. Additional information about MAPPER and METRICS can be
found in [LRG*90D].

In this paper, we discuss the features of LaRCS and illustrate its ability to describe a
wide range of parallel computations. In Sec. 2 we describe the key language features found
in LaRCS: nodetypes, comtypes, comphases, and phase expressions. In Sec. 3, we
describe the graph theoretic model of parallel computation underlying LaRCS and show
how it integrates two well-known existing models of parallel computation. In Sec. 4, we
compare LaRCS to existing graph description languages and configuration languages, and
we discuss the strengths and limitations of LaRCS. In Sec. 5, we show how information
provided by LaRCS plays an important role in mapping. In Sec. 6, we conclude by
discussing areas of on-going and future work.

2 LaRCS Overview

The LaRCS graph description language enables the programmer to describe the static
communication topology and temporal communication behavior of the parallel computa-
tion in a compact and intuitive way. In particular, LaRCS allows the user to conveniently
express any regularity exhibited by the parallel computation. We say a family of graphs
is regular if it can be parameterized and can be described by a finite set of rules the size
of which is independent of the parameter values. The design of LaRCS was guided by the
following principles:



o Abstraction. LaRCS should provide a clean abstraction to represent only those
characteristics of the parallel computation of interest to the mapping algorithms,
namely the regular communication structure, both static and temporal.

e Compactness. The size of the LaRCS description of a family of graphs should be
constant, independent of the size of the task graph. The different members of the
family should be obtained simply by appropriate instantiations of the parameters.

e Portability. LaRCS should be capable of being used with a wide variety of parallel
programming languages and with a wide range of interconnection network topolo-

gies.

e Simplicity. LaRCS should be easy to understand and use, and the language con-
structs should be natural and intuitive.

2.1 LaRCS Language Features

The LaRCS abstraction of a parallel program is a collection of processes which are in-
volved in two activities: computation and communication (message-passing). In graph
theoretic terms, processes are represented nodes and communication is represented by
directed edges between nodes. A LaRCS program consists of the following major com-
ponents: (a) the LaRCS nodetype declaration which describes the processes, (b) the
LaRCS comtype and comphase declarations which are used as templates to describe the
communication structure of the parallel program, and (c) the LaRCS phase expression
which describes the entire parallel program in terms of its temporal computation and
communication behavior. A comtype declaration describes a single communication edge;
a comphase describes a set of synchronous communication edges. A phase expression
instantiates all the edges of a parallel computation using the comtype and comphase dec-
larations, and describes the message-passing behavior of the computation over time. We
note that there is a distinction between “temporal communication behavior” (as used
here) and dynamically evolving task graphs. In our model the entire graph is known stat-
ically. We describe temporal behavior by identifying collections of edges that are “active”
simultaneously, and by the pattern of this activity. The conventional static task graph
used in the research on mapping algorithms to processors [Sto77] can be defined as the



union of all instantiated edges in a LaRCS program. The model of parallel computation
underlying LaRCS is described more fully in Sec. 3.

We now describe the components of a LaRCS program, using a parallel algorithm for
the n-body problem as an example. This algorithm was developed for the Caltech Cosmic
Cube [Sei85]. Fig. 2 gives a description of the the n-body problem and Fig. 3 gives the
LaRCS code.

1. Name of algorithm and parameters. The parameters specify the size of this
instance of the parallel algorithm. The parameters for the n-body algorithm are n,
the number of bodies, and s, the number of iterations?.

2. Attributes. The programmer may specify global characteristics of the task graph,

such as nodesymmetric or planar.

3. Nodetype declaration. A nodetype is defined by giving it a name, specifying
the number of nodes, and specifying the node labeling. Node labels can be multi-
dimensional and parameterized. For the n-body algorithm there is one nodetype
declaration of type body. The nodes are labeled from 0 to n-1. If there is only one
nodetype, the explicit declaration may be omitted.

4. Comtype declaration. A comtype specifies a single potential edge and can be
parameterized. In both comtype and comphase declarations the symbol => denotes
unidirectional message passing and <=> denotes bidirectional message passing. In
Fig. 3, there are two comtype declarations: ring_edge and chordal_edge. The
volume field of the comtype declaration is an expression which specifies the message
volume (typically in bytes) of a single message transfer.

5. Comphase declaration. A comphase identifies a potential set of edges involved
in synchronous message passing, usually by specifying a set of values for the param-
eter(s) of one or more comtypes. The comphase declaration may itself be parame-
terized and these parameters are later instantiated within the phase expression. In

the n-body algorithm there are two comphase declarations: ring and chordal.

2Note that since LaRCS is intended for static mapping, we require an estimate of the run-time pa-
rameter, s.
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The n-body problem requires determining the equilibrium of n bodies in space
(where n is odd) under the action of a (gravitational, electrostatic, etc.) field. This
is done iteratively by computing the net force exerted on each body by the others
(given their “current” position), updating its location based on this force, and
repeating this until the forces are as close to zero as desired. The parallel algorithm
presented by Seitz uses Newton's third law of motion to avoid duplication of effort
in the force computation. It consists of n identical tasks, each one responsible
for one body. The tasks are arranged in a ring and pass information about their
accumulated forces to its neighbor around the ring. After (n — 1)/2 steps, each
task will have received information from half of its predecessors around the ring.
Each task then acquires information about the remaining bodies by receiving a
message from its chordal neighbor halfway around the ring. This is repeated to
the desired degree of accuracy.

