A Transformational Approach to
Composite System Specification

Stephen Fickas
Rob Helm

CIS-TR-90-19
November 16, 1990

Abstract

This paper presenis a transformational framework for the design and
rationalization of composile systems, and identifies some prerequisites to
antomated design within that framework.

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

1.0 Introduction

Our interest is in the construction of what we call Composite System Specifications, or
CSS for short. A CSS differs from traditional formal specifications in the following
ways:

1. A CSS typically involves multiple agents, where each agent may have its own abilities,
goals, etc.

2. The construction of a CSS is centered on the notion of responsibility assignment
(Feather, 1987). This in turn rests on an agent's abilities, motivation, and reliability.

3. The final CSS is often the result of inter-agent negotiation and compromise.

Roughly, the construction of a CSS starts with 1) an initial formal model of a system, and
2) one or more system-wide goals. The final product is a new model and/or new goals such
that the goals are achieved by the model. Clearly, if the initial goals are met by the initial
model, we are done. More typically, model and goals are modified during specification
construction. It is this modification process we are interested in this paper. In particular, we
propose an extended form of ransformational development as an approach to formalizing
and automating the process. We then identify some of the main problems which must be
overcome to apply this approach to composite system specification.

1.1 The problem in terms of Glitter

Our system for construction of a CSS has similarities with an earlier transformational
system called Glitter (Fickas, 1983), (Fickas, 1985). Briefly, Glitter's problem was to aid
a human in efficiently implementing a formal specification written in the Gist language.

Figure 1 shows the transformational approach used by Glitter. Glitter explicitly represented
the state of the specification design process in a development state. Given a focus on a
development goal, methods were proposed from a library to achieve the goal. An
evaluation of the alternative methods led to a weighting of competing methods and a
selection. The selected method was applied to generate a new development state. The

2.

development state itself represented both the state of the specification under development,
and the state of the problem-solving process which led to that specification.

The specification half of the development state represented the state of the specification as it
moved from abstract-and-inefficient to concrete-and-efficient. To accomplish these moves,
Glitter method catalog included comrectness-preserving transformations, which replaced
inefficient constructs in the specification with equivalent, more efficient ones.

Glitter also represented the state of problem-solving through a tree of past and present
development goals or tasks. It had at its disposal a catalog of abstract, goal-achievement
methods, which did not directly transform the specification, but which grradually
narrowed the range of transformations to apply, allowing Glitter to make plausible
"development moves”.

In summary, a development state in Glitter had two components: the specification state and
the problem-solving state (the development tree). There were "operators” defined for
applying to either half.

A major Glitter component of interest to us is its selection rules. Frequently, more than one
operator was proposed in the current development state. The choice among competing
operators was critical - a bad choice could lead to inefficient programs in the case of
specification operators (i.c., transformations), and to much wasted problem-solving effort
or even dead-end states for goal-achievment methods.

To address the selection problem, Glitter maintained a catalog of selection rules for
choosing among alternative operators. These rules spanned a wide range of both
automation and domain knowledge. Most typically, they would combine simple types of
theorem proving with domain specific questions to the human user. Once this information
was gathered, the rules would make recomendations on the alternatives available in the
current state. The higest rated method would be chosen, and the cycle would repeat.

Development History *

»
Focus on Record
State State

Problem-soNing state
(possibly)
modified
focus development specification seloctad

T altemnative

goal
Propose Select
Methods * @ d Method "’1‘

Alternaiive
i a) H a) if a)
dovpace al o] | o
then| | then @
Selection rules
{domain-dependent)

Figure 1 ; The Glitter architecture

1.2 Critter -- Applying the Glitter model to CSS.

We have reapplied the Glitter model to the construction of CSS in a hypothetical system
called Critter. In doing so, we made the following correspondences:
Development state:
The Critter development state, like Glitter's represents both the state of the
specification, and of the problem-solving process. In Critter, we refer to the the
problem-solving state as the "task tree".

Specification operators:
In Glitter, we maintained a catalog of correctness-preserving transformations. In
Critter, we maintain a catalog of both correctness-preserving and non-cormectness-
preserving transformations. The latter are used to make stereotypical, but meaning-
changing modificiations to the specification.

Development operators:
Critter uses the same style of problem solving goals (tasks) and methods as Glitter. The
difference is that Glitter's Gist-specific problem solving language is replaced with one
centered on CSS construction, e.g., assignment of responsibility, conflict resolution.

