Lectures on Polynomial-time
Computation in Groups

Eugene M. Luks

CIS-TR-90-21
December, 1990

, Abstract

These are notes from a series of lectures on polynomial-time computation in permutation
groups. The notes are fairly self-contained algebraically and algorithmically. Starting with
basic issues, such as testing-membership, much of the polynomial-time library is
developed. Instances of group-intersection are indicated, with applications to graph
isomorphism. Algorithms are given for finding special subgroups including centers,
derived series, Fitting subgroups, composition series.

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

Preface

These notes reflect a series of lectures that I enjoyed offering at Northeastern University during
Spring Quarter 1990. They were faithfully and enthusiastically recorded and typeset by Peter Mark
and Namita Sarawagi (with occasional solutions and other embellishments by these scribes).

The issue of the lectures was polynomial-time computation in permutation groups. As long
as there remain significant outstanding questions about the limits of polynomial-time (in group
theory problems as elsewhere) this is a worthy focus on its own. Furthermore, restricting to this
issue enables us to bypass both the details of implemnentation decisions and the rigors of complexity
arguments. Consequently, it is feasible, within a short series of lectures to tackle a broad range of
computational problems, concentrating on the phenomena that put them into polynomial-time.

The reader will see an early indication of this perspective in the verification of polynomial-time
for membership-testing in permutation groups. Qur explanation does not offer, or require, a clean
statement of Sims’s method for the problem (though, to be honest, the audience was aware of that
procedure). Instead, we observe that it suffices to know how to compute |G| and we then discuss
the key ingredients for that, namely: there is a “short” chain of subgroups from G to 1; using such
a chain, it is possible to control the size of generating sets; given generators for a group in the
chain, coset representatives and then (Schreier) generators (whose number can be controlled) for
the next group can be constructed.

So, from this point of view, there is no need to discuss specific exponents in the timings. Indeed,
the computational complexities of these algorithms are not optimal, and even naive speedups are
easy to obtain. Similarly, these algorithms are not destined to be implemented as presented. The
matters of best worst-case timings and practical efficiency for the same problems would indepen-
dently comprise worthwhile and dense tutorials.

Useful background for these lectures would be any standard text in group theory together with
the first chapter of Wielandt’s book “Finite Permutation Groups” (1964, Academic Press). Modulo
such references, the group theory herein is self-contained, with the single, notable exception of a
call to the classification of finite simple groups in order to complete the final step in a test for
simplicity (end of lecture 11).

In case any readers want to follow these in a seminar setting, [must warn that the lectures are
not of uniform length. Because of dynamic schedules of attendees, sessions varied in length from
45 minutes to 3 hours. There is also some nonuniformity in mathematical explication. According
to the whims of the audience, there was selected elaboration in some topics. Also, the scribes
selectively filled in sorme details.

I thank the College of Computer Science, Northeastern University, for its hospitality. In partic-
ular, Larry Finkelstein and Gene Cooperman proposed the visit and zestfully kibbitzed throughout.
the lectures. Special thanks to Peter and Namita for their prodigious effort in preparing these
notes, sometimes based only upon cryptic clues left on the whiteboard.

Eugene M. Luks
Computer and Information Science
University of Oregon

Problem: AUT
Given: A graph X.

Find: Aut(X) the group of automorphisms of the graph X.

Claim 2: ISO <p AUT

Proof: By claim 1 we can assume that X; and X, are connected graphs. Form the disjoint union
X = X1UX;. It is easy to see that X7 & X, < 3f € Aut(X) such that f(X;) = X,. 0

This claim by itself does not yield an efficient algorithm, since the group Aut(X) itself could be
exponential in the size of the graph. Therefore, merely listing the elements of Aut(X) may take
exponential time. However, it is an easy consequence of Lagrange’s theorem that every group G
has a generating set of size log [G|. If G < S,,, then log |G| < log n! < nlogn. Hence we can modify
the problem AUT to be:

Problem: AUT-GEN
Given: A graph X.

Find: a set of generators for Aut(X) the group of automorphisms of the graph X.

Claim 3: ISO <p finding a set of generators of Aut(X).

Proof: Any generating set must contain an element that flips X; and X, if some element of
Aut(XllJXg) does. [

Problem: STAB

Given: A C Sym(Q2) and A C Q

Find: Generators of (4)(4) = {9 € (4) | A? = A}.

Claim: ISO <p STAB.

Proof: Let X = (V, E) be a graph. Then Aut(X) < Sym(V) = G (where < means subgroup). G
also acts on the set () = set of all unordered pairs of vertices. Clearly E C (g) and Aui(X) = Gg
under this action. [

Note: The existing algorithms for STAB, although exponential, usually run efficiently in practice.
The complexity of STAB is an open question. The reverse reduction, STAB <p IS0, is still open.
Problem: Set Transporter Problem (Generalization of STAB, Decision version)
Given: G = (A) < Sym(Q),A,,4, CQ

Question: Does there exist g € G such that A9 = Ap?

Exercise: Show that Set Transporter <p STAB.

Hints: The reduction uses analogous techniques to the proof of ISO <p AUT-GEN. The difficulties
that seem to arise are in achieving the analogue of reducing to the “connected case”, which insured

3

Notation

Sym(£2) is the group of permutations of { where || = n.
Sym(n) is the group Sym(Q) where Q@ = {1,...n).

G is a group.

Definitions

(1) G acts on Q if 3 a homomorphism G — Sym(Q).

(2) A homomorphism G — Sym(Q) is a faithful action if it is injective. For example, if
G £ Sym(Q), then G acts faithfully on Q.

Examples. Let G £ Sym(Q).
(i) G acts (faithfully) on Q x Q where (a,8)* = (of,8?) forall (e,8) e xQ,9€G
(ii) G acts (faithfully) on (5), if | > 2.
(iii) G acts (faithfully) on 2% where A? = {§9]6 € A} for all A C Q.
(3) Let G act on Q, w € Q, then the orbit of w (under G) = {w9]g € G} and is denoted by w@.
(4) Let G act on , then G is transitive if it has only one orbit i.e. wG = Q for all w € Q.

(5) Let G acton Q,then AC Qisablock (for G)if Vg € G, A=A orANA=0. Aisa
nontrivial block if 1 < |A] < [Q|.