Figure 2: Task graph for the 7-body elgorithm




# LaRCS code for the n-body problem

nbody(n, s)
attributes nodesymmetric;
nodetype body
labels 0..(n-1);
comtype ring_edge(i) body(i) => body({i+1) mod n);
comtype chordal_edge(i) body(i) => body((i+(n+1)/2) mod n);
comphase ring
forall i in 0..(n-1) {ring_edge(i);}
comphase chordal
forall i in 0..(n~1) {chordal_edge(i);}
phase_expr
{{ring |> compute}**(n-1)/2 [> chordal |> compute}**s;

Figure 3: LaRCS code for the n-body problem

The comtype declaration is optional. For our example, the comphase declarations
could have been written as shown below.

comphase ring forall i in 0..n-1

{body(i) => body((i+1) mod n);}
comphase chordal forall i in 0..n-1

{body(i) => body((i+ (n+1)/2) mod n);}

. Phase expression. The phase expression describes the temporal behavior of the
computation in terms of its communication phases. For the n-body problem, the
phase expression is given by:

{{ring [> compute}**(n+1)/2 |> chordal |> compute}#**s;

Phase expressions are defined recursively below where r and s are phase expressions.

e compute is a keyword phase expression denoting a computational phase of
activity.

=]



e a single comphase is a phase expression.

e sequence: T |> s is a phase expressions which denotes sequential execution of
the phases.

e sequential repetition: r ** expr is a phase expression denoting repeated exe-
cution of r a number of times specified by arithmetic expression expr.

e sequential loop: for var =range { r } is a phase expression denoting repeated
execution of r a number of times specified by range, where var is a formal
paprameter in 7.

o parallelism: r || s is a phase expression denoting parallel execution of phases
r and s.

e parameterized parallelism: forall var in range { r } is a phase expression
denoting parallel execution of phases in r, where var appears as a parameter
inr.

Only expressions derived by a finite application of these rules are phase expressions.

2.2 Examples of LaRCS Programs

LaRCS has been used to describe a wide variety of parallel algorithms including several
algorithms for matrix multiplication, fast Fourier transform, topological sort, divide and
conquer using binary tree, divide and conquer using binomial tree, simulated annealing,
Jacobi iterative method for solving Laplace equations on a rectangle, successive-over-
relaxation iterative method, perfect broadcast distributed voting, numeric integration,
distributed dot product, five point difference operation, Gaussian elimination with partial
pivoting, matrix row rotation, and the simplex algorithm. We have found that LaRCS is
particularly well-suited to data-parallel algorithms in which all processes perform identical
operations on distributed data. Our study of the above algorithms has both influenced
the design of LaRCS as well as served as an evaluation of the expressive power of the
language.

In this section we present two additional examples of LaRCS code: a master-slave ring-
structured application and the binomial tree divide-and-conquer parallel programming
paradigm. Additional examples are given in Section 4.



Master-slave ring-structured application

A set of master processes is shadowed by a set of slave processes, both configured in the
same ring structure. Periodically, each of the master processes sends control information to
the corresponding slave process; the master and slave processes then continue to compute
independently, with each set of processes sending messages around its own ring. See
Figure 4 for a graphical representation of this computation and the corresponding LaRCS
code.

The LaRCS code for this problem illustrates the use of multiple nodetype declarations
and generic comtypes. Generic comtypes allow the user to define 2 communication struc-
ture and then to associate that structure with more than one set of processes (nodetype).
In this example, we declare the generic comtype ring and then declare two instances:
master _ring and slave_ring.

Divide-and-conquer binomial tree in LaRCS

The binomial tree has been shown to be an excellent task graph for efficient computation of
parallel divide and conquer applications [Vui87) [LRG*90a). The binomial tree is defined
recursively as follows:

e The binomial tree By consists of a single node.

¢ The binomial tree B, is formed by connecting the root nodes of two identical bino-
mial trees B,,_;. One of the root nodes is selected as the root for B,.

A 16-node binomial tree and the LaRCS code for the general divide-and-conquer binomial
tree are shown in Fig. 5. Here, the size of the binomial tree is specified by the number of
levelsin the tree. The binomial tree is labeled in postorder. The declaration for comtype
child(i,p) indicates that in phase p, each node with binary label i communicates with
the node whose label is computed by changing bit p of the binary label i from 1 to 0,
where the msb is bit 0 and the first phase is 0. This level of detail is needed to capture
the temporal behavior of the algorithm. The parameterized volume expression associated
with each comtype indicates that half of the problem is sent to each child process.



master
processes

master_slave(n, s, k) # n is the size of the fing
# s and k are iterations
nodetype master(n)
labels 0..n-1;
nodetype slave(n)
labels 0..n-1;
comtype ring(type, i) # A generic comtype, used to
type(i) => type((i+1) mod n); # define both master_ring and
# slave_ring
comphase master_ring
forall i in 0..n-1 {ring(master,i);}
comphase slave_ring
forall i in 0..n-1 {ring(slave,i);}
comphase checkpoint
forall i in 0..n-1 {master(i) => slave(i);}
phase_expr
master_ring **s |>
{checkpoint |> {master_ring**s || slave_ring**s}}**k |[>
slave_ring;

Figure 4: Master/slave ring application
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div_cong_binomial_tree (levels)
nodelabels 0..2**levels-1;

comtype child(i,p) i => i - 2%*(levels - (p+1));

volume = 1/ 2%*x(p+1); # if algorithm is Sort
comtype parent(i,p) i - 2#*(levels - (p+1)) => i;

volume = 1/ 2%*(p+1);

comphase split(phase) forall node in 0..2%*phase-1
{child(((node+1)*2**(levels-phase) -1), phase);}

comphase merge(phase) forall node in 0..2**phase-1
{parent(({node+1)*2**(levels-phase) -1), phase);}

phase_expr # split, sort, merge
for k= 0 to levels-1 {compute |> split(k)} |>
compute |>

for k= levels-1 to 0 {merge(k)|> compute};

Figure 5: Divide and Conquer binomial tree
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3 The TCG Model of Parallel Computation

The graph theoretic model of a parallel computation underlying LaRCS is called the
temporal communication graph (TCG). Both the TCG and its forerunner, the static task
graph model of Stone {Sto77], were designéd for systems in which the programmer designs
his or her program as a set of static and persistent parallel processes which communicate
through explicit message-passing. The processes are static in that they are created at
compile-time; they are persistent in that they exist throughout the lifetime of the compu-
tation. The TCG models additional information about the temporal behavior of each of
the processes, yielding a DAG representation of the parallel computation which retains
the identity of each of the (persistent) processes comprising the computation. Finally,
the TCG provides the ability to describe regularity in both the communication topology
and the temporal communication behavior. In terms of LaRCS, the nodetype, comtype,
and comphase declarations describe the static components of the TCG, while the phase
expression defines the temporal behavior.