Evaluation rules:
At present, Critter’s evaluation component is equivalent to the selection rules of Glitter:
a homogenous rule-based system that queries the user when it needs information.
However, our research focus is squarely on extending this component of Critter to
represent and integrate complex models of effectiveness, motivation, reliability, etc,

Theorem prover:
In Glitter, a theorem prover was used to prove some simple equivalence properties of
expressions. In Critter, we rely on a planner (Anderson & Fickas, 1989) to prove
certain specification properties, and to provide execution traces to assist more
sophisticated analysis by the human analyst.

The human user:
Like Glitter, Critter uses an assistant-based approach to problem solving. We do not
suspect that the user can be "automated out” of our system in the foreseeable future.

Figure 2 is the graphical view of Critter. We have begun to fill in pieces of the various
catalog and components in the figure. In this paper, we raise the key topics of using a
transformational development system like Critter to address the problems of CSS
construction.

Developmant

Method

* Development History

Focus on »
&

Task Tree
selocted alternative
foctis task
{passibly)
modifiad
specification

Selection Criterla
(domain-dependent)

g &

*

Evaluate
methods

WMWY RN
davelopment Cost Feasibilit Evaluatad
methods yl alternatives

4.1 10An]

Human Con-
Evaluation Factors ventions
Critics

{domain-dependent) || AN || DL DL

Reliability] | Safety

Figure 2 : Qverview of the Critter approach

2.0 An example.

To illustrate our approach and some of the issues it raises, we next present a detailed
example. In the example, we derive part of the specification of an elevator system.
Figure 8 previews the example development. We assume that, as a result of prior
development , the analyst begins in the development state S1.

As described above, the development state at each point records the current specification
state and the current task tree. The initial specification state is supplied by the analyst. The
specification state is encoded in a language we call Composite Petri Nets (CPN), and has
three components:

1) A behavior model, which describes all possible behavior of the system.

2) A set of system goals, which describe desired behavior of the system.

3) A set of agents, which control the behavior of the system

The language used for behavior models resembles that of Numerical Petri Nets (Wilbur-
Ham, 1985). It extends ordinary Petri net notation in the following ways: The behavior
model of the initial elevator specification discused here appears in figure 3.

A CPN behavior model describes possible system behavior non-deterministically; it
describes the actions which could occur in a particular state, without necessarily specifying
how a particular action is selected. For example, figure 4 depicts the part of the behavior
allowed by the net in figure 3 when the passenger on the same floor as the elevator. In this
state, among other things, the passenger may enter the elevator, or wait at their current
floor. We do not specify the circumstances in which the passenger will do one or the other;
either event is possible. We refer to a possible sequence of events in a nondeterminstic
specification language as a history or plan. The set of all histories permitied by a
specification gives its behavior.

The second part of the specification state is a set of system goals. Each goal defines a set
of histories (sequences of states) in the behavior model which should be prohibited, or
which should be achieved. The notation we use to describe histories is largely compatible
with that in (Dubois, 1988). Figure 5 depicts the initial goals for the elevator example.

Passanger
WhhDeslinalion Arrlve

Passenger
AtFioor

Entity tvpes
Floor = {1..9}

Token types
Passenger p = (location: Floor U {"InElevator”}, destination: Floor)
Elevator ¢ = (floor: Floor)

Predicates

Leave: p.location = p.destination
Enter; plocation = e.floor

Up: e.floor # max Floor

Down: e.floor # min Floor

Actions

Enter: p.location := "InElevator"
Exit: plocation := e.floor

Up: efloor:=e.floor+ 1
Down; e.floor :=e.floor - 1

External constraint

"Only one passenger at a time"

prohibit PassengerWithDestination(p1) and (PassengerAtFloor(p2) or InElevator(p2) or
PassengerWithDestination(p2) and p2 # p1

"Only one elevator, start at lowest floor”
ElevatorAtFloor(e) and e.floor = min Floor

Timing Asserti

none

Figure 3 : Possible behavior in initial development state

Figure 4: Possible futures of a passenger at the same floor as an elevator

A CPN behavior model is correct with respect to some system goal if its behavior always
satisfies the goal. It is incorrect if the behavior includes even a single history which
violates the goal. For example, the initial behavior model of figure 3 is incorrect with
respect to the system goal dontLikeToWait. It allows histories such as that in figure 6, in
which a passenger arrives at a floor other than the elevator's.