Examples: Let G < Sym(Q).
(i) An orbit is a block.
(ii) If N is a normal subgroup of G then the orbits of N are blocks for G.
Proof: Let A = 6" be an orbit of N and g € G. Then A9 = §Ng = goNV
(since N is a normal subgroup of G)= (69)" which is the orbit of &7.
The orbits form a partition, so either ANA? =0 or A = AS,

Note: Usually blocks are defined only when G is transitive. When we need transitivity, it will be
clear in context.

Claim: If A is a block for G. Then for g,h € G either A? = A® or AI N A* = §.
Proof: Since AY N A" = (A% ™' N A)* | therefore A? N AP % @, implies (A%*TV N A) £ 0. Since A
is a block, this means that A?*™ = A, which implies A% = A*,]

Algorithms for Finding Orbits and Blocks

Problem: ORBITS
Given: G = (A) C Sym(Q)

Find: the orbits of the action of G on Q

Proposition: There is a polynomial time algorithm for ORBITS.

Proof: Use a transitive closure algorithm (but not merely listing G and writing down w®). 0

Computation of A = w&:
A — {w}
Forall6 € A,ae A do
If6° ¢ A then A — AU {a}.

Remark: Let G act transitively on Q. If this action is imprimitive, we can find a block system
with blocks of minimal size (e.g., choose the # that leads to smallest block). This also implies that
the subgroup fixing a block acts primitively on the points in the block. If the action on the set of
blocks is imprimitive, we may repeat the process. We continue until the action of G on the blocks
is primitive. We may construct a tree by denoting each block by a vertex, and the children of
this vertex are taken to be subblocks that it contains from the previous round. For an intransitive
group, we construct such a tree in each orbit, yielding a forest whose leaves comprise Q. The group
G now acts on the entire forest as root-fixing automnorphisms. Note also that the subgroup of G
that stabilizes any node v in the forest acts primitively on the children of v (Ezercise : Verify!).
This forest is called a structure forest for G.

Problem: MEMBER (Permutation Group Membership)
Given: G = (A4) < Sym(Q) and z € Sym(%).

Question: Is2 € G ?

Remark: It may not be immediately clear that MEMBER is even in NP. The naive nondetermin-
istic algorithm of guessing a word in the generators could take exponential time. Consider G = {9}
where g = (12)(345)(678910) ... where successive cycles have lengths of successive primes. If the

degree of G = n, then order(g) is roughly exp(v/nlogn). So the shortest word in the generators
of G for most elements has exponential length. Nevertheless we will see that MEMBER, has a
polynomial time algorithm.

Problem: ORDER. (Permutation Group Order)
Given: G = (4) < Sym(Q)
Find: |G|

Proposition: MEMBER <p ORDER .

Proof: z € (A) < |(A)|=|(A,z)|0

Note: Lagrange's theorem: If H < G then |G| = |H|[G : H].
Goal: To show that ORDER is in P.

Letw € and H = Gy = {9 € Gl = w} then |G| = |G.|[G : G.] by Lagrange’s theorem. As
Gug = Guh <= w? =wh, [G: G,] = |w®|, that is the right cosets of G,, correspond to the orbit
of w. Therefore |G| = |G,||lw®]. We can find |wS] since ORBITS is in P, and in the process of
finding the orbit, as noted earlier, we also find a complete set of coset representatives for G in G..
To find the |G| we now need to compute |Gu|. As G, is a group which permutes one less point
than G we can find its order by continuing the process as before, but to do that we need generators

for G..

Definition: Given H < G a (right) transversal R for H in G is a complete set of (right) coset
representatives for H in G.

Lecture #2 9 April 1990

Completion of membership algorithm;
Algorithms for recognizing and determining
the structure of nilpotent and solvable groups;
Applications to graph isomorphism

Remark: The basic methodology for efficient membership testing in permutation groups is due to
Sims. Furst, Hopcroft, and Luks observed that Sims’s techniques lead to a polynomial-time test
for membership.

Problem: REDUCE GENERATORS
Given: H = (B) C Sym(), with || = n.

Find: A set of < n? generators for H.

Notation: For H < Q = {w;,ws,...w, }. Let H) = subgroup of H fixing the first i — 1 points
={h€H |wi' =w; Y1 < j<i-1}. In particular, H = HO),

Proposition: There is a polynomial time algorithm for REDUCE GENERATORS.

Proof: [Sims] Modify B such that no two elements of B are in the same (right) coset of H(?):
For this, if a,b € B are in the same coset {that is when uy® = wlb), then replace b by ba~1. Also,
throw away any duplicates in B. Then the modified B contains distinct coset representatives for
(some) cosets of H(? in H(}) and (maybe) some elements in H(?). Repeat the same process for
BN H®, that is if a,b € BN H® are in the same coset of H(® then replace b by ba~!. Repeat
this process for each BN H{), As H{"-1) = 1, this process will stop and number of elements in B
will be at most [H(®) : F() 4 (H@) . HEN 4 4 [H0-2) . g < p2 [

Remark: This capability to keep the number of generators “small” is fundamental to procedures
in this lecture and later. For, it guarantees that we can keep the size of the intermediate outputs
under control as we routinely concatenate polynomial-time procedures. We will routinely assume
this procedure is invoked as needed.

Proposition: There exists a polynomial time algorithm for ORDER.

Proof: Let w) be any point not fixed by G. As noted earlier, |G| = |G} = |GG : G,
where [G() :)] = lwf]. We may appeal to a recursive computation of |G} as G?) moves fewer
points than G. (Note here the implicit use of REDUCE GENERATORS. Without it the number
of schreier generators, as we pass through successive groups G{*), could grow exponentially). (0

Corollary: MEMBER isin P.
Proof: We saw earlier that MEMBER <p ORDER.

Problem: SUBGROUP?
Given: G = (4) < Sym(Q) and H = (B).
Question: Is H a subgroup of G 7

Note: G’ is the unique smallest normal subgroup of G such that G/G’ is abelian.
Proposition: Let G = (A) then G' = ([A,A])G.

