The Kate Project:
Supporting Specification Construction

Stephen Fickas, John Anderson
William Robinson

CIS-TR-90-24
December, 1990

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

The Kate Project:
Supporting Specification Construction

Stephen Fickas
John Anderson
William Robinson

Computer Science Department
University of Oregon
Eugene, OR. 97403

Abstract. Over the past seven years, a group of faculty and students at Oregon have been in-

volved in the study of requirements and specifications of complex systems, ones that involve phys-
ical, social and software subsystems. The focus of this work, all falling under what we call the Kate
project, has been finding support for the specification process. Our concentration has been on two
related research efforts: 1) formalizing the specification construction process, and 2) building com-
puter-based tools based on this formalization. The outcome of these two efforts has been a speci-
fication methodology and a set of tools that support it. In this paper we will 1) present the
methodology and the issues it raises for formalization and automation, and 2) describe the tools
that we have built and their results as they relate to the methodology and issues.

1. Introduction

Formal specifications are hard to construct. There have been two major research directions pro-
posed to address this difficulty. In the first, the problem is perceived as that of language design; if
we make the specification product language easy to program in (we use the verb program loosely
here}, or easy to reason about, or free from implementation detail, then we will see formal specifi-
cations being built faster, with fewer bugs, and by the masses (as opposed solely by the research
group who defined the language). The majority of work in software specification centers on this
view,

In the second view, one attempts to come to grips with the construction process itself, We must
study how specifications are constructed from requirements, and provide the methodologies to
guide the process and the tools to support it. While in the minority, there are research projects in
software engineering that take this process oriented view. However, such projects typically center
not on the specification process, but on the implementation process, i.¢., the process that starts with
a fully constructed formal specification. Our project, called Kate, is one that attacks the specifica-

tion problem from a process oriented view. In this paper, we will discuss our attempts, over the last
seven years, to formalize and automate the specification construction process as part of the Kate
project.

The paper is laid out as follows. Section 2 presents the specification construction process as a two-
step cycle. It is this model or methodology that we use as the heart of further discussion. This sec-
tion also presents three issues that have come to the forefront in our research efforts. For the most
part, they remain open research problems for us. Sections 3, 4, and 5 have a common purpose of
presenting diverse Kate projects in an understandable, unified way. Section 5, in particular, dis-
cusses what approaches we have taken in formalizing and automating our methodology. Section 6
discusses the pluses and minuses of these approaches in relation to the overall goals of the project.

2. A specification construction methodology

We propose a model of specification construction that is based on an incremental cycle of valida-
tion and modification, as shown in figure 1. A development state consists of 1) a set of goals to be

Development State;

Modify Validate

Critique

Figure 1
achieved, 2) anoperational model that has been proposed for achieving them, and 3) links between
the goals and the model. The validation process checks for three types of problems in a develop-
ment state:

Goal verification. Does the model effectively achieve the goals? Goals represent states to
reach or avoid. Are those states reachable or avoidable given the model?

Model validation: Is the model realistic? If it takes a naive view of the environment, then
goals which appear to be met in the specification may not be met when
the system is actually delivered.

Goal validation. Even if the model is valid and the goals are achieved, are they the right
goals? Do they allow behavior that might be deemed undesirable in typ-
ical systems encountered in the domain?

The answers to these three questions lead to a critique of the current development state. From this
critique, certain model or goal modifications may be suggested. This leads to a new development
state, and the cycle is repeated. Development halts when either the critique is empty, or the client

Page 2

accepts the consequences of the critique, i.e., the cost of ignoring a critique is less than the cost of
addressing it. The final development state reached contains the specification, in the form of the

modell, and the specification rationalization, in the form of links to the clients goals.

The result of this cycle is a sequence of development states that form a history of the specification
construction process (see figure 2).

Development Development
GOALSy Step 1 GOALS, Step n
/ \ : / \ o0
MODELg MODEL,
Initial State Final State
Figure 2

The following properties may hold for any development:

« Modely = @. It is not required that we start with a non-empty initial model. Typically we
do so to reflect certain initial conditiions of the problem. However, we can also derive all
that we need by noting goal failure problems (likely to be total with an empty model), and
use the modification step to gradually build up the model.

« Goalsg = @. It is not required that any goals be given in the initial state. In this case, any

critique produced would focus on typical goals one finds in the application domain, noting
their absence in the current development (see the example in section 5.1.1).