Thus, the TCG can be seen as a hybrid of the two predominant models of parallel com-
putation: the static task graph model of Stone [Sto77], and the precedence-constrained
(DAG) mode! [Pol38] used in multiprocessor scheduling and in the parallelization of se-
quential code. Task assignment and scheduling research utilizing these two models has
more or less followed disjoint paths over the past two decades, in that techniques and algo-
rithms developed for one model have not been applicable to the other. The TCG model is
suitable for mapping and scheduling techniques from both domains. Thus algorithms for
static task assignment such as [Bok87] [BS89] [Lo88], [SER90] and scheduling algorithms
for precedence-constrained graphs such as [Pol88] [Bro86] [ERL90] can be applied to the
TCG model. The TCG augments these two models with the ability to explicitly capture
regularity, allowing the development of specialized mapping and scheduling algorithms to
exploit this regularity.

Below is an intuitive definition of the TCG. A formal definition of the TCG and
discussion of its utility in parallel programming environments is given in [Lo91].

The TCG abstraction defines a parallel computation as a collection of processes in-
volved in two activities: computation and communication. A compute phase is a set of
processes involved in logically synchronous computation. A communication phase is a set
of pairs of processes {sender/receiver pairs) involved in logically synchronous communica-

12



tion. By logically synchronous we mean that the activities occur simultaneously from the
viewpoint of the programmer, i.e. from the logical structural design of the algorithm. In
reality, when the program executes, the timing of logically synchronous activities may not
be synchronous with respect to real time, due to effects such as the hardware character-
istics of the execution environment and the multiplexing of processes on the processors.
In LaRCS compute phases are defined by the phase expression compute keyword;® com-
municalion pheses are defined by the comphase declarations. '

The TCG is constructed as follows. Because the construction involves three related
graphs, we will use the terms nodes and phase-nodes in order to avoid confusion. {a) First
consider the (static) task graph T' =< V| E' > in which nodes correspond to the processes
and directed edges to communication between processes. A compute phase corresponds
to a subset of the processes that are active in that phase, i.e. to a subset of V. A
communication phase corresponds to a subset of the communication edges, i.e., to a subset
of E. Note that there may be several compute phases and several communication phases.
(b) The phase-DAG describes the the logical temporal behavior of the computation in
terms of its compute and communication phases. Thus, the phase-DAG consists of a
set of phase-nodes in which each phase-node represents either a compute phase or a
communication phase. The edges in the phase-DAG represent the precedence relationship
among the compute and communication phases. (c) The TCG is an elaboration of the
phase-DAG, in which each phase-node in the phase-DAG is replaced by the set of nodes
or edges from the static task graph T involved in that phase.

This construction is illustrated for the n-body problem. The static task graph is shown
in Figure 6(a). There are two compute phases, (computel and compute2). The two
communication phases (ring and chordal) are represented by the solid and dotted edges,
respectively. Figure 7(h) shows the phase-DAG which, for this example, is a linear chain
of nodes. The number of phase-nodes in the chain is equal to the number of occurrences
of the phases, as specified by the parameters (n + 1)/2 and s. Figure 8(c) shows the
TCG in which each phase-node of the phase-DAG is elaborated into the sets of process
nodes and edges associated with each phase. Each (persistent) process is represented by
the (vertical} chain of nodes appearing directly below the process numbers. The (vertical)

3The next version of LaRCS will include constructs for declaration of compute phases which will be
the dual of the comtype and comphase declarations.

13
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ey~ chord  send

Figure G: {a) Static task graph, compute phases, communication phases

edges between nodes in a chain specify the precedence relationship between the sequence
of phases occurring within a single process. The other (non-vertical) edges correspond to
the precedence relationship due to the message-passing that occurs in a communication
phase. Thus, there are (vertical) directed edges from each instance of a ring node to
the 'next’ computel node for that task, a (vertical) directed edge from the (n + 1)/2*
computel node to the first chordal node, and (vertical) directed edges from each instance
of a chordal node to the 'next’ compute2 node. The message passing event implied by an
invocation of ring phase is represented by a directed edge from the the sender’s ring-send
node to the receiver’s ring~receive node. The chordal phase is similarly represented by
edges in the graph.

The TCG models both the static task graph view and the precedence-constrained
DAG view of the parallel computation. The TCG can be seen as an unrolling of the static
task graph over time. Conversely, the projection of the TCG along the time axis yields
the static task graph model. Weiglts associated with the nodes and edges can be used to
represent computation and communication costs, respectively. The means of expressing
edge and node weights using LaRCS is discussed in Sections 5.3 and 6.

We note that computations with irregular communication topology and asynchrony

14
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can also be modeled by the TCG and described by LaRCS. Any arbitrary set of commu-
nication edges can be decribed by defining a2 unique comtype for each edge. Asynchrony
is modeled by defining a comphase to include the set of communication edges for which
precedence is unknown, thereby increasing the granularity of the atomic unit used in the
phase expression. Finally, we note that the TCG model does not have the capacity to
model non-determinism, conditionals, or dynamically spawned processes although exten-
sions for the latter case have already been developed and are under review internally.

4 A Comparison of LaRCS to Other Graph Descrip-

tion Languages

A number of researchers in the area of parallel and distributed computing have designed
configuration languages or graph description languages. These languages provide a means
for describing the processes and the communication topology of a parallel (distributed)
computation. In the case of configuration languages the goal is typically the construction
of a parallel computation from modular components, while in the case of graph description
languages the goals include debugging and graphical display as well as the goal of LaRCS
which is to assist in the mapping of parallel algorithms to parallel architectures. In
this section, we compare LaRCS to Conic. GDL, edge grammars, GARP and concurrent
abstract grammars, ParaGraph and Attribute Rewrite Graph Grammars. Each of the
comparisons highlights one or two specific features of LaRCS.