Proof: Clearly {[4, A]) < G’ and as G’ G, therefore ([4, A)® < G'. Let v : G — G/([A, A)°
be the canonical homomorphism. Then G/{[A, A])® = x(G) is abelian since it is generated by m(A)
and [n(A), 7(A4)] = =([A, A]) = 1. Therefore, G’ < {[A, A])” (by the note above).

Problem: COMMUTATOR SUBGROUP

Given: G = (A) C Sym(Q).

Find: G’, the commutator subgroup of G.

Proposition: COMMUTATOR SUBGROUP is in P,

Proof: By the previous proposition, G’ = H® where H = {{{a,b] | a,b € A}). The generators
for H can be computed in polynomial time from the (polynomial number of) generators of G. The
proposition follows as NORMAL CLOSURE is in polynomial time. [

Definition: Let G be a group and G’ it commutator subgroup . Then the commutator subgroup
of G’ is denoted by G”. The derived series of G is the following chain of groups.

G2G'2G"2G"D...

(Continue until stable). If the derived series terminates at {1} then G is called solvable.

Problem: DERIVED SERIES
Given: G = (A} C Sym(Q2).
Find: The derived series of G.

Proposition: DERIVED SERIES is in P.

Proof: By repeated application of COMMUTATOR SUBGROUP (and REDUCE GENER-
ATORS as needed), we can compute the derived series. The algorithm stops when the chain
stabilizes. [

Problem: SOLVABLE

Given: G = (A) C Sym(Q).

Question: Is G solvable?

Proposition: SOLVABLE is in P .

Proof: Find the derived series for G. If it terminates in {1} then G is solvable. [

Definition: Let G be a group. The lower central series of G is the following chain of subgroups.
G = L%G) 2 LN(G) > L¥(G). .

11

where L%(G) = G and L'(G) = [G, L (G)] = ({[g,h] | 9 € G,h € L""}(G)}). If the lower cen-

tral series terminates in {1} then G is called nilpotent.

Proposition: L(G) « G for all i. Moreover if G = (A) and L"Y(G) = (B), then LYG) =
{la,6] la€ A,be B})C.

Proof: Similar to the proof of G' = {{[a,b] | a,b € A})C. O
Problem: LOWER CENTRAL SERIES

Given: G = (A} C Sym(Q).

Find: The Lower Central series of G.

Proposition: LOWER CENTRAL SERIES is in P .

Proof: Clear from above.

Problem: NILPOTENT

Given: G = (A4) C Sym(Q).
Question: Is G nilpotent?
Proposition: NILPOTENT isin P .

Proof: Find the lower central series for G. If it terminates in {1} then G is nilpotent. [

Remark: It can be seen (by induction) that L{(G) D G'¥). Hence G is nilpotent = G is solvable.

Definitions: Let G be a group.
(i) The center of G is the subgroup Z(G) = {g € G | g9’ = g'9,V¢’ € G}

(ii) The upper central series of G is the following chain of subgroups.
1=2%G)< 2 (G) < Z}(G) < ...

where Z°(G) =1, Z'(G) = 2(G) ,and Z(G) = {g€ G |[G.g] C Z'*-1(G)}. An equivalent
description of Z*(G) is as follows. 2°(G) = 1 and Z'(G)/Z""(G) = 2(G/Z'~Y(G)).

ili A central series in G is a chain of normal subgroups
G=G>2G1>...2G, =1

for which [G, Gi-1] C G; for each i,
(iv) If H < G then H is said to be subnormal in G if there exists a chain

H=LOSL1$-Q.SLm=G

where each L;_y o L;. It is denoted by H <G
(v) For H < G, the normalizer H € Gis Ng(H) = {g € G| g~'Hg = H}.

12

Proof: If we can find a complete set of right coset representatives for H in G, then we can find
Schreier generators for H. A naive search for these coset representatives works:

Algorithm:

R={1}
{ apply generators (on the right) to elements of R}
Foreachr € R,a€ A

if ra¢ Hr' for any ' € Rthen R — RU{ra}

Note: Testing membership of ra € Hr' can be performed by testing rar’~! € H, for which we have
a polynomial time algorithm. The above algorithm runs in time proportional to |A||R|*-tunning
time of the membership test for H. Note that, if rar’~! € H, then it is a schreier generator for H.

An application to graph isomorphism.

Definition: Let CGy be the class of vertex-colored graphs of color multiplicity < b, b a fixed
constant, i.e. there are at most b vertices of a given color.

Exercise: Before reading further, give a polynomial time non-group-theoretic algorithm for
testing isomorphism of two graphs in CG,.

Polynomial Time Algorithm for ISO of graphs in CG,

We reduce (using the observations in the first lecture) ISO for graphs X;,X, € CGy to finding
automorphism groups for graphs in CGy, (namely, find Aut(X), where X = X;0X; and X1, X2
are connected). As noted in the first lecture, if we view X as uncolored, Aut(X) is precisely the set
stabilizer Sym(V)(gy, where E C (g) y X = (V, E), and there is no polynomial time algorithm for
set stabilizer. However, in the current context, the problem is more constrained. We must not only
stabilize E, but also each color class. Let V = C, U...UC} be a decomposition of V into disjoint
color classes. Then Aut(X) < G = Sym(Ci) x ... x Sym(Ck). We can easily find generators for G.
Furthermore, if we let E; ; = {e € E | one of the endpoints of e is a vertex of C;, the other a vertex
of Cj}, and we let H = G, ;, i.e. the subgroup of G (as before, viewed as acting on (‘;)) that fixes
the set of edges from color class C; to color class C;, then surely Aut(X) < H < G. We can find
generators for H using the algorithm for GRS since [G : H] = the number of images of C; — C;
edges = | E; ;| < 2ICixCs] < 9(%)? (2 crude overestimate) and we can test membership in H, so H is
polynomial time recognizable. Having found generators for H, continue to find generators for the
subgroup of H that stabilizes edges between another pair of color classes. (This can be done using
GRS by the same argument as above). Repeat this process until all pairs of color classes have been
exhausted. Then H converges to Aut(X).

Remark: The above argument is essentially due to Babai, who described a random (Las Vegas)
algorithm for the problem. Furst, Hopcroft, and Luks observed that Sims’s methods obviate the
randomness.