- Goalsy # Goals,. The original goals proposed by the client are modified during develop-

ment. This type of modification may include either strengthening or weakening the goal
set.

» Modely = Model,,. The model first proposed is deemed satisfactory as the final specifica-
tion. All of the development steps, if any, are focused on the goal space (see above).

In a typical development, one would expect to start with non-empty goals and a non-empty model,
and produce modifications to both the model and the goals. Further, in a typical development one
would expect that alternative modifications might be considered at each development step. Figure
2 shows the final or ideal development path, one that does not illustrate the alternatives considered
and rejected. We expect to capture these alternatives, and the criteria for selecting among them, as
part of the development history as well.

1. In the context of our representation of a development state, we will use the terms specification and model
synonymously throughout the rest of the paper.

Page 3

2.1 Issues arising from the methodology

The methodology we have proposed is based on a cyclic validation-modification process. Our ef-
forts to formalize and automate this process have raised three key research issues:

Issue 1. There is a tension between formalization and closed specifications. Useful specifications
of complex systems must be closed; they must model both the artifact to be built and the environ-
ment that it interacts with. This implies the need for models of complex subsystems within the en-
vironment, e.g., human users, physical devices. Such models, and effective procedures to reason
about them, push the boundaries of formal representation.

Issue 2. Specifiers must be freed from unrealistic constraints. Certain restrictions must be enforced
in a final specification if one has any hope of a correct implementation being produced. These re-
strictions include completeness, consistency, and non-ambiguity [Meyer 1985). However, attempt-
ing to enforce these restrictions during the specification construction process is futile. Clients lack
a complete model of their proposed system, state inconsistent goals, and use highly ambiguous lan-
guage. We view these as requirement freedoms that must be supported. In particular we expect that
the road to a complete, consistent, non-ambiguous final specification must lead through incom-
plete, inconsistent, and ambiguous development states. Representing and reasoning about such
states again pushes our formal methods.

Issue 3. A single perspective of a system must give way to multiple viewpoints. In complex do-
mains, there are typically multiple interest groups, each with their own priorities and agendas. En-
gineered artifacts in these domains are a mixture of the goals of these groups. One must represent
both the “requirements space” for each group and the negotiation process that leads to a common
agreement. Thus, figure 2 is a simplification: we need a separate development line for each interest
group we identify, and another process that integrates these into a final whole.

These three issues are problematic in isolation. Their interaction only exacerbates the problem. The
tools that we report on in this paper do not individually address all three issues, nor does the union
of our tools fully cover all issues. However, they do set useful boundaries on what is possible in
terms of both formalization and automation.

Page 4

3. A Common Example: the Library Problem

To illustrate the tools we have produced and the issues they address, we will use a common exam-
ple problem, that taken from an automated library system. A typical description of a library sys-
tem, as seen in the literature, is given in figure 3.

Consider a small library database with the following transactions:
1. Check out a copy of a book / Return a copy of a book;
2. Add acopy of a book to / Remove a copy of a book from the library:;
3. Geta list of books by a particular author or in a particular subject area;
4. Find out the list of books currently checked out by a particular borrower;
5. Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff and ordinary borrowers. Transactions 1, 2, 4 and 5 are restricted
to staff users, except that ordinary borrowers can perform transaction 4 to find out the list of books
currently borrowed by themselves. The data basc must also satisfy the following constraints:

6. All copies in the library must be available for checkout or be checked out.
7. No copy of the book may be both available and checked out at the same time.
8. A borrower may not have more than a predefined number of books checked out at one time.

[IWSSD 87]

Figure 3

The construction of a specification of a library system from such a description may appear simple,
contradicting our claim to be using complex problems as specification examples. In particular,
specification may be viewed as nothing more than taking a tracking or database application off the
shelf (or finding the right database-tracking schema in a catalog as in [Rubenstein&Waters 1989]).
Wing summarizes an opposing view:

“Real libraries are not simple. They involve more than just people, books, and a database.
They have policies according to who the borrower is, what kind of book it is, what time of
year it is, and, of course, exceptions to all of these policies.”

We concur. Libraries try to satisfy the conflicting concerns of users, staff and administrators; they
employ many mechanisms to deal with both errorful and irresponsible behavior; they involve
complex responsibility assignments among agents. In summary, libraries are complex systems
which require sophisticated analysis to derive adequate specifications. Hence, it is not surprising
that the issues that we identified in section 2.1 show up here.