4,1 Conic

The Conic distributed programming environment [MKS89], developed at the Imperial
College in London, provides tools for the hierarchical construction of distributed applica-
tions. The Conic programming language is a version of Pascal with extensions to support
modularity and message-passing. The Conic configuration language is used at compile
time to build the distributed application from smaller components by connecting the ezit
ports (.xp) of one module to the entry ports (.ep) of other modules. Conic configuration
operations include 1ink which specifies a uni-directional communication link, parame-
terized node labels, and a broadcast primitive. Fig. 9 shows the Conic and LaRCS

16



|  hypercube(d)
| nodelabels 0..(2%*d-1);
Assert n is a power of 2 . | comphase links
link family k: [0..n-1], |  forall j in 0..2%%d-1
d:[1..log2(n)] I {forall k in 0..d-1
Afk] .xp to A[NegateBit (d,k)].ep; | {j => j xor 2%xk; }}
| phase_expr links;
|

Figure 9: A hypercube interconnection in Conic and LaRCS

descriptions of the hypercube interconnection network. This example was chosen to il-
lustrate the ability of both languages to describe a static graph structure. Thus, this
example does not represent the description of a parallel computation which is the more
typical target of a Conic or LaRCS program.

o Explicit vs. implicit communication ports. Conic mandates that the pro-
grammer specify the communication exit and entry ports. Input and output ports
are implicit in LaRCS.

* Language dependence vs language independence. Both Conic and GDL (de-
scribed below) support a configuration language that is closely tied to an underlying
programming language. LaRCS is designed to be used with a variety of parallel pro-
gramming languages.

¢ Implementation. The Conic environment has been in use for a number of years
for programming of distributed system applications.

4.2 Prep-P and GDL

Prep-P is an automatic mapping system developed by Berman [SB90] at UCSD which
is quite similar to our OREGAMI system. Prep-P differs from OQOREGAMI in that the
target architecture is a reconfigurable network, currently the CHiP network [Sny82]. The
Prep-P system includes a parallel programming language ‘XX’ and a graph description

17



irregular
nodemin=1
nedecount =156

procedure ROOT
nodetype: {i=1}
port LSON: {2*i}
port RSON: {2%i +1}

procedure MID

nodetype: {i>1 && i<(15+1)/2}
port PARENT: {i/2}

port LSON: {2*i}

port RSON: {2*i +1}

procedure LEAF
nodetype: {i>=(15+1)/2}
port PARENT: {i/2}

Figure 10: GDL full binary tree

language GDL. GDL is closely tied to *XX"1n the sense that a one-to-one correspondence
exists between the procedures and ports declared in the ‘XX’ program and those used to
describe the task graph in GDL. LaRCS and GDL share the same motivation: to provide
a mechanism for describing the structure of parallel computations for the explicit purpose
of mapping. In both, the graph is described by a program that is closely related to the

computation being mapped.

In Fig. 10 we give the GDL description of a complete binary broadcast tree. The
LaRCS program in Fig. 11 corresponds most closely to the GDL program in that they
both describe a static tree configuration. In Fig. 12 we illustrate the ability of LaRCS to
capture the actual temporal behavior of the level-by-level broadcast tree.

» Temporal Communication Behavior. The example in Fig. 12 illustrates the

ability of LaRCS to describe the temporal communication behavior of a given par-

18



static_binary_tree(levels)
nodelabels 1..2+%*levels - 1;

comtype left_child(i) 1 <=> 2#i;
comtype right_child(i) i <=> 2%i+1;

comphase full_tree
forall k in 1..2%*(levels - 1)-1
{left_child(k); right_child(k);}

phase_expr # all edges active simultaneously
full_tree;

Figure 11: LaRCS full binary tree

# LaRCS5 temporal broadcast tree
level_by_level_binary_tree (levels)

nodelabels 1,.2%*levels - 1;

comtype left_child(i) i => 2#i;
comtype right_child(i) i => 2*i+1;

comphase tree_band(k) # all edges in one level
forall node in 2#*(k-1)..2#%xk-1
{left_child(node); right_child(node);}

phase_expr # edges active level by level
for phase=1 to (levels-1) {tree_band(phase)};

Figure 12: LaR(CS level-by-level broadcast tree
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allel application. Both Conic and GDL are only capable of describing the static full
binary tree. The ability to capture the temporal behavior of the communication
edges is important for OREGAMI’s routing algorithms. With the knowledge of
which edges are simultaneously active, the routing algorithms can assign communi-
cation edges to links such that contention is minimized; scheduling and multiplexing
can be coordinated.

o Node declarations. In GDL, it is necessary to define a distinct nodetype for each
process (ROOT, MID, LEAF). In LaRCS, it is not necessary to distinguish among the
nodes, although its is possible to do so if desired. These differences arise from the
fact that like Conic, GDL is tightly tied to the programming language ‘XX’ through
the procedure declarations.

¢ Edge declarations. In GDL, edges are defined implicitly through the PORT declara-
tions. Because the sender is always assumed to have the label i, the communication
function and its inverse must both he specified. In LaRCS edges are defined explic-

itly, and the sender and receiver can both be described with arbitrary expressions.

e Communication volume. LaRCS allows the user to explicitly define the unit
communication volume associated with a communication edge. In the Prep-P sys-

tem, communication volume is estimated by the compiler from the program code.

4.3 Edge Grammars

Edge grammars were introduced by Berman [Ber83], {BS84], [BS87] as a means for describ-
ing graph families and as an abstraction for use in the mapping problem. Edge grammars
define graph families by generating all the edges in the graph using conventional formal
languages mechanisms. The edges of the graph are identified by the pairs of strings gen-
erated by the productions. The vertices of the graph are implicitly identified by those
strings that appear in the pairs generated by some finite application of the productions.
Given such a grammar, the sublanguage consisting of all k-length strings generated by
the grammar defines a graph (the k-th member of a family of graphs).