Intersection of permutation groups.
Problem: INTERSECTION
Given: G = (A), H = (B) < Sym(9).
Find: GNH.

15

Proof: Exercise.

Solution to exercise: The test for subnormality is constructive in that it inserts the intermediate
groups in H = Ly, 9---a Ly = (G, H). Since H N L; normalizes L;,, repeated application of the
above algorithm for INTERSECTION-N yields generators for all # N L; 0

17

Claim: There is a polynomial time algorithm for STAB-NIL.
For this we will:
1. Reduce STAB-NIL to STAB-P (set stabilizer for p-groups).
2. Solve STAB-2 and briefly indicate how this solution generalizes to STAB-P.
3. For this, we will have to investigate the structure of Sylow p-subgroups of Sym(Q).

Proof: (of 1.) Without loss of generality, we may assume G is a p-group. (Recall that if H < G,
nilpotent, then H = (PN H | P the Sylow p-subgroup of G, for each p dividing |Gl}, so that
G{A} = Pl{a} X... X Pk(A).) D

Form a structure forest for G

Focus, for the moment on any node, v, in this forest. Lift G’s action to the entire forest. By
construction, Gy acts primitively on the children of v.

Claim: G a primitive p-group => G is cyclic of order p and acts on a set of size p.

Proof: G primitive on G = G, is a maximal subgroup of G. Maximal subgroups of p-groups
have index p. The index of a point stabilizer, [G : G.] is precisely the size of the orbit containing
w, which, in this case, is all of 2, since G is transitive on Q. Therefore, G is a primitive p-group
acting transitively on a set of size p, so G must be cyclic of order p.

Corollary: The structure forest for a p-group consists of complete p-ary trees.
Sylow p-subgroups of Sym({2)

For simplicity, consider first the case p = 2. To construct a Sylow 2-subgroup, build a forest of
complete binary trees whose leaves are points of 2, subject to the criteria that the trees in this
forest be as “large” as possible (in the sense that no two trees have equal height, since those
could be joined to form a single larger tree). [Call such forests mazimal] Then the group of all
automorphisms of this forest induces on precisely a Sylow 2-subgroup. Note that if n = by...b1bg

is the binary representation of n, then for each b; = 1 there will be a complete binary tree of height
i in this forest.

Note: If we have one Sylow 2-subgroup of Sym(Q), we “know” them all, since all Sylow 2-
subgroups are conjugate. (It is easy to see that conjugacy in Sym(n) amounts to renaming the
points: the permutations o and 09 = g~'ag have the same cycle structure, in fact, the cycles of o¢
are obtained from ¢ by replacing each i € {1...n} by i7).

One can check that the construction above indeed gives a Sylow 2-subgroup by comparing its order
with the order with the largest power of 2 dividing n!. The order of the group may be computed
as the product of the sizes of the automorphism group of each tree in the forest.

Exercise: (1) Find the order of the automorphism group for a complete binary tree of height m.
(2) Show that the above construction yields a Sylow 2-subgroup of Sym(n).

Let G be a 2-group < Sym(2). We can embed G in a Sylow 2-subgroup of Sym(Q) (i.e. find
2 Sylow 2-subgroup of Sym(f2) containing G) by finding the structure forest for G, extending it
to a maximal complete binary forest, and considering the automorphism group of this forest. See
{Aho, Hopcroft, Ullman] for a description of polynomial time algorithms for testing isomorphism
of trees. From the methodology presented there, it is possible to develop an algorithm for finding
automorphism groups of trees (Ezercise/).

19

problem of finding color automorphisms in a 2-group, that is, finding the subgroup fixing each of
several “colored” subsets; clearly the problem is polynomial-time equivalent to STAB).

(Editorial comment by lecturer: Note-takers felt the above reduction could be omitted since the

lecture did closely approximate the discussion in the cited paper. That was not the case for STAB-
NIL; see remarks at start of next lecture).

21

Note: (i) STAB reduces to finding centralizers of involutions. (ii) In the above reduction, k ¢G
(considering G £ Sym(R)). If h € G then Cg(h) is called Internal Centralizer. We can reduce
STAB to INTERNAL CENTRALIZER, by finding Cign)(h). As theset B = {{w,w'} |w€Q}isa
block system for {G, h}, each generator of Cg ay(h) induces a permutation in Sym(B) = Sym(Q).
These induced permutaions give generators for Cg(h).

Definition: Let g € Sym(Q), then the graph of g is Ay = {(w,w?) |w € R} C QO x Q.
Let Sym(f2) act on Q x Q in the natural way: (e, 8)¢ = (a%, 89).
Facts: Let g,h, by, ha € Sym(Q),
(i) Ap, = Ap, <= hy = hs.
(i) (AR) = Aps.
(iii) gh = hg <= (Ar) = A,.
Proof:
(i} Clear, by the definition of graph.
(i) (An)9 = {(,0) |w € Q} = {(r, 797*49) | 7 € 0} = Agmrpy = Aps.
(iii) gh=hg <= g7 hg=h <= Ag-ipy = Ap by (i)] <= (Ar)? = Ay [by (ii).

Remark: CENTRALIZER <p STAB. By (jii) above, Cg(h) = Gya,}- Hence by a previous
proposition, CENTRALIZER =p STAB.

Remark: Since CENTRALIZER is as hard as STAB, and so at least as hard as [SO, we will not
attempt to solve this in our attack on CENTER. The critical observation that will put CENTER
in polynomial-time is that the solution to the problem is a normal subgroup. In fact, we will solve
the more general problem of finding the centralizer of a normalized group.

Exercise: If G,H < Sym(2) and G normalizes H, then Cg(H) < G.
Solution: For any g, H, note that g'ICa(H)g = Cg(g~ ' Hg).

Problem: CENTRALIZER-N
Given: G = (A}, H = (B) < Sym(Q), where G normalizes H.
Find: Cg(H) = {g € G| gh = hg,Yh € H}.

Proposition: CENTRALIZER-N is in P,

Proof: For each b € B form Ay C Q2 x Q. Then Cg(H) = {9 € G | As? = Ay, Vb € B}. By the
exercise above Cg(H) 2 G.