Models of closed specifications. A closed specification of an automated library system may even-
tually involve the modeling of a complex environment, e.g., the “university” of a university li-
brary, the “city” of a city library. Formal models of even simple sub-pieces of such environments
may be difficult to represent or reason about.

Requirement freedoms. Consider the request by a client for a small library (line 1 in figure 3).
Among other things, this may be a constraint on the size of the book collection, the size of the pa-
tron set, the size of the operating budget, or some combination of each. Is this ambiguity harmful?
Certainly it is in the final specification. However, during the specification construction process, we

Page 5

may be able to leave small in its ambiguous state until demanded to disambiguate it. In particular,
small can be viewed as an abstract concept that has known implications no matter what its eventu-
al specialization entails. Further, the specialization process can be gradual. For instance, we might
specialize small to mean small operating-budget. As before, this may suffice for most purposes.
Eventually we would expect to provide hard data, e.g., less than $30,000 annually.

Shifting attention to incompleteness, clearly figure 3 does not include all of the objects and opera-
tions we will need [Wing 1988]. However, it is naive to believe that a client can generate a com-
plete specification full borne. As shown in figure 1, we expect an initial model (like that in figure
3) to go through a validation-modification cycle, a process that expects incomplete models and is
tailored to deal with them.

Multiple perspectives (and freedom of inconsistency). A real library is a complex, engineered
compromise among competing concerns. Patrons that want to acquire library material have differ-
ent goals than those already having acquired what they want. The goals of the library administra-
tion and the library staff may differ. Patrons themselves can be broken into different classes with
different goals, e.g., undergraduates, faculty, general public.

While we cannot see any inconsistent or conflicting goals directly in figure 3 (in fact, we can’t see
any goals at all!), we can see the resulting residue left from conflicts and negotiation:

» A book limit (or a loan period) can be viewed as a compromise between patrons and ad-
ministration. Patrons have a goal of gathering together a useful working set, no matter how
large. The administration has a goal of having adequate stock on the shelves for patrons to
use. A model that incorporates a form of limited check out satisfies a little of both.

* Restricting access to the borrowing records can also be viewed as a compromise between
patrons and administration. Patrons have a goal of finding the book they want, no matter
where it is. The administration has a goal (often a legal obligation) to protect the privacy
of others. A model that allows a patron to view her own borrowing record, but not that of
others is a compromise - it protects privacy in the main, but does leave the door open for
illicit access by use of false ids or passwords.

As with other types of requirement freedoms, we view inconsistency as a natural part of develop-
ing specifications. Clearly, certain types of syntactic and logical inconsistency serve no useful pur-
pose, and may be expunged immediately [Rubenstein& Waters 1989]. However, the knowledge in-
tensive process of characterizing and reformulating conflicts, employing multiple resolution
techniques, and searching through alternative goal achievement methods is all part of a larger
specification design process, one that must address multiple perspectives and the inconsistency
that is likely to develop among them.

4. A common representation

The tools that we have developed each use a slightly different representation, one that reflects their
particular research focus. Instead of presenting each representation separately, we abstract to a lev-
el that allows us to view a single, unifying representation. While this is somewhat misleading -- it
implies an actual unification that we have not formally carried out -- we believe it is outweighed
by simplifying our presentation. The precise representation details of each tool can be found in our
references.

Page 6

In figure 2, the representation of a development state consists of zero or more goals to be achieved
and a model (possibly empty) that has been proposed to achieve them. We look at first the repre-
sentation of goals, and then the representation of the model.

4.1 Goal representation

Goals are represented as state descriptions. They can be broken into two classes: 1) descriptions of
states we wish to achieve, and 2) description of states we wish to avoid. As an example, we might
expect the following goals in a library systcml:

« achieve: has-possession(Patron, Book)
« avoid: misshelved(Book)
There is no restriction on stating conflicting goals, either of the form?
» achieve: p(X)
« avoid: pX)
or of the form
* achieve: p(X)
= achieve: q(X)
where p and q are mutually exclusive, or of the form
» avoid: p(X)
» avoid: q(X)

where ~p(X) and ~q(X) are mutually exclusive. We expect each of the above type of conflicts to
arise, and we have developed tools to deal with them.