Similar to conventional formal grammars, edge grammars have a hierarchy. The type
2 and type 3 edge grammars have been shown to be powerful enough to describe many
commonly known interconnection structures.
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000 100 010 110 001 101 011 111

Figure 13: Binary tree generated by type 3 edge grammar

Below are two examples of edge grammars: one for the complete binary tree and one
for the hypercube. These grammars should be contrasted with the corresponding LaRCS
code in Sections 4.2 and 4.1, respectively.

An edge grammar for complete binary trees

Berman and Snyder give the following type 3 edge grammar that generates the family of
complete binary trees {B,}. Let T’ be the edge grammar with nonterminals By, By, B, R,

terminals (0,0), (1,1),(2,2),(2.0).(2.1}. start symbol B, and the following productions:
B — R B — B(] B— B]

B — Bp By — B(0,0} B, — B(1,1)
Br = R(2,0) Bp— R(2,1) B — (2.0)
B—(2,1) 1—1(2,2) it — R(2.2
The 15-node binary tree generated by this grammar is shown in Fig 13.

An edge grammar for Hypercubes

The nonterminals are S and M, where S is the start symbol. S generates pairs of strings
that are identical in all except the last bit. and this is followed by strings generated by
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M, which generate the remaining matching bit patterns..
S — (0,00 M —(0,0)M
5—-(1,1)§ M-=(1,1)M
S5—=(0,1)M M-—ce¢
Edge grammars are both elegant and useful for graph representation and for mapping.

However, they have some disadvantages, some of which have been reported by the authors
themselves [BS89]:

o Inability to represent directed graphs. As currently defined, the grammar
does not provide any means for distinguishing between the source (sender) and the
destination (receiver) of each edge.

¢ No explicit specification of size of graphs. The size of the generated graph is
implicit since it is the number of times the productions are applied.

¢ Difficult to use. It is dilficult for the average programmer to be able to come up
with an edge grammar to describe the interconnection structure of his/her parallel
programs.

¢ Restricted contraction. When used for contraction, edge grammars are restric-
tive because they contract a given graph to a smaller graph in the same family.

4.4 Concurrent Abstraction Graph Grammars

Graph grammars consist of rewrite rules where the left-hand side of a rewrite rule is a
node in a graph, and the right-hand side is a graph along with an embedding rule of
the form L, — B,, E,. When the rewrite rule is applied to a graph, say G, the node
labelled L, in the graph is replaced by the graph B, and the remaining nodes of G are
connected to B, according to the embedding rule E,. A graph can be generated using
a graph grammar by starting with an initial node and applying the rewrite rules a finite
number of times. A form of graph graminars called Concurrent Abstraction Grammars
(CAGs) are used by the GARP system to specify parallel computations. GARP (Graph
Abstractions for Concuprent Programniing) [IXKS8] is a model of parallel computation
where tasks are spawned dynamically at runtime, and where the tasks that are spawned
have a “regular” interconnection structure. The regularity of the subgraph of tasks that

Q]
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prodection axiom production sort-body <Split, seed>
sort—abs ~> ’

Embeddings:
{Split.in — sort-absin)
(Join.out — sort—abs.out)

This program takes a stream of numbers from standard input, sorts them using
divide and conquer, and then passes the result to a standard output. The program
executes recursively: When the sort-abs agent receives a message that is not
the end-of-file object, it rewrites itself to a sort-body subgraph, passing the
message just read as a seed value to the split vertex introduced in the rewrite
rule. This split vertex passes all values received by it that are greater than the
seed through the hi port, ail other values through the 1o port, and the seed itself
through the seed port. The join agent waits for the messages on its lo, hi and
seed ports and passes the concatenation of these three messages to its out port.

Figure 14: Sort example in GARP

are spawned is described by a notation based on graph grammars. In GARP, every task
has a rewrite rule associated with it which is invoked at runtime to replace that task
(corresponding to the lelt-hand side of the rule) with a collection of tasks (corresponding
to the right-hand side). The embedding rule specifies how the newly generated collection
of tasks fits in with the rest of the task-graph. GARP provides the programmer with a
graphical representation of the computation which is useful for visualization.

An example of a quicksort using CAGs in GARP [KK88] is shown in Fig. 14. The
corresponding CAG specifies not just one graph, but a set of graphs. Which one of these
graphs corresponds to the task graph of a particular computation becomes known only at
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run time when the rewrite rules are applied and the graph is generated. A LaRCS program
also typically specifies a set of graphs, but the parameters passed to that program are
known at compile time and so the task graph of the computation is known at compile
time. One could write a LaRCS program that specifies the same set of graphs as specified
by the CAG in Fig. 14 if the program were allowed to encode this run-time information
as a parameter.

¢ Expressive power. As Kaplan and Kaiser themselves point out, there are many
graphs for which it is difficult if not impossible to specify CAGs. We believe that
this is so because of the limited options presented by the rewrite rules. Firstly, only
nodes in a graph can be rewritten, not the edges. Secondly, even when rewriting
nodes, there are only two kinds of embedding rules that can be used.

¢ Dynamically evolving graphs. CAGs (and hence GARP) allow the user to
describe dynamically evolving task graphs. LaRCS is currently restricted to static
graphs.

¢ Inability to represent temporal communication behavior. CAGs can only
be used to describe the graph of the computation (including dynamically spawned
subgraphs). However, It is not possible to specify which edges or nodes of that
graph are being used at certain points in the computation.

4.5 Aggregate Rewriting Graph Grammars

An Aggregate Rewriting{AR) Grammar is a special type of graph grammars developed
at the University of Massachusetts [BC37, BC89]. AR grammars are used to help the
programmer visually specify process interconnection structures in a parallel programming
environment. This is achieved by a graphical editor called ParaGraph. The programmer
can also annotate the interconnection structures (specified by an AR grammar) with
code written in parallel programming languages that support explicit parallelism and
interprocess communication.