System _goals

dontLikeToWait: "Don't force passenger to wait for elevator”
prohibit PassengerAtFloor(p) and not (Elevator AtFloor(e) and e.floor = p.location)

getPassengerOn: "Get waiting passenger on the elevator”
achieve InElevaior(p)

getPassengerThere: "Get passenger who is in the elevator to her destination floor”
achieve InElevator(p) and ElevatorAtFloor(e) and ¢.floor = p.destination

getPassengerOff: "Get passenger off the elevator at destination floor™
achieve PassengerAtFloor(p) and p.location = p.destination

Figure 5 : System goals for an elevator system

-9.

X = External actions enabled X
E = Elevator actions enabled ‘(1) Initlalize

elevator.floor = 1

(2) Create |z E

Up

passenger.destination = 1 Down ay 000

X| E

{3) Arrive \ l;b o
Down o, SI=l=

passenger.location = 2

Violation:
dontLikeToWait

Figure 6: History which violates dontLikeToWait

The third part of the specification state is a set of agents (figure 7). Agents are components
which have the ability to sense the system's current state, and choose among some set of
possible transition firings from that state. Agents can thus eliminate some or all of the
possible behavior of the CPN specification. When an agent receives responsibility for a
goal, it is expected to choose actions to exclude histories that violate the goal. Assume, for
example, that the passenger is responsible for getting on the elevator when it is possible to
do so. This requires the passenger to always enter the elevator in the state depicted, thus
eliminating histories in which the passenger never enters the elevator (in the shaded area of

figure 4).

Agents have the following four attributes:

1. An agent has a set of actions it controls. Actions are represented by transitions in the
CPN behavior model. Each transition is controlled by at least one agent., and typically,
an agent controls more than one transition. If more than one of an agent's transitions is
enabled, the agent must choose one to execute, but is free to choose which, under

- 10 -

certain restrictions (see 4 below). The transitions controlled by each agent appear in
figure 7 in the section labeled Agent choices.

2. An agent can access, or “see”, some portion of the system's state. Each place in the
CPN is accessible to zero or more agents. If an agent has access to a place P, then that
agent can detect what tokens are present at P at any time. This is shown in figure 7 by
the section labeled Agent accessibility. Accessibility is used by an agent to choose
“correctly” among its enabled transitions (see 4 below).

3. An agent is responsible for a set of assigned goals (found under agent responsibility
in figure7. The agent may share responsibility for a goal with some other agent. When
we use the terms correct action and choosing correctly, we are referring to an agent
choosing to carry out an action that achieves its assigned goals.

4. An agent has a set of control or choice rules. These rules describe what action an
agent should choose in a given situation, in order to satisfy its assigned goals. These
rules define a partial order on the set of enabled transitions of an agent in order to
restrict an agent's choice to the correct one. In order to evaluate a control rule, an agent
may need to read some part of the system's state which is not accessible to it. This
generates a requirement for communication with another agent, or some other
information-gathering activity. Thus, control rules derive many of the requirements
that are unique to composite systems,

L

Agents
Passenger
Elevator
External

Agent choices

Passenger: chooseOneFromEnabled {Leave,, Wait, Enter, Exit, Remain)
Elevator: {Up, Down, Stay}

External: {GoOwOfService, GolnService)

y : ibilit
Passenger: (PassengerWithDestination, PassengerAtFloor, InElevator)
Elevator: {ElevatorAtFloor, ElevatorQutOfService)

Extemal: {PassengerWithDestination, GutOfSystem)

Agent control rules
Passenger: none
Elevator: none

: I ibitit
Passenger: none

Elevator: none

Figure 7 Agents in initial development state

2.1 Deriving specification features from a system goal.
Figure 8 shows our example development based on (Doerry et. al., 1990). We present

only the initial portion of this development in detail, to illustrate some key issues. Figure 9
shows the task tree resulting from the first phase of development, up to state S3.

- 12 -

{Eatiely satisfy
system ‘
goals) dontLikeToWait modify
medel
weaken assign —
goaé responsibility d unexplored
unexplored o assign(3) to
assign(1) passenger&
wb
unexplored assign(2) unexplored

to elevator/ g g \ 1© New agent

Write elavalor unexplored

choice rule
s

Provide elevator access
to arrival floor

Alert elevator of
arrival floor

Assume access
to arrival floor

d

unexplored
Assign alert

to passenger Assign alert

to new agent

(Add call unexplored
button alert)

d = Development step

8 = Specification transformation

Figure 8 : History of dontLikeToWait development

State S1
Focus. The initial task in the task tree is satisfy system goals. In the interest of space,

we will assume that this initial task has been refined to satisfy dontLikeToWait, and that
this task is our focus.