We use a library example in this paper, and hence, each tool can be expected to represent goals
from the following general classes (broadened slightly from libraries to the more abstract concept
of borrowing systems):

1. Allow users to have a large selection to choose from.

Allow users to gain access to a useful working set and keep it as long as necessary.
Maintain the privacy of users.

Recognize the human dynamics of group (patron, staff, administration) membership.
Account for human foibles, e.g., forgetting, losing items, stealing.

oA W

1. For simplicity, we present a single-agent perspective., In reality, the achieve goal might be that of a patron,
but not that of the administration. The avoid goal might be shared by the patron and administration, but not
by the staff.

2. We call the first form direct goal conflict. All other forms are called indirect goal conflict.

Page 7

6. Account for development resource limitations, e.g., money, staff, and time available to devel-
op the system.

7. Account for production environment limitations, e.g., money, staff, and time available to run
and maintain the delivered system.

Not every one of these goal classes is equally important in every case. For instance, a client spec-
ifying a small reading room for an academic department might view 2, 6 and 7 as important. A cli-
ent specifying a city library might consider 1, 3, 4 and 5 as important.

4.2 Model representation

The model is represented as a state-transition language. It takes the form of an extended Petri-net
that includes object-based tokens, predicated transitions, and side-effects on token slots. We will
use both a Petri-net and an operator form in presenting model components. As an example, figure
4 gives both representations for a simple borrow action with due date. In the graphical representa-

p-borrowe
)~ porow

on-loan
<l, P, T+n>
possesses
unenf-con
<P, 1,D>

avallable
<l>

time
<T>

borrow (Patron, Item)

Uses: potential-borrower (Patron), time(T)
Consumes: available{Item)
Produces: possesses (Patron, Item, T-+n), on-loan (Item, Patron, T+n),

unenforced-contract(Patron, Item, Due)

Figure 4

tion, ovals represent places. A double oval represents a place under an external agent’s control. Tu-
ples (e.g., <I>) represent the form of object tokens (with associated slots) that appear in a place.
Boxes represent transitions. Unification is carried out among inpui tokens to the same transition.
A double headed arc represents the use of a token without consumption or side-effect.

The example we will use throughout the rest of the paper is that of a borrowing loan-period. Fig-
ure 5 shows a model of a simple-minded return action with loan period to go along with the bor-

Page 8

row action of figure 4. As can be seen, there is a non-deterministic choice between returning and

unenf-con

<P 1,D>

on-loan \———p» available
retum

usa ltem responslbl1

G~
7 <T> ,

Figure 5

using an item, and hence, the model specifies a range of behaviors including 1) returning an item
immediately after getting it (i.e., before using it), and 2) using it up to the last minute, i.e., return-
ing it just before it becomes overdue. Unfortunately, this model is not realistic: for most borrowing
systems it is unlikely that we can guarantee that borrowers will never use an item beyond its due
date. We will take up this problem as we begin to discuss validation techniques.

5. Tools that support the methodology

There are two major processes in our cyclic methodology: validation and modification. In this sec-
tion, we look at the tools we have developed to support each.

5.1 Validation

We have explored three different approaches to validation. The first uses stored examples of
known problems to expose potential difficulties in a new specification. The second uses means-
ends analysis to try to find sequences of actions that lead to goal violations. The third detects con-
flicts between two specifications of the same artifact, i.e., conflicts among separate perspectives or
agents. In this section, we discuss each of these approaches, and the tools that support them.

5.1.1 Cased-based validation

Based on observations of human analysts, we noticed that known problem cases are frequently
used to criticize a new specification [Fickas et al 1987]. We defined a case-based critic (cb-critic)
to represent this type of criticism [Fickas&Nagarajan 1988a). The cb-critic stores away both typi-
cal and boundary case scenarios that represent the behavior of agents of an environment (an agent
may be a user, nature, or a physical component). These scenarios are used as abstract test cases for
a system specification. For example, the cb-critic’s test cases for a library specification include the
following:

« A “run” on some part of the library’s books (given unrestricted check out).

Page 9

» Hoarding of some part of the library’s books (given unrestricted check out).
 Stealing of library material {given unsupervised check out).

» Losing library materials (given any type of check out).

» Forgetting what one has borrowed (given any type of check out).