An AR grammar consists of production rules which are applied to a graph called a
host graph to derive a new graph. Unlike the rewrite rules in graph grammars used in
the GARP system, a production rule in an AR grammar rewrites every occurence of a
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Figure 15: An AR grammar for binary hypercubes and some derivations

subgraph (called mother graph) with another graph (called daughter graph). The union of
the occurences of the mother graph is called an Aggregate. Nodes of mother graphs as well
as daughter graphs are labeled using a scheme defined by the user, and the edges of both
kinds of the graphs are visually defined in ParaGraph. With the help of a partial function
which maps the nodes in the daughter graph to those in the mother graph (called the
inheritance function) and a partition of the domain of that function, the user can specify
the connections between the daughter graph and the rest of the host graph. The language
of an AR grammar represents a family of graphs. Recently, AR grammars have been used
to describe some temporal computation patterns|[BCS9] such as pipeline patterns in a
systolic matrix multiplication.

AR grammars have been used to describe several well-known interconnection struc-
tures including hypercubes, complete binary trees, back trees and butterfly structures.
Fig. 15 shows an AR grammar which describes binary hypercube structures.

o Expressive power. A production rulein an AR grammar involves a node labeling
scheme and the specification of the inheritance funcntion and the partition. These
functions may be fairly complicated. Moreover, if the production rules are not

applied in a correct order, an AR grammar may generate graphs which are not
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wanted.

e Dynamically evolving graphs. In [BC89], a facility called a script is used to
denote a permissible sequence of transformations. The specification of scripts is an
additional overhead for the user.

e Hard to instantiate. The parameters of graphs in an AR grammar are implicit.
It is hard for the user to use the correct parameter(s) to instantiate the desired
graph.

e Representation of temporal communication behavior. ltineraries in Para-
Graph provide a means for describing the routing of specific data items (in messages)
through the process graph.

4.6 Summary

Table 1 summarizes the key differences between LaRCS and the configuration languages
we discussed above. Note that we ave mainly interested in the mapping problem and
hence our comparison is restricted to issues arising in this context.

Only OREGAMI and Prep-P are systems which directly address the mapping prob-
lem; thus, LaRCS and GDL are similar in many respects. LaRCS, GDL, and Conic enable
the programmer to describe the computation graph using an algorithmic formalism which
includes explicit communication [unctions. We believe this formalism is easier for the av-
erage programmer to use than the less intuitive grammar-based formalisms. LaRCS offers
the unique ability to describe the temporal communication behavior of the computation
through the phase expression. (The utility of this information for mapping is described
Section 5.) Some of the graph description languages (GDL, Conic, CAG, and AR) are
implemented within full blown programming languages or programming systems. LaRCS
is not tied to a specific programming language because our current focus is the develop-
ment of mapping algorithms applicable to a wide range of languages and architectures.
Further strengths and limitations of LaR(CS are discussed in Section 6.



LaRCS GDL Edge Conic CAG AR
Gram-
mars
System name. | OREGAM] Prep-P not Conic GARP ParaGrapl
implemented
Underlying algorithmiq algorithmiq edge algorithmic | graph graph
formalism. | grammars grammars | grammars
Directly yes yes yes no no no
addresses
mapping.
Describes tem- | yes no no no no limited
poral behavior
at compile time.
Describes  dy- | no no 1no no yes yes
namically evolv-
ing graphs.
Definition  of { implicit explicit implicit | explicit explicit explicit
ports.
Directed edges. | yes yes no yes no? no
Weighted edges. | yes limited no no no no

Table 1: A Comparison of Several Graph Description Languages
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5 The Role of LaRCS for Mapping

As discussed earlier, the mapping of a parallel computation to a parallel architecture
involves the assignment of tasks to processors and the routing of messages through the
underlying communication network. OREGAMI breaks the problem of mapping a task
graph to a target architecture into three steps - contraction, embedding and routing. In
this section we discuss ways LaRCS contributes directly to the operation of the OREGAMI
mapping algorithms. We give examples to show how the comphase declaration plays a
critical role in one of our contraction algorithms, how the comphase declarations are used
by our routing algorithms to minimize contention; and how the phase expression can be
used to derive accurate values of communication overhead and to guide estimation of
the total completion time of the parallel computation. Finally, we discuss the general
contribution of LaRCS to the mapping problem through its ability to represent families
of regular computations in a space efficient way.

5.1 Contraction Based on LaRCS Comphases

We have developed an algorithm for contracting certain highly symmetrical task graphs
in time quadratic in the number of tasks [LRGT90b]. The algorithm is based in group
theory and will yield a perfectly load balanced and symmetrical contraction whenever
the task graph is a Cayley graph. All Cayley graphs are node-symmetric graphs, and
we believe that in the message-passing paradigm it is common to partition a problem in
such a way that the task graph becomes node-symmetric. It is a well-known fact that
any quotient graph @ of a Cayley graph T is a perfectly load balanced and symmetrical
contraction of T. No polynomial-time algorithm is known that recognizes Cayley graphs
based on a general representation of the graph such as an adjacency matrix. However,
given the LaRCS description of the task graph, in quadratic time we not only recognize
whether it is a Cayley graph but also produce suitable contractions. The key step involves
viewing the LaRCS comphases as possible generators of an underlying group. Assuming
that only messages within one phase can contend for links, the resulting contraction is
symmetrical because it evenly balances both the number of processes in a cluster and
the number of messages from each phase on each link. Figure 16 illustrates our group

theoretic contraction for the 8-node petfect broadcast paraliel algorithm.
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nodelabels 0..7;
comphase comml task(i) => task((i+1) mod 8);
comphase comm2 task(i) => task((i+2) mod 8);
comphase comm3 task(i) => task((i+4) mod 8);
phase_expr-

comml |> comm2 |> comm3;

(a) Fragment of LaRCS code showing the communication types

() the task graph (b) the contracted task graph

Figure 16: Group Theoretic Contraction

Many interesting interconnection networks, e.g. hypercubes, toruses, cube-connected-
cycles, are themselves based on Cayley graphs [AK89]. We also plan to develop embed-
ding, routing and multiplexing algorithms that exploit the common underpinnings of a
Cayley task graph and these interconnection networks.