- 13 -

Critter first determines whether the task is satisfied, i.e., is the system goal "don't-like-to-
wait" achieved in the current specification state. A planner is called to find a counter-
example to show that it is not achieved. The planner produces the counterexample shown
graphically in figure 6; in summary , the counterexample runs as follows:

1) The External agent initializes the system by placing the elevator at floor 1.

2) The External agent creates a passenger with a destination of floor 1.

3) The External agent then places this passenger at floor 2.

Propose. Three methods are proposed to implement the satisfy dontLikeToWait task:
Method 1: weaken the goal (don't-like-to-wait) so that it is satisfied in the current state.
Method 2: modify the model so that the goal is satisfied.

Method 3: assign responsibility to one or more agents for the goal, thus forcing agents
to cooperate in achieving the goal.

Evaluate. Some general rules of thumb here are that weakening a goal will lose
functionality and convenience, but at the same time may be the most feasible. Modifications
to the model or assignment to agents have highly domain specific costs that are hard to
generalize at this high level in the development state.

Select. At this level, we rely on the human analyst to make the choice. For our example,
she will choose method 3, assigning responsibility for don't-like-to-wait to one or more
agents. If this turns out to be a bad choice, the analyst can return to this state and explore
either of the other two alternative methods at a later time: Critter records the choices and
evaluation in a way that allows any alternative to be explored.

The selection of the assign responsibility method produces a new task, assign

responsibility for the goal don't-like-to-wait. This change to the task tree generates a
new state S2.

o fl

!unctionali
unknown

; Ty:
dontLike ToWait

functionality:
unknown
uy

feasibility:
unknown

responsibliity:

feasibility:
pood
funictionality:
reduced

weaken
goal:

dontLike ToWait dontlLike ToWalit
ability:
inconvenien =
control: costly |
costly reliabiity:
reliability: control: low]
unknown — costly = dasign(3):
o relabily: motivation: doniLike ToWait
maybe ability: good to new agent
assign(1): motivation assign{2): N
dontLikeToWait N/A dontLikeToWait
agent: Passenge to:Passenger
assign(1): and:Elevator
dontLike ToWait

agent: Elavator

Figure 9 : Task tree ending at state S3

State 52

Focus. For simplicity, we will assume that the focus will follow a depth-first traversal of
the task tree, as shown in figure 9. Using this strategy, the focus is the newly generated
task "assign responsibility for goal don't-like-to-wait".

Propose. Three methods are found that implement the assign responsibility task:

Method 1: Assign responsibility for goal don't-like-to-wait to a single agent A. From this
method, two choices are generated: assign don't-like-to-wait to the passenger and
assign don't-like-to-wait to the elevator.

Method 2: Assign responsibility for goal don't-like-to-wait to a newly created agent N.
From this method, one choice is generated: assign don't-like-to-wait to a new but yet
undetermined agent. That is, add a new agent to the system and then assign the goal to
it.

-15 -

Method 3: Assign responsibility for goal don't-like-to-wait to a combination of agents,
i.e., force them to cooperate to achieve the goal. From this method, one choice is
generated: assign don't-like-to-wait to the passenger and elevator, jointly.

Evaluate. There is a standard set of criteria that is used for evaluating responsibility
assignment methods in Critter:

Ability: Is the proposed agent capable of achieving the goal? Does it have the right set of
actions for carrying out a set of steps that will lead to goal achievement? If not, what is
the cost of adding those actions to the agent?

Control: If the agent has (or is given) the right set of actions, what needs to be added to
the agent to allow it to act "responsibly”? That is, what actions must the agent take to
ensure that the goal is never violated? What information does the agent need in order to
decide when to take those actions? What is the cost of providing that information to the
agent?

Reliability: If the agent has both the right set of actions and the necessary information for
selecting among them, is the agent reliable? Will it ever "forget" or "lose” the
information, or sometimes be unable to carry out one of its actions? What is the cost of
addressing the given reliability problems?

Motivation: If the agent has both the right set of actions and the necessary information for
selecting among them, is the agent motivated? Does it have "local" goals that conflict
with the system-wide goal that is to be assigned? If so, can we expect the agent to act
"“irresponsibly” in some situations? What is the cost of addressing motivation
problems?

These questions are at the heart of our research effort. Our goal is to call upon a mixture of
formal and semi-formal cost models in conjunction with human assistance to produce an
evaluation of the three responsibility assignment methods. To give the reader a feel for
what is involved in this effort, we will reason informally about the choices we are faced
with in state S2.