Define an equivalence relation ~ on @ x 2 as follows: for o, € Q x Q, a ~ § <= a,fB lie
in exactly the same Ay’s for b € B. Let the induced partition II consist of equivalence classes
I, y,...1I;; then Co(H) = {g € G | ;¥ = II;,V1 < i < r}. Now, for any = € G, the cells in
the partition ¥ = {IIf. I1,... II7} are stabilized by z~'Cg(H)z = Cg(H). Hence Cg(H) is the
subgroup of G fixing the classes in the common refinement, {INT7 | M;NIE #£0,1 <i,5 <r),of
I, I1*. Thus, it follows similarly that Cg(H) is the stabilizer of the cells in the coarsest refinement
I of II that is compatible with the action of G, i.e., such that I =1 for z € G.

23

Timing: Let T(G) denote the time required to solve SNS for G. Assuming we can find a proper
normal subgroup N of G in polynomial time, we have T(G) = T(N) + n°, (for some fixed constant
c) if N does not have a solvable normal subgroup, and otherwise T(G) = T(N) + T(Cg(N)) + n®.
The key observation is that we only have to consider Cg(N) when SNS returns “no” for N, and
in that case, Cg(N)N N = Z(N) = 1 (since Z(N) is a solvable normal subgroup of N). Thus,
if the second recursive call to SNS is invoked, we know that |G| > |N{|Cg(N)|. It follows that
T(G) = O(log(|G|)n®), and hence SNS is in P.

Next time: Special case of Proper Normal Subgroup, that is when G has a solvable normal
subgroup.

Discussion and Proof: [t is not difficult to extend basic (Sims’s) membership testing algorithm
to this case of partial permutations (though we may have obscured the issue with a particularly
high-level approach to MEMBER in lectures 1,2). However, it seems worth observing another
approach that reduces the problem directly to point stabilizer (i.e., the case when f is the identity
on A). This approach is reminiscent of the reductions such as ISO to finding automorphism group
and of SET-TRANSPORTER to STAB (Erercise: Explore that!). Also, it is particularly useful
in a parallel (class NC) approach to the partial permutation problem for the ordinary (sequential)
membership test is not available, though pointwise set stabilizers are.

We assume that we have an algorithm for pointwise set stabilizers. Note first that if g € G is
any extension of f then the set of all such extensions is given by Gag.

The group G x G acts naturally on Q x Q (via (o, 8)#*) = (a9, *)). Define z € Sym(Q x §2)
by («,8)" = (B,@) and let H = (G x G,z) (thus, H is the wreath product G1Z2). Let A =
{(6,f(6))| 6 € A}. Find L = Hg.

(1) If L < G x G then there is no g € G extending f,
else take y € L — G x G; then yz = (9,h) € G x G and
(2) g is an extension of f. (]

Exercise: Prove (1) and (2) above.

Returning to main track -
Definition: A subgroup H < G is a characteristic subgroup if / is invariant under all automor-
phisms of G, i.e. for all & € Aut(G),c(H) = H.
Exercise:
(i) A characteristic subgroup H < G is a normal subgroup of G.
(i) For any group G, G’ the commutator subgroup of G, is a characteristic subgroup.
(iii) If K is characteristic in H and H <G then K aG.

(iv) If K is characteristic in H and H is characteristic in G then K is characteristic in G.

Recall from the previous page that we have reduced PNS-S to the case where G is primitive. If
G has a solvable normal subgroup 1 # H 4G, then G has an abelian normal subgroup (the last
non-trivial term in the derived series of H is an abelian subgroup, and by the above exercise, it is
normal in G).

Definition: G £ Sym(?) is regular if G is transitive and Vw € Q, H,, = 1.
Exercise:

(i) Gisregular <= VYa,f €Q 3! g € G such that o? = . (= |G| = |Q)).
(ii) G transitive and abelian => G regular, and Cgymia)(G) = G.

Hence, if G is primitive and has an abelian normal subgroup H, then H is transitive (orbits of
normal subgroups of G are blocks for G) and hence regular (by exercise above). H must be proper,
otherwise G would be a regular primitive group, hence of prime order, a case excluded in the
problem statement. If we actually had generators for H, we’d be done.

27

Lectures #6, 7 30 April, 1 May 1990

Algorithms for computing radical and fitting subgroups

Definitions: Let G be any group.
() The Radical of G is the maximal solvable normal subgroup of G, denoted by Rad(G).

(ii) The Fitting subgroup of G is the maximal nilpotent normal subgroup of G, denoted by
Fit(G).

(iii) The p-Core is the maximal normal p-subgroup of G, denoted by Fity(G) or 0,(G).

Remarks: (i) The subgroups defined above are all unique, as the subgroup generated by two
normal solvable/nilpotent/p-subgroups of G is again a normal solvable/nilpotent/p-subgroup of G.
(1i) The term “radical”, for maximal solvable normal subgroup is not standard.

Note:
(1) Op(G) < Fit(G) < Rad(G).
(ii) Fﬂ(G) = npprime OP(G)
(ii)) Op(G) = Nyeg P?, where P is a Sylow p-subgroup of G.

Remark: Finding Op(G) via (iii) would require use of classification of finite simple groups, which
is presently essential for polynomial-time computation of Sylow subgroups [Kantor].

Problem: RADICAL
Given: G = (A) < Sym(Q)
Find: Rad(G).

Claim: There is a polynomial time algorithm for RADICAL.

Proof: Since we know how to find a solvable normal subgroup H of G (invoke SNS with input
G), one might suppose we could recursively invoke SNS with G/H. However, we have no faithful
permutation representation of G/H.

Instead, we proceed as follows. Let 1 3 H <G, with H abelian (if K is the solvable normal subgroup
returned by SNS with input G, then let H be the last nontrivial term in the derived series for K).
Let Ay, As,...,A, be the orbits of H, and H&' HA2 . . HA3" be the constituents of H (the
constituent of H on A;, denoted H%i is the group induced by H on A;). HA: s transitive and
abelian, so it is regular on A;, and |HA'| = |A¢]. Let & = UISfSr H8i (disjoint union). Then
|Z] = |2], and G acts on T as follows: let g € G, and h; € H, and suppose A7 = A; (the orbits
of H are blocks for G), then h;? is g~ h;g restricted to A; (note that the identity of H4¢ is mapped
to the identity of H24). Let G - Sym(Z) denote this action, and X = Ker(r)aG. Then H < K
(as H fixes A; and commutes with H2¢). K stabilizes A; (since, in the action on T it fixes the
identity of H2) and K4 centralizes H2 so K8i = HAi (H® is its own centralizer in Sym(A;)).
Hence K is an abelian normal subgroup of G, and G/K — Sym(Z). Now, equipped with this
faithful action of G/ K, we can recursively find the Rad(G/K). Since Rad(G/K) = Rad(G)/K, we
finish by forming the pullback of Rad(G)/K in G (see lec. 5, p. 1).