5.2 Routing Based on LaRCS Comphases

The LaRCS comphase declarations provide information that can be profitably used to
achieve low contention routing in systems with user-level control over routing. Examples
of such systems include Intel’s iWWarp Computer [ea90], the INMOS Transputer, Snyder’s
ChiP architecture, and some systems with store and forward message routing.
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The comphase declaration identifies logically synchronous communication, i.e. message
passing that can occur simultaneously at runtime. The OREGAMI routing algorithm
[LRG*90b) attempts to find a disjoint set of routes to service the set of messages belonging
to a single comphase. This is accomplished by posing the routing problem as a bi-partite
matching problem. In the bi-partite gra‘[;h that is constructed by our routing algorithm,
one partition consists of the communication edges in a single comphase and the other
partition consists of the available (shortest) routes in the network that could potentially
service these communication edges.

The information provided by the LaRCS comphase declaration enables the routing
software to focus on only those messages that are capable of actual contention at runtime.

There are several advantages to be gained by this approach:

o The likelihood of finding a routing with low contention is greater because fewer
communication edges are considered. '

o The use of contention as a performance metric for mapping and embedding is more
accurate, since we avoid measuring felse contention, i.e., when two edges are mapped

to the same link which are not active simultaneously at runtime.

e The use of the bi-partite matching algorithm avoids the contention problems of
existing default routing algorithms.

Figure 17 illustrates the routing of a 6 process computation with a single comphase
sendmsg which has been embedded in a 4 x 3 mesh. Figure 17(a) shows the OREGAMI
routing which has no contention, while Figure 17(b) shows the routing that would result

by using uninformed routing based on the iWarp machine’s default streetsign mechanism.

5.3 The Role of the Phase Expression in Computing Commu-
nication Volume

Most existing mapping algorithms, including several in OREGAMI, utilize the static task
graph and require an estimate of communication volume (edge weights.) Current tech-
niques for computation of edge weights include profiling, user estimates, and compiler
analysis of the program code. LaR(S provides a natural and convenient method for com-

puting communication volume: the phase expression can be used to derive an arithmetic
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Figure 17: Routing with OREGAMI
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formula for calculation of communication volumes given the unit volume associated with
a single message.

The LaRCS comtype-declaration’s volume field can be initialized to the number of
bytes sent in a single message of that comtype. For example, based on the code for the
Caltech n-body algorithm given in [Sei85], the volume for the comtype ring is 108 bytes.
This value would be specified by the user in the LaRCS code. The phase expression can
be used to compute the total communication volume for each communication edge in the
static task graph by multiplying the unit volume times the number of iterations derived
from the phase expression. Thus, the total communication overhead for a ring edge of the
n-body algorithm is equal to 108 x n x s, where n and s are parameters instantiated at
compile time.

At this stage in OREGAMI’s development, the unit volume and all parameters must
be expressed as integer constants; the phase expression then drives the calculation of the
total communication volume for each comphase and for the complete static task graph.
In the future, we will be expanding our system to accept volume declarations in terms of
imported variables from the host language. This extension relieves the programmer of the
burden of counting up the number of bytes in a message involving complex data structures
and/or multiple data structures. In addition, we will examine the feasibility of mapping
which utilizes volume expressions with uninstantiated variables. To support mapping with
volume expressions, OREGADMI would include algorithms for reducing these expressions
to simpler form and mapping algorithms which utilize expressions rather than numeric
edge weights.

5.4 The Role of the Phase Expression in Computing Comple-
tion Time

The phase expression is also useful in the evaluation of mapping algorithms based on the
standard metric known as completion time (referred to as CT below). The METRICS
component of QREGAMI estimates the completion time of a mapped computation on a
phase by phase basis. Specifically.

GlR=1) n?a.'::{c:,,cg,-o-&?}
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where phases includes all instances of both compute phases and comphases, m is the
number of processors, and c;, is the completion time of phase p on processor j.

The phase expressions drives the calculation of completion time in a manner similar
to the calculation of communication volume described above. The precise computation of
the completion time of each phase on each processor takes into account the multiplexing
of processes and the overhead of message passing including startup time, dilation, and
contention. In addition, we presume implicit barrier synchronization between phases in
the computation of completion time. Details of this computation are beyond the scope of
this paper, but are discussed in [LRG*90b] and [SB90].

5.5 LaRCS provides an Efficient Representation of Task Graphs

The primary purpose of LaRCS is to describe the computation graph for the purpose of
mapping. LaRCS’ orientation towards the representation of regular parallel computations
enables it to efficiently describe families ol computation graphs. Thus, the size of the
LaRCS representation of a parallel computation can be constant, i.e., independent of the
number of processes (nodes) and communication edges. The LaRCS compiler translates
user provided LaRCS code into intermediate code (an abstract syntax tree.) The LaRCS
intermediate code can then he translated into the form needed for specific OREGAMI
mapping algorithms such as the static task graph for the whole computation, the static
task graph for a single comphase, or a DAG (TCG). OREGAMI provides a set of utility
functions to generate specific data structures for these graphs, such as an adjacency
matrix or DAG, given the parameters that instantiate the size of the problem instance.
As mentioned earlier, LaRCS can also used to (laboriously) describe an arbitrary irregular
task graph/adjacency matrix by declaring a unique comtype for each edge in the graph.

6 Conclusions and Future Work

We have presented a language for describing the communication patterns of reguler parallel
computations for the purpose of mapping. The key contributions of LaRCS are

e Its ability to describe regular communication topology and temporal communication
behavior in a natural, compact notation.
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o The utility of LaRCS in the context of OREGAMI for achieving efficient mappings.

e The underlying TCG model which enriches the static task graph model with tempo-
ral information, thereby increasing the range of scheduling and mapping algorithms
that can be utilized.

LaRCS is capable of describing a wide range of parallel computations whose underlying
abstraction is a collection of communicating parallel processes. At this time, LaRCS
models deterministic computations whose communication topology and communication
phases are known at compile time.