Assignment to the passenger: The passenger agent, alone, does not have the ability to
achieve the goal. It does not control the create and arrive actions, both of which are under
control of the external agent. A potential modification is to give the passenger an action that

- 16 -

allows it to move between floors other than by the elevator (e.g., stairs). In this way the
passenger can move to the floor that the elevator is on, and board immediately.

Following this a step further, the passenger will need access to information it currently
does not have: the location of the elevator. Given this, it can restrict its actions to

climb (or descend) to the elevator floor, and thus guarantee the don't-like-to-wait goal. A
potential source of the needed information is the elevator, itself. Perhaps it can signal the
passenger of its whereabouts in some way.

Even with these changes, can we rely on the passenger to cafry out its actions? If
movement is by stairs, are there circumstances where this movement is hindered, e.g.,
passengers in wheelchairs? Must we consider alternative or back up actions for these
passengers?

Finally, are there any "selfish” goals a passenger might have that would interfere with its
responsibility of meeting the don't-like-to-wait goal? It is difficult to imagine such a conflict
in our simple system. In a more complex system, one with multiple passengers and
elevators, it is likely that selfish or even mischevious behavior might occur that conflicts
with the good of the whole. Can we either influence or supress such behavior?

Assignment to the elevator: The elevator has the ability to satisfy the goal don't-like-to-
wait, by moving to the floor where the passenger will arive before the passenger gets there.
However, this implies that the elevator's Up/Down transitions should always be able to
"outrace" the Arrive transition. This requires a fast elevator, and brings higher construction
and maintenance costs.

In addition, the elevator needs access to the floor number where the passenger intends to
arrive, in order to move to the proper floor. It might be costly to supply this information to
the elevator; the passenger might require a personal console, or possibly a pocket pager, by
which it could signal the elevator and dispatch it to a floor.

We must also consider the reliability of the elevator. Upon mechanical failure, the elevator
may be unable to move to a floor quickly enough to satisfy the goal, or may fail to move at
all. The elevator may also misread or misinterpret its instructions from the passenger, and
move to the wrong floor. We must consider the cost of constructing and maintaining an
clevator at the level of availability implied by the goal.

-17 -

As a mechanical agent, the elevator lacks any motivation as such, but if a human operator
controls its motion, we must evaluate the cost of preventing mischief or selfish behavior by
the operator.

Assignment to the elevator and the passenger:

Critter also must evaluate possible divisions of responsibility between the two agents. For
instance, we may require the passenger to move to the elevator if the elevator is on an
adjacent floor, while requiring the elevator to close the distance in other cases.

As before, the cost of giving an agent the ability to perform its responsibilities can help
choose among these alternative divisions. Critter would need to relate the distance moved
by the passenger to the cost of architectural features (such as stairs or escalators) to support
that movement. In addition, if the elevator only moves longer distances to meet the
passenger, it will make fewer stops and starts, lowering maintenance costs and failure
probabilities.

Assigning multiple agents to a goal also complicates the control requirements. For
instance, if both elevator and passenger might move, each needs to know the location of the
other in order to meet. In addition to increasing the cost of communication between the
agents, this also requires more sophisticated decision-making circuits in the elevator, which
might have higher costs in some implementations.

Assigning a goal to multiple agents typically requires more complex coordination between
the agent's actions, which may be a source of unreliability. If only the elevator can move
between floors prior to passenger arrival, its actions do not depend on those of the
passenger, allowing a simpler control regime. In addition, if both agents have been
assigned partial responsibility for a goal, both must operate reliably; assuring the reliability
of both agents may cost more than assuring each of them separately.

Divisions of responsibility may also be more susceptible to sabotage by unmotivated

agents. Forinstance a passenger refusing to move to the elevator might deadlock the
system, as the elevator waited for the passenger and the passenger waited for the elevator.

- 18 -

Assignment to a new agent. Finally, we might consider introducing a new agent to

guarantee the goal. Such an agent would have to move either the elevator, the passenger,
or both of these other agents to the same floor.

It is difficult to evaluate this possibility at a high level. Initially, the new agent would have
no ability to complete its task, but at a minimum, it would require the ability to transport
one of the other agents between floors. Adding operators to do so might lead to conflicts
between agents, in which, for example, the new agent tries to move the elevator up while
the elevator attempts to move itself down. The new agent would also initially lack access to
information (such as the passenger's location) required to satisfy the goal. Until more is
specified for the new agent it is not possible to determine the cost of its introduction.