Exercise: Verify that the above algorithm runs in polynomial time.

29

Let K = Op(G), then [H, K] < H and is normal in G (since both H, K a G). By the minimality
of H,[H,K)=1or [H,K]= H. Since H is nilpotent, [H,K]=1.0

If we can find a minimal normal p-subgroup H of G (in polynomial time) then the action 7 of G on
the orbits of H, has a p-subgroup K as kernel, and so Op(7(G)) = O,(G)/K, and we can recurse
to find O,(G).

Given any non-trivial normal p-subgroup, we can find an abelian normal p-subgroup and then an
elementary abelian normal subgroup (Ezercise. Verify that!). Thus we assume H is an elementary
abelian normal p-subgroup. Then G acts on H, by viewing H as a vector space and the actions
are linear transformations. Hence, finding minimal normal subgroups of a group G is reduced to
finding an irreducible subspace for a set of linear transformations of a vector space over a finite
field. The latter was an open problem for some time and was proposed by Kantor, to complete this
approach to Op(G). This problem was solved by Rényai.

An amusing aspect of the above version is that, ignoring Rényai’s ultimate contribution, Kantor
had reduced finding a maximal normal p-subgroup to finding a minimal normal p-subgroup.

Version 3'

This is merely a hybrid, not a different approach. We observe that method in the algorithm
for RADICAL enables us the avoid the problem of finding minimal normal p-subgroups (for which
Ronyai has to introduce considerable machinery, including a constructive version of the Wedderburn
theory for rings). An alternative approach to the second case (p||H|) above is to use the action 7
on the set of constituents of an abelian normal p-subgroup H. In this case, the kernel, K, of 7 is
an abelian, normal p-subgroup of G and so K < Op(G) and O,(7{G)) = O,(G)/K.

Remark: There is another algorithm due to P. Neumann.

32

Remark: Soc(G) = My x ... x M,, where the M;’s are minimal normal in G. The socle is
therefore a direct product of simple groups.

Note, finally
Lemma: Any two minimal normal subgroups of a group centralize each other.

Proof: If My, M; are distinct minimal normal subgroups in G then [M;, M3] 4G, and [M);, M;] <
My N M, < M;. By the minimality of M, [M;, M3] = 1. (This also follows directly from the first
Proposition in this lecture).]

Note that above M; and M2 “commute” not just in the weak sense that M; My = MM, but
additionally that each of these groups centralizes the other.

Socles of primitive permutation groups

Let G < Sym(Q) be a primitive group. Let N = Soc(G). Recall that any normal subgroup of a
primitive group is transitive. If N = M; x ... x M,, (each M; minimal normal in G) then each M;
acts transitively on Q. If s > 1, then each M; commutes with each of the other M;’s (i # j), So
for example, M; and M; are commuting, transitive groups.

Remark: We will soon see that s < 2.

Definition: A group K < Sym({Q) is called semiregular if its point stabilizers, X, for w € Q,
are trivial. (So a group is regular iff it is transitive and semiregular).

So, if K is semiregular and o, € Q then there is at most one element in G mapping o to 8
(for all such elements lie in the same right coset of Kg).

Lemma: If K is centralized by a transitive group H, then K is semiregular.

Proof: Ko = K.* = Kon = Kg, if o* = B. Since H is transitive, for each g € Q,3h € H such
that o = 8. It follows that K, = Ky VB € Q,ieK, =10

We use this to show

Proposition: If M;, Mz are commuting transitive groups then M; and M, are both regular and
My = Csym(n)(M2), My = Csymiay(M1).

Proof: By the previous lemma, M; and M, are both regular. Since Csym()(M1) commutes
with the transitive group M, it contains, for any o, 8 € 2, at most one element mapping a to 8.
But there is already such an element in My < Cgyp(a)(M1). Hence M; = Csym(q)(M2). Similarly
Mz = CSym(ﬂ)(Ml)- 0

From this discussion we immediately get

Corollary: If M), M are distinct minimal normal subgroups of a primitive group G < Sym(Q)
then M, and M; are both regular and M; = Csym(n)(M2), M2 = Csym(n)(M1).

Since Mz could have been any minimal normal subgroup distinct from M, it follows immedi-
ately that

Corollary: A primitive group has at most two minimal normal subgroups.
In fact, if there are exactly two minimal normal subgroups, we can say more.

Let G be a group. G acts on itself via right multiplication: p: G — Sym(G),g° : h — hg. This
action is called the right regular action of G on itsell. We can also define the left regular

34

that corresponds to n? = g~!ng, are the same. The former point is w™9, the latter is w™ = w919
Note that g fixes w, so W™ = wg—:"g, which is exactly what we needed to show.

Since G, 's action on € is precisely G, 's action on N by conjugation, G, ’s acts faithfully on Q as
a group of linear transformations. (Faithful because any element of G,, in the kernel of that action
would have to centralize N, but N is an abelian, transitive and is therefore its own centralizer and
is regular, so the centralizer of N in G, is N, = 1) So G, — GL(d, p).

G is the semidirect product G = G, N, and we now know that G, is a subgroup of the set of linear
transformations of {2 and N is the full group of translations of . Therefore G — AGL(d, p), the
affine group of a vector space of dimension d over a field of characteristic p.

In fact we can say even more: G, acts irreducibly in Q. For if there were a proper invariant
subspace of Q, (bearing in mind that Q and N are identified), this subspace would constitute a
normal subgroup of G, properly contained in N, contradicting the minimality of N.