Our work with LaRCS is continuing in the following areas:

¢ LaRCS notation for dynamically spawned tasks

We plan to expand LaRCS to include notation for describing computations which
dynamically spawn tasks in a regular predictable pattern. Currently, the LaRCS
nodetype and compute declarations define static sets of nodes and their labellings.
In order to describe dynamically spawned tasks, these need to be reinterpreted as
potential sets of nodes and their labelings. A new construct needs to be introduced
to identify parents and their spawned children. The phase expression could be
augmented to describe the birth and death of these potential sets of nodes over
time.

e LaRCS-like notation for mapping

The current use of LaRCS is to serve as a compact notation for the communication
structure and behavior of parallel algorithms for the specific goal of mapping. We
also see the potential for developing a LaRCS-like notation to express the mapping
itself. Since our focus is on the mapping of regular computations to regular intercon-
nection networks, in many cases the mapping itself is regular and can be expressed
in compact, parameterized notation. For example, our group theoretic contraction

of the n-body algorithm to p processors could be expressed as:
for i in 0..n CONTRACT(i) = i mod p

There is also a need for notation to express constraints on portions of the mapping,

such as assignment of certain processes to those processors tied to I/Q devices or
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with specialized hardware. For example, given a mapping of a full binary tree with

n? — 1 nodes to an n x n mesh (n?

a power of 2), suppose the leaf nodes must
be assigned to processors on the boundary of the mesh for purposes of I/O. This

constraint could be expressed as:

# This constrains mapping of leaves to north and south
# boundary nodes of the mesh. We presume nodetypes
# treenode and meshnode have been defined for the

# computation and interconnection network, respectively.

for i in n**2/2 to n¥x2-1
treenode(i) MAPSTO meshnode(l,*) OR meshnode(*,n);

¢ LaRCS notation for data parallelism

We would also like to use LaRC'S for the closely related problem of data parallelism
(data partitioning). Here. the problem is to express the assignment of portions
of a shared data structure such as a matrix to individual processors, as well as
the portions of the structure that need to be exchanged during execution of the
parallel algorithm. LaRCS could be applied to this problem by (1) elaborating the
nodetype declaration to describe the portions of the data structure assigned to each
node as a function of the corresponding node label, and (2) augmenting the comtype
declaration to include a description of the portion of the matrix transferred in that
communication phase.
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A Appendix: LaRCS Grammar

/*

* LaRCS Grammar

*

* Version 1.0

*/

Y+token

NUMNODES NODELABELS NODETYPES COMTYPES ATTRIBUTES

%token NODETYPE LABELS

Ytoken

COMTYPE BIDIRECTIONAL UNIDIRECTIONAL VOLUME

%token COMPHASE

Ytoken PHASEEXPR COMPUTE

%token IF THEN ELSE

Ytoken FOR FORALL TO IN DOTDOT

Ytoken SEQ OROR ANDAND EQEQ NEQ GEQ LEQ

%token

%token NAME NUMBER

%left
%left
ileft
%left
Yleft
Yleft
%left
fleft
%left
%left

OROR

ANDAND SEQ

JIJ

=3 XDR

18t

EQEQ NEQ

rgy 1y GEQ LEQ
LEFTSHIFT RIGHTSHIFT

LI "

Yo d :/: DIV ;'/': MOD

%right POW
%right UNARY '~ 717

wh
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LaRCS_program : func_def
op_decl_stmts
op_defs
op_phase_expr -

op_decl_stmts : /* Empty */
| op_decl_stmts decl_stmt ’;’

decl_stmt : NUMNODES exp
NODELABELS exp DOTDOT exp
NODETYPES name_list
COMTYPES name_list
ATTRIBUTES name_list

op_defs : /* Empty */
| op_defs node_type
| op_defs com_type

| op_defs com_phase

node_type : NODETYPE func_def
op_numnodes_stmt
op_labels_simt

op_numnodes_stmt : /* Empty */
{ NUMNODES exp ’;’

10



op_labels_stmt : /* Empty */
| LABELS exp DOTDOT exp ’;’

com_type : COMTYPE func_def
edge_exp

op_vol_exp

edge_exp : exp UNIDIRECTIONAL exp ’;’
| exp BIDIRECTIONAL exp ’;’

op_vol_exp : /% Empty */
| VOLUME ’'=’ exp ’;’

com_phase : COMPHASE func_def
com_stmts
com_stmts : com_stmt

| com_stmts com_stmt

com_stmt : FORALL NAME IN exp DOTDOT exp ’{’ com_stmts ’}’
FOR NAME ’=’ exp TO exp ’{’ com_stmts ’}’

IF exp THEN com_stmt ELSE com_stmt

*{’ com_stmts '}’

edge_exp

func_call *;°

11



op_phase_expr : /* Empty */
| PHASE_EXPR

phase_stmt *;’

phase_stmt : phase_stmt OROR phase_stmt

phase_stmt SEQ phase_stmt

phase_stmt POW exp

FORALL NAME IN exp DOTDOT exp ’'{’ phase_stmt ’}’
FOR NAME ’'=’ exp TO exp ’{’ phase_stmt ’}’

IF exp THEN phase_stmt ELSE phase_stmt
func_call

COMPUTE

'{’ phase_stmt '}’

—_— e o e ey, s me ame

name_list : NAME
| name_list ’,’ NAME

op_name_list : /* Empty */
| name_list
exp._list ! exp

| exp_list ’,’ exp

op_exp_list : /% Empty */
| exp_list

func_def : NAME



func_call

exp

NAME ' (’ op_name_list ’)’

NAME
NAME '’ op_exp_list ’)’

! exp

—_— e e e e e e e e mmm e e e e em mam s s e s s e e e

exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp

exp

1=
110
14t

[

POW exp
T¥! exp
'/t exp
DIV exp
*%h? exp
MOD exp
'+ exp
’=? exp
‘&’ exp
']’ exp
’7! exp
XOR exp
LEFTSHIFT exp
RIGHTSHIFT exp
'<? exp
'>7 exp
GEQ exp
LEQ exp
EQEQ exp
NEQ exp
ANDAND exp
ORCR exp
exp

exp

exp

exp
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“iprec UNARY
%iprec UNARY



| *(’ exp )’
| func_call
| NUMBER

| NUMNODES

.
]
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