» The need to keep books a long time to complete a project (given a loan period).

» Gaining access to the borrowing records of others (given access to the borrowing records in
general)

In the cb-critic, each case js supported by one or more scenarios illustrating the behavior in similar
systems familiar to the analyst. For instance, one analyst we observed used the following scenario
to illustrate the hoarding case [Fickas&Nagarajan 1988b]:

“A secretary in Biology checked out all of the library’s Biology books, and set up what
amounted to a sub-branch of the library in their department.”

The same analyst used two different scenarios to support the case against unsupervised reading of
the borrowing record: '

“Government agencies have wanted to find out who’s checked out the books on building hy-
drogen bombs.”

“QOften within a larger setting, for instance, even the Science Library, faculty say ‘Nobody,
none of us have secrets from each other and we should all be able to know who has what,
etc.” On the other hand, there have been many graduate students who say they don’t like get-
ting called Saturday morning at 8:00 saying bring in this book, by a person who could affect
their future.”

Our goal in the cb-critic was to represent general cases (and their associated supporting scenarios),
and use them to find deficiencies in a system specification (i.e., the model of figure 2). To do so, we
defined and implemented four major cb-critic components:

1. A fixed, predefined set of goals which acts as the index into a case catalog. From this set, the
client chooses which goals are important for any particular problem. This chosen subset rep-
resents the goals of figure 2.

2. A case catalog. Each case is made up of 1) one or more goals that index the case, 2) an abstract
sub-net that represents a pattern to be found in the client’s specification, and 3) illustrative
scenarios to be run. A case is active when one of its corresponding goals has been marked as
important by the client.

3. A matcher that links active cases to specification components. The matcher incrementally
matches a case pattern to pieces of the specification. It relies on the user to both confirm the
matcher’s proposals and to supply equivalence relations when they are not obvious.

4, A scenario enactor. Once a match is found for a case, the cb-critic will play the corresponding
scenarios. Each scenario provides an initial marking and constraints on non-determinism to
demonstrate the specific behavior required, e.g., repeatedly firing ‘check out’ but not ‘return’
to show a run on a library.

Page 10

We illustrate the cb-critic by looking at a loan period example. Suppose that the cb-critic is given
a de\llelopment state that contains the model shown in figure 6 (where B = Book, D = Day), and a
goal

avoid: overdue(Patron, Itemn)

The cb-critic contains a case of unenforced-loan-period that is indexed by this goal, and hence, the
case becomes active in the current development state.The case’s pattern has been shown previous-

ly in figure 5.

on-loan \— g avallable
check n

_ _ use book responsibly
<D>

Figure 6

The human analyst assists the cb-critic in unifying the pattern in figure 5 with the model in figure
6.

Once the case is matched, the cb-critic considers the scenarios associated with the case. A scenario
is one behavior out of many that the model is capable of generating. For the model in figure 6, the
focus is on the non-deterministic choice between check in and use book responsibly. The behavior
set ranges from a borrowed book being immediately returned, to a borrowed book being used until
the very last moment.The cb-critic attempts to 1) demonstrate interesting landmark or boundary
behaviors out of this set, or 2) extend the set by introducing new, plausible behaviors that are not
being considered in the current model. The scenarios associated with the unenforced-loan-period
case focus on the latter in particular. They represent the notion that borrowers may behave error-

1. overdue(P,I) is defined as possesses(P, I, Duc) and time(D) and D > Due.

Page 11

fully or irresponsibly: a borrower may forget when an item is due, decide to continue to use an item,
irresponsibly, past the due date, or even discard an item after it is no longer useful. Each of these
behaviors is represented by a scenario in the unenforced-loan-period case.

/

—,.

possesses
<P, |, DUE

forget to return item
T DUE

<P, |, DUE

unenf-con
P, 1, DUE >

\ use ftem irresponsibly

T DUE

unenf-con discard item

P, 1, DUE >

Figure 7.

Page 12

As shown in figure 7, each scenario adds a piece of environment behavior to make its point:

- Forgetting involves giving a borrower a new option/transition, forget to return item, separate
from using and returning an item. This transition allows an item to be past due.

« The use item irresponsibly transition allows a borrower to continue to use an item past its due
date. It is predicated on having an unenforced contract with the repository.