Select. Selection is deficiency-driven: The system must identify the least costly alternative,
based on estimates of the cost of overcoming deficiencies in each agent's abilities, control,
reliability and motivation. If we are required to add an action to an agent, which is the least
costly alternative? If we need to supply an agent with more information than it currently
has, what is the relative cost? If we must build back-up systems for unreliable agents, what
is the cost? If we must build carrot-and-stick mechansisms to motivate agents, what is the
cost?

There is no one model that has been proposed for answering such questions, However,
design disciplines outside of software engineering use diverse cost models that may answer
specific questions. Construction estimation models and catalogs of elevator components
are employed to answer questions on construction cost. Quality assurance supplies analytic
and simulation methods to evaluate designs of mechanical systems for reliability. Human
factors research has produced models and methods for estimating human reliability within a
systemn. Critter needs models like these in order to partially automate the evaluation
process.

Continuing with our example, we will select the elevator as the agent to make responsible
for the don't-like-to-wait goal. A new task is posted -- assign don't-like-to-wait to the
elevator — and a system goal is added to the elevator agent's list of responsibilities. This
leads to a change in both the specification state and the developement tree.

Figure 10 previews the task tree from the next phase of the development (states S3 through
S8).
-19 -

to:Elavalor

check motivation

provide ablilty
goal: doniLikeToWalt
agent: Elevator

provide control

goal: doniLikeToWall
sgent: Elevalor

chesck rellabliity
goal: doniLikeToWalit

sgont: Elevator

gounl: doniLikeToWail
agent: Elevalor

(satistied)

write cholcea rule

Trule
goal: doniLikeToWai
agent: Elevator

p.location

provide access

where: A PassengerAtFloor(p}
agent:Elavator

(deforrad)

alert:
p.location &

PassengerWithDestinatlon{p)
reciplent: Elevator

feasibility
ik

assume access:
p.location
where:A PassengerAtFloor(p)

agent:Elevator

reciplent: Elevalor

install slert componesnts: assign alert
p.location & p.location &
PassengerWithDeslinatlon{p) PassengarWithDastination(p)

reclpient: Elevator

|
(dolermsd)

control. rafiability: ne
good uncerain aevalvation
good uncertain
assign alert assign alert
p.location & p.location &
PassengerWithDestination{p) PassangerWilhDestInation{p)|
reciplent: Elevalor reciplent: Elavator
agant: Passenger to new agent

Figure 10 : Task tree from state S3 to state S8

State S3.

Focus. The system focuses on the most recently posted task, assign don't-like-to-wait to

the elevator .

-20 -

Propose. A single method is found, one that refines the task into four sub-tasks: 1) give
elevator the ability, 2) give elevator the necessary information to control its actions, 3)
address reliability issues, and 4) address motivational issues.

Evaluation. This is the only problem reduction step available,

Select. The method is selected and applied, adding the four sub-tasks above to the task tree.

State 54,

Focus. Looking first at the task of giving the elevator the ability to achieve
dontLikeToWait, the analyst calls on the planner to find at least one plan in which the
elevator acts to satisfy it. The planner returns the plan shown in figure 11 (gray line). In
the plan, the elevator moves up one floor prior to the arrival of the passenger on the second
floor. The analyst determines from this plan that the elevator contains the actions it needs
to satisfy the goal without further modifications.

We next focus on the task of giving the elevator the necessary information to control its
action to carry out the plan. The task is not completed (i. e., the elevator does not have the
necessary control mechanism), so we must further refine the development state.

Propose. There is a single method available for this task: add one or more control rules that
limit the agent's actions. Using the plan generated in the focus step as a guide, the analyst
notes that the elevator could guarantee the goal if it had control rules such as that in figure
12.

The task becomes provide access to the passenger's arrival floor.

-21 -

X = Extemnal actions enabled X
E = Elevator actions enabled
initialize

elevator.fioor = 1

Create J X|E
ssenger.destination = 1 Stay
- gx E : elevator.floor = 2
[W] x

U : E
Arrive tay
LN N |]) Down tay
passanger.location = 2 passenger.destination = 1 . oo
| Yiolation: Up
dontLikeToWait
{a
Down ao0g

passenger.location = 2

Figure 11: Two histories for dontLikeToWait

Evaluation. write choice rule is the only method available.

Selection. The method is selected, adding the provide access task to the task tree.

ControlRule001:

if PassengerWithDestination(p) & ElevatorAtFloor(e) and (p.location > e.floor) then up
if PassengerWithDestination(p) & ElevatorAtFloor(e) and (p.location < e.floor) then down
if PassengerWithDestination(p) & ElevatorAtFloor(e) and (p.location = e.floor) then stay

Figure 12 Control rule for picking up passengers

State SJ.