Remark: All primitive groups with an abelian socle have this structure. To build examples of
primitive groups with abelian socles, pick d, p, form § = Zpd, and include in a set of generators
enough translations to generate the full translation group, and enough linear transformations to
guarantee an irreducible action on Q.

Exercise: For G primitive in Sym(n) with abelian socle, verify that |G| < nttlogn,

Point stabilizers in socles of primitive groups with no regular normal subgroup

Let G < Sym(Q) be primitive, N = Soc(G) = T} x ... x T, where the Ti’s are isomorphic,
nonabelian simple groups, and N is the unique minimal normal subgroup. Then G acts by congu-
gation on N by permuting the set {T3,...,T}. This action must be transitive, since otherwise a

nontrivial orbit would generate a normal subgroup of G properly contained in N, contradicting the
minimality of N.

For a pointw € , G = G, N but since G has no regular normal subgroup, N, = G,NN # 1. Hence
although G factors as G = G, N, G is not the semidirect product of these two subgroups. Since N

acts trivially on {T3,...,T;}, and G acts transitively, G, must act transitively on {T},...,T}} as
well.

Consider the group N,,. This is a G-invariant subgroup, and 1 < N, < N.
Claim: N, is a mazimal Gy-invariant subgroup of N.

Proof: Suppose there is a G-invariant subgroup H such that N, £ H < N. Since G, normalizes
H, G, H is a group, and G, < G H < G. Since G is primitive, G, is a maximal subgroup, so
either G, H = G, or G,H = G. Consider the first possibility: GuH = G, implies H < G,,. Since
we also know that H < N, we find that H < G, NN = N,. So in this case, we find H = N,,.
Now consider the second possibility: G,H = G implies H o G (it is normalized by both G, and
H), but, as N is the unique minimal normal subgroup, N < H. Since, by hypothesis, H < N, we
must have # = N. [

36

Case II1

We define a case III group to be a primitive group G with no regular normal subgroup and mi(Ny) =
T; for all i. Our analysis of this case will depend critically on the following (folklore) lemma, to the
proof of which we devote the remainder of the lecture.

Lemma : Let G — H =Tj x ... x T} be a subdirect product {(i.e. m(G) = T;), where each T} is
a simple nonabelian group. Then after some rearrangement of the factors, we may write

H=(Mx..xT)x (Thy1x...xTy)x...x (Tixony+t % .. x T,)
such that Tj, 41 = T 49 ...=2T,, foral 0 < j <k —1 (where ig = 0), and
G =diag(Th x ... x T} x diag(Tiy41 x ... x Ty} x ... x diag(Ty,_, 41 X ... x T;,),

(i-e. after appropriate identifications, G = {(a...a}B...8)...(x...x)}).

Proof: Define a relation on {1,...,r} such that i ~j <= Vg€ G,m(g) =1 = m;(g) =1, ie.
ker(m;) < ker(m;), or equivalently, =;(ker(m;)) = 1.

Claim: ~ is an equivalence relation. Proof: Reflexivity and transitivity are immediate, so we
verify symmetry. Suppose i ~ j. We need to show j ~ i, i.e. L = m;(ker(m;)) = 1. ker(mj)aG =
L = mi(ker(m;)) a m(G) = T;. Suppose L # 1. Then we must have L = T, since T} is simple. Let
g € G such that 7;(g) # 1 (this is possible since G is a subdirect product). Then there exists some
h € ker(w;) such that m(h) = m;(g) (since L = T;). Now r;(gh'l) =1, but m;(gh~!) # 1. But this
contradicts our assumption that i ~ j.

Next we show that the equivalence classes of this relation correspond to diagonal blocks of G. Let
{Bi,..., Bk} be the equivalence classes. Fori=1,...,k let D;={ge G | 75(g) = 1Vj ¢ B;}.

Clatm: =,(D;) = T,,Vs € B;. Proof: Lets € B;. D;aG = 7s(D;) o T,. Since T, is simple, it
suffices to show that m,(D;) # 1. Pick g € G such that m,(g) # 1 and [{{ | m(g) # 1}] is minimal. It
suffices to show that g € D; (since then 1 # m,(g) € m,(D;)). Suppose, to the contrary, that g & D;.
Then there is some j ¢ B; such that m;(g) # 1. Let g, = m,(g). There exists ¢, € T, such that
[95:ts] # 1 (Z(Ts) = 1since T, is nonabelian simple). Since s € B; and j ¢ B;, we know that s # 3.
This implies that m,(ker(r;)) = T, and so there exists & € ker(m;) such that m,(h) = t,. We will
complete the proof by showing that the element [g, h] contradicts our choice of g, i.e. 7s([g,h]) # 1
and {1 | m([g,h]) # 1}] < |{I | m(g) # 1}|. Observe that m,([g, h]) = [r,(g), ms ()} = fgs,15] # 1.
Since mm(g) =1 = mm([g,h]) = 1, we have & = {I | m([g,h]) # 1} C V = {I | m(g) # 1}. However
(i, K)) = [rs(a), m3(h)) = [r3(9).) = 1, 50 U C V (j € V\). O

By this claim we know that Vs € B; =, : D; — T, is surjective, and D; N ker(m,) = 1. So for all
s € B; we have m, : D; — T is an isomorphism, and D; = diag(I1,ep,; T3)-

All that remains is to show that G = Dy x ... x Dy. Clearly G > Dy x ... x Dy. For g € G, we
need to show that g € D; x ... x Dy. For each i, 1 <i < k, pick an 5; € B; and h; € D; such that
ei(hi) = ms;(g). Then my,(g(ha1ha ... he)™") = 1 for all 4, so m(g(hiha... hx)~?) = 1 for all { € B;
and for all i, which implies that g(hyhz...hx) ' = 1ie g= (hha...hg) € Dy x ... x Dy. This
completes the proof of the lemma. 0

38

Problem: PNS-1
Given: G = (4) < Sym(Q)
Find: One of the following:
(i) Generators for a proper normal subgroup of G.
(ii) The report “ G is simple”.
(iii) A faithful action of G on a domain of size at most |Q2}/2.