« The third scenario adds a discard item transition that allows a book to become monotonically
overdue: the item is consumed by the new transition and goes permanently to a discarded
item place, never returning to the library. As with irresponsible use, discarding is predicated
on having an unenforced contract with the library.

The cb-critic presents each of these scenarios by initializing the client’s proposed model (ie.,
marking the client’s net), and then controlling the non-determinism to make the point.

It is interesting to note that the type of validation produced by the cb-critic in this example is not
one of goal violation by the model; the overdue goal is avoided in the model of figure 6. Instead
the cb-critic is criticizing the current model as incomplete. The cb-critic attempts to point out how
any one of three plausible extensions will lead to goal violation. This is very much a knowledge-
based approach, using knowledge of typical human behavior in borrowing domains to point out
holes in what purports to be a closed specification.

Page 13

5.1.2 Validation by Planning

The major advantage a tool like the cb-critic is reuse of analysis. The cb-critic does not have to re-
generate scenarios from scratch for each new problem. Instead it uses goals to index into its store
of analysis knowledge and retrieve applicable scenarios. However, in avoiding the regeneration
problem, the cb-critic has introduced several new problems, each associated with case-based rea-
soning in general: 1) populating the case-base with sufficient cases to cover a domain is difficult,
and 2) finding the correspondence between (i.e., matching) a past case and a current problem de-
scription is resistant to full automation.

We are exploring a tool based on plan-based validation that attempts to keep the advantages of the
cb-critic while avoiding its disadvantages [Anderson&Fickas 1989]. The tool, called the pb-critic,
generates new scenarios on the fly. However, once a scenario is generated the pb-critic uses an ab-
straction mechanism to store a form of the scenario for future use. In this way, the matching prob-
lem of the cb-critic is replaced by a more tractable specialization problem in the pb-critic.

The pb-critic uses a means-ends style of plan derivation to build scenarios from scratch. The pb-
critic stores operators at various levels of abstraction, and builds plans to represent both goal
achievement and goal failure. We will use the loan period example to demonstrate this. In particu-
lar, consider the three scenarios generated by the cb-critic (see figure 7) as criticism of a proposed
model of library borrowing (see figure 6). We will follow the same three scenarios through the pb-
critic.

The pb-critic generates one or more behavior threads through a non-deterministic cb-critic type
model. However, the pb-critic does not use a Petri net style representation, but instead stores plac-
es as relations and transitions as primitive operator components that can be composed to build be-
haviors or scenarios.

Figure 8 presents a scenario/plan generated by the pb-critic to demonstrate that a borrower can ir-
responsibly cause an item to become overdue. Using means-ends analysis, the pb-critic looks for
plans which achieve ‘overdue book’. One operator which produces ‘overdue book’ is ‘use irre-
sponsibly’. This operator requires that the book be on loan to the patron, that the contract be unen-

N-borrowe|
<P>

use irresponsibly|
T = DUE

| use responsibly
T < Due

avallable overdue
 <P, B>

Page 14

forced, and that the due time matches the current time. Similar scenarios/plans could be generated

for the discarding and forgetting scenarios of section 5.1.1.

Rather than discovering each problem individually, it would be useful to find all of the problems
at once. To do so, the pb-critic not only stores primitive operations, it stores abstract Operators as
well. For instance, the three operators used in the cb-critic’s scenarios in figure 7 could be stored

in the pb-critic as specializations of a single abstract operator:

allow-loan-period-to-expire (Patron, Item, Due, T)
uses: time(T), T =Due
consumes; on-loan (P, I, Due)
produces: overdue (P,I)

Figure 9 shows the pb-critic’s taxonomy of operators that produce the relation ‘overdue book’.
Each of the specializations is a descendant of the abstract ‘allow loan period to expire’ operator.

allow Ip to expire

N

willful neglect

/N

forget to return ltejl use irresponsibly

discard item

Figure 9

Page 15

The abstract ‘allow loan period to expire’ operator can be used in planning as if it were a primitive
operator. Thus, all three scenarios (forget, use irresponsibly, discard) are captured in a single ab-
stract plan, as shown in Figure 10. This not only reduces the cost of critiquing, but, as we show lat-
er, may make modification easier.

| use responsibly allow Ip to expire
T <Due T = DUE

available overdue
<> <P, I»

on loan
<l, P, Duex

Figure 10

From this abstract scenario, the three concrete scenarios of figure 7 can be produced by specializ-
ing allow-item-to-become-overdue into each of its three siblings [Anderson&Farley 90]. In the
pb-critic, this abstraction process is completely general: abstract operators may be children of yet
more abstract operators. Abstraction is carried out by finding common relations produced by a set
of operators and constructing a new abstract operator that contains the commonality [Anderson
and Farley 88]. When a new concrete or abstract operator is added to the catalog, the abstraction
hierarchy is automatically updated to “fit” the new operator in. We will see how the abstraction hi-
erarchy can be put to use when we look at the second process in our methodology, that of modifi-
cation.