Focus. The task we focus on is provide access to the passenger's arrival
floor.

-22 .

Propose. There are two methods available:

Method 1: find a place P where the information is available in the current model, and add
P to the elevator’'s list of accessible places.

Method 2: use an alert template to make the information known in a new place Q, and
give the elevator access to Q.

Evaluation. This is a clear example of the importance of strong evaluation techniques at
high levels of specification design. It might appear that method 1 is the trivially correct
method - it simply involves adding an existing place to those accessible to an agent.
However, we must somehow map the cost of purely syntactic, box-and-pointer
modifications in the CPN to real world costs. In this case, how would the implementors of
the CSS actually build a mechanism that allows the elevator to learn a passenger's arrival
floor before the passenger arrives and without any assistance from the passenger? A
passenger arrival schedule? Mind probes? Passive sensors? There seems no easy way to
implement this approach.

On the other hand, the second method embodies a standard means of dealing with "future
reference”, i.e., the problem of one agent needing to predict a future event so that it can act
accordingly. The alert method is one that makes a future event known. It adds a new
transition that allows an agent to communicate its intentions in advance to another agent.
This has known implementation costs in most cases.

Selection. In the end, we are dealing with a method with no known low-cost
implementation versus a method with known moderate-cost implementations. In Critter, we
could explore the first, risky method a bit before returning to the safer method. However,
we will choose the safe route to finish up our example.

State S6.

We will terminate the detailed reenactment of the elevator design here and summarize the
remaining steps solving dontLikeToWait.

-23.

Following the alert method! (figure 13), Critter must install its components (changing the
specification to produce state S7), and select an agent to be responsible for carrying out the
alert action. The passenger agent is chosen. Thus, following figure 13, a new transition
T is added to the passenger agent's capabilities, and a new place P2 is made accessible to
the elevator . The passenger’s arrival floor becomes I, the information to be exchanged.
This leaves the development at state S8.

Method: alert
Description: Give Agent A access to information I needed to evaluate control rule R
Tasks: 1) Install alert template components at P1, the source of I
2) Assign responsibility: make information I available at P2 when R applies.

T <\:\&

P2

Figure 13: Alert method and components

We must guarantee the passenger will actually carry out T at the appropriate time. Further,
we must consider the reliability of the passenger agent for alerting the elevator: will
passengers forget to alert the elevator prior to arrival? The problem is addressed by adding
a redundant component; specifically, an additional alert template is installed which the
passenger can operate upon arrival at any floor. In effect, this specifies a "call button” for
each floor, but whether this is an actual button or some other sensor is an implementation
issue - the CSS will simply note that the passenger can alert the elevator of its arrival
location by some means.

1 The template shown is not complete: Agent x removes the alert when it is no longer needed (when the
passenger gets on), We will omit these clean-up components here and in the future alerting examples for
readability.

-24.

To close out this example, we suggest how the other three system goals (listed in figure 5)
might be handled in this development:

» getPassengerOn. The goal is not guaranteed. Assigning this goal to any agent other
than the passenger would require that agent to physically move the passenger into the
elevator. This might be an interesting solution in some contexts (for a physically
challenged passenger, for instance), but is costly in general. The passenger is judged
capable of entering the elevator, so a control rule is added requiring the passenger to
enter the elevator when it is possible to do so. It is decided that the passenger cannot
always carry out this rule reliably -- the passenger might be distracted and fail to notice
the arrival of the elevator, for instance -- so an additional alert is added which notifies
the passenger when the elevator reaches the the passenger's floor. This alert is
assigned to the elevator.

» getPassengerThere. The goal is not guaranteed. Itis assigned to the elevator, as the
elevator controls the necessary actions and other alternatives (such as allowing
passengers to move between floors independently) are judged too costly. As with
dontLikeToWait, the elevator must choose among going up, going down, or staying
put at each point; tt receives a control rule similar to that in figure 12. The passenger is
assigned responsibility for an alert which communicates the passenger's destination
floor to the elevator.

+ getPassengerOff. The goal is not guaranteed. Following reasoning similar to that for
getPassengerOn, the passenger is assigned responsibility to move out of the elevator
and given a control rule to do so. This requires an additional alert which tells the
passenger when the destination floor has been reached.

3.0 Conclusions

We have described an architecture for the transformational development of composite
system specifications. The system uses an abstract library of transformations tailored for
composite systems, only some of which are correctness-preserving. Transformations are
selected to apply based on human input, and on domain-specific knowledge in the form of
evaluation critics. We have attempted to identify the kinds of domain-specific knowledge
the evaluation critics would need to do informed selection.