Note : Clearly repeated application of PNS-1 when the output is of type (iii) yields an algorithm
for PNS. Hence PNS <p PNS-1 and the running time for PNS is log(|Q|) times the running time of
PNS-1. It would suffice (in PNS-1) to produce in (iii) a faithful action of G on any domain of size
smaller than |Q, in which case the running time for PNS would be a factor of |Q] slower than the

running time of PNS-1. However it is useful for application in the parallel algorithms to observe
that the size of the domain is halved.

Claim : PNS-1 (and hence PNS) can be solved in polynomial time.

Proof : Let G < Sym(Q) be given. We may assume that G < Sym(Q) has no orbits of size 1.
Algorithm (for PNS-1)
Step 1:
If G is not transitive then
A + the second largest orbit of G’s action on Q. (Therefore, |A| < |]/2.)
Let G 5 Sym(A) be the induced action on A.
K — Ker(w).
If K # 1 then {X is a proper normal subgroup of G since |A| > 1.} output X .
Else output G < Sym(A) where [A| < |Q]/2.
Else {G is transitive.}
Step 2:
If G is not primitive then
B «— a non-trivial block system. (Then, |B| < |2}/2.)
Let G 5 Sym(B) be the induced action on the blocks.
K — Ker(r).
If K # 1 then {K is a proper normal subgroup of G since G is transitive.} output X .
Else output G < Sym(B) where |B| < ||/2.
Else {G is primitive.}
We may now assume that G is primitive on Q.

Remark : We could look for proper normal subgroups by computing &' or Z (G), and if they were
not proper we could assume G = G’ etc. but this would not get us too far.

Step 3:
If [G] = || = n then output “G is simple of prime order”
|G| = [2| implies that G is regular (acts on itself). Moreover G is primitive so it has no proper

subgroups (the cosets of a proper subgroup would form a non-trivial block system for this regular
action) and hence it is of prime order.

40

Lecture #11 21 May 1990

An algorithm for testing simplicity — contd.

Problem: PNS-1
Given: G = (A4} £ Sym(Q)
Find: One of the following:
(i) Generators for a proper normal subgroup of G.
(11) The report “G is simple”.
(iii) A faithful action of G on a domain of size at most [Q]/2.

Recall from last lecture, that the problem of finding a proper normal subgroup PNS, reduced to
PNS-1. The goal is to show that PNS-1 can be solved in polynomial time. In the previous lecture
we began describing a polynomial time algorithm for PNS-1. We saw that if G is not primitive, or
if G is primitive and has a normal subgroup of index < |2, or has a regular normal subgroup then
the algorithm (described so far) would have terminated with an appropriate output.

The rest of this lecture completes the description of the algorithm for PNS-1.

We can now assume that G is primitive on 2, does not have a proper normal subgroup of index
< n = |, and does not have a regular normal subgroup. In the previous lectures #9,7#10, we
classified primitive permutation groups into 3 cases. Since G does not have a regular normal
subgroup, G is not in Case I under this classification.

Algorithm (for PNS-1) contd:

Step 6:
Fix o € Q.
For all #,7,6 € Q do
H — {Gap, Gys).
If G = H reject {B,7,6).
Else A «— a minimal block system for G’s transitive action on the cosets of H.
Let G 5 Sym(A) be this primitive action.
K «— ker(w).
If K # 1 output the proper normal subgroup K.
Else if |A] < |Q]/2
output G < Sym(A).
Else reject {8,7,6}.

Claim: Suppose the action of G on Q is in Case I (see lecture #9) with r > 1 or Case III (see
lecture #10) with I > 1. If step 6 is reached, the algorithm will halt there.

Proof: In these two cases we have

(2) Soc(G) =Ny x ... x Ny, with m > 1

(b) G acts (by conjugation) transitively on {N1,...,Nn}
(c) For any @ € Q, 50c(G)a = (M1)a X - . (Nm)a

(d) (Ni)s is a proper normal subgroup of ;.

42

there exists o, f such that o # £ and a** = B. If no kernel was found in the action of G on I’
then in the faithful primitive action of G on A, t; has a fixed point {say &), namely the block
containing {a, #}. Therefore this action is a case II action and A = (I1/1(T)al)”. Since G's
action on () is a case IIT action we have [Q| = |T}|"1. Subclaim: |A| < [Q]/2. Proof: Suppose
not. Therefore [T1["/|(T1)al” > |T1[""'/2. This implies that |T3| > [(Ti)a]7/2 > 27!, Now
n =Ty} > 2lr=1{r-1) > rl. Since G acts transitively on {Ti}i<i<r the kernel of this action has
index < r! < n. This contradicts the fact that G has no proper normal subgroup of index < n. [.

Step 8:
Output “G is simple (nonabelian)”

By the above, if Step 8 is reached, the action of G must fall into Case II with r = 1. Thus
Soc(G) = T is a nonabelian simple group. Let G = Aut(T}) be the natural map (Th «G). Then
ker(r) = 1, for otherwise ker(r) = Ca(T)) £ 1 = Ce(Ti)NTy =1 (since T is nonabelian simple)
= T is not the unique minimal normal subgroup, which contradicts Soc((G) = T1. Hence we have
Ty = Inn(T1) — G — Aut(Ty). Also, G = G’ (otherwise as remarked in the previous lecture, G
would have a normal subgroup of index < n). By the Schreier conjecture (which is proved due to the
classification of simple groups), Aut(T})/Inn(T}) is solvable. Hence G = T} (since G/T is solvable
and (G/T1)' = G/T\). Note that is is the only place in the algorithm where the classification of
finite simple groups is needed.

This proves the claim (in the previous lecture) that PNS-1 can be solved in polynomial time. [

44

Proof: Repeated application of MAXIMAL NORMAL gives an algorithm for COMPQSITION
SERIES. O

The polynomial time library for permutation groups

There is somewhat more to be said about the expanding toolkit for polynomial-time computa-
tion in permutation groups. For a summary, with references, of the status of the field as of Spring
1990, we refer the reader to [W.M. Kantor and E.M. Luks Computing in quotieni groups,, Proc.
22nd ACM Symposium on Theory of Computing, May 1990, pp. 524-534]. This is available as a
Technical Report [CIS-TR-90-07] from the Department of Computer and Information Science, Uni-
versity of Oregon, Eugene, OR 97403. (The TR has a footnote updating two of the open problems
of the STOC version).

46