Many of these evaluation critics will use representations which are less formal and less
general than that of the specification itself. A construction cost estimation model for

-25.

elevators, for instance, would ultimately have to rely on the costs of actual elevator
components, not on an absiract theory. In some domains, such as nuclear reactor
operation, empirical studies may supply tables of human response times and failure rates
when performing very specific tasks, comparable to tables of component costs (Meister,
1985). In others, we may only have a description of actual failures brought on by specific
misfeatures of a particular design. For instance, neither a detailed theory or human action,
nor empirical data are available to evaluate elevator designs for their resistance to pranks
such as elevator surfing2. Instead we may need to rely on descriptions of cases where a
particular combination of elevator features has allowed a prank to occur. An earlier
specification critic (Fickas and Nagarajan, 1987) illustrated this case-based approach.

A question of interest is how to combine the results of evaluation critics with diverse
representations to perform method selection. (Weld, 1990) has considered the problem of
combining multiple qualitative process and differential equation models of a system for
behavior explanation and prediction. (Farley & Liu, 1990) have also demonstrated a
system for qualitative explanation of electronic circuits, using two qualitiative process
models at different levels of detail. (Rissland, 1988) also describes an architecture
combining rule-based and case-based knowledge bases in legal reasoning. Research in
distributed problem-solving (Bond & Gasser, 1988) has addressed the problem of
integrating knowledge from diverse, uncertain sources. Research in decision theory
provides analytic methods for selection based on multiple evaluation critieria (Zeleny,
1982).

Our research now focuses on locating and integrating diverse evaluation models, both
formal and informal, in order to realize the Critter approach in a useful computer-based tool
for CSS applications.

References:

Anderson, J. S. & Fickas, S. (1989). A Proposed Perspective Shift: Viewing
Specification Design as a Planning Problem. Proceedings: Fifth International Workshop
on Software Specification and Design (Pittsburgh, PA). ACM SIGSOFT Engineering
Notes, Volume 14, Number 3 (May 1989).

2 Riding atop a moving elevator, either by forcing open the outer elevator doors on an upper floor and

jumping on, or by climbing through a ceiling service hatch.
- 26 -

Bond, Alan H. and Gasser, Les (1988). Readings in Distributed Artificial Intelligence.
San Mateo, CA: Morgan Kauffman, 1988.

Doerry, E, Feather, M., Fickas, S., Helm, R.. (1990). Deriving User Interface
Requirements through Composite System Design, University of Oregon, Department of
Computer and Information Sciences Technical Report, to appear.

Dubois, E.. (1988). A Logic of Action for Goal-Oriented Elaboration of Requirements,,
Proceedings of the Fifth International Workshop on Sofiware Specification and Design,.

Farley, A.M,, Liu, Z. Y. (1990). Shifting Ontological Perspectives in Reasoning about
Physical Systems, Proceedings of the 1990 AAAI Conference, Boston.

Feather, M. S. (1987). Language Support for the Specification and Development of
Composite Systems. ACM Transactions on Programming Languages and Systems,
9(2), 198-234,

Fickas, S. (1983). Automating the Transformational Development of Software (volume
1). University of Southern California/Information Sciences Institute, Research report
RR-83-108.

Fickas, S. (1985). Automating the Transformational Development of Software. JEEE
Transactions of Software Engineering, 11(11), 1268-1277.

Fickas, S., Nagarajan, P. (1988). Being suspicious: critiquing problem specifications, In
Proceedings of the 1988 AAAI Conference, Minneapolis.

Meister, David (1985). Behavioral Analysis and Measurement Methods . New York: John
Wiley and Sons, 1985.

Rissland, Edwina L. & Skalek, David B. (1988). Interpreting Statutory Predicates, In The
Second International Conference on Artificial Intelligence and Law: Proceedings of the
Conference (Vancouver, BC). New York: Association for Computing Machinery,
1988.

Weld, Daniel S. (1989). Automated Model Switching: Discrepancy-Driven Selection of
Approximation Reformulations. University of Washington (Seattle, WA), Department
of Computer Science and Engineering, Technical Report §9-08-01.

Wilbur-Ham, M. C. (1985). Numerical Petri Nets - A Guide. Telecom Australia Research
Laboratories, Report 7791.

Zeleny, Milan (1982) Mulitple Criteria Decision Making. New York: McGraw Hill, 1982.

- T