Page 16

Finally we note that abstract operators begin to give us one of the advantages of the cb-critic:
avoiding rederivation of stock scenarios. However, we must add another piece to complete the pic-
ture. That piece is the cataloging of abstract scenarios/plans. Rather than rederiving the same ab-
stract plan each time a library specification is being critiqued, the pb-critic is able to store abstract
plans in the form of ‘abstract macros’ [Andcrson&Farlc){ 88]. For example, the plan for achieving
an overdue item would be stored as shown in Figure 11.

borrow, use, and allow Ip to expire

check out with Ip b use responsibly H allow Ip to expire
P F A Y

check out book w/ Ip forget to return ltem

wiliful neglect

/\

borrow, use, and allow Ip to expire (Patron, Item)
Uses: potential-borrower (Patron), time(T)
Consumes: available(Item)
Praduces: possesses (Patron, Item), record-of (Ttem, Patron, Due),
overdue(Item)
Figure 11

During subsequent critiquing sessions, this abstract operator will be retrieved whenever the pb-
critic is asked to critique a resource management system in which avoiding overdue items is an is-
sue. The operator will initially be retrieved as a single unit and then decomposed into its several
steps. Each step can then be specialized to match the particular specification being critiqued.

1. In reality, the use-responsibly operator is abstract in the pb-critic as well. Its children are the various oper-
ators that represent more concrete uses of library malerial, e.g., refer to, browse, copy.

Page 17

5.1.3 Interaction-based validation

The cb-critic and pb-critic validation tools assume a single set of goals and a single specification,
or what we call a single perspective. We are exploring a third validation tool, called the interaction-
based critic or ib-critic, that broadens its view to encompass multiple perspectives [Robinson
1990]. The ib-critic assumes that multiple agents may exist in the world, each with its own perspec-
tive on the final form of the system to be built. The ib-critic allows these agents to state their own
goals and develop their own specification under those goals. Its role in validation is to analyze the
separate specifications for consistency.

The ib-critic organizes goals into a hierarchy, using a modified version of goal/subgoal relation be-
tween a parent and its child. In particular, the notion of partial goal satisfaction is introduced; a
goal may be satisfied to a degree by having some but not all of its children satisfied. In this view,
children represent independent methods for achieving their parent goal. This is illustrated by con-
sidering a portion of the goal tree for the library domain, as given in figure 12.

AdministerLibraryEffectively (ALE) DoReasearch (DR)

e

SOS Findltems (FI) FindItems (FI) UBIE

J Acquireltems (A) / \
LP \\ LP BookLimit (BL)
BookLimit (BL)

PatronLimit (PL)

Admin perspective Patron perspective

Figure 12

Under each non-leaf goal G in the tree, there exists a set of alternative sub-goals for achieving G.
For instance, there are three means of keeping an adequate stock on the shelves (SOS): limit the
loan period of an item (LP), limit the number of items the patron can borrow at any one time (BL),
limit the total number of patrons that can borrow (PL). These three alternatives represent the po-
tential means known to achieve SOS. To include SOS as a goal in the initial development state (i.e.,
as a member of GOALSy, in figure 2), a client/agent must choose none, some or all of its alterna-

tives as actual goals to be achieved, and to state to what degree they will satisfy SOS. In summary,
the agent must order all combinations of alternative sub-goals for every non-leaf goal G in the tree.
The leaf goals of the tree will be linked directly to the specification components which implement
those goals.

An agent supplies ordering information for a goal G by defining a preference function PFg. The
domain of PFg is an element of the power set of alternatives of G.The range of PFq is a percentage

value from 0 to 100. As an example, suppose the administration agent provides the following pref-
erence function for the SOS goal in figure 12:

Page 18

PF,o({LP, BL, PL)) = 100%
PFg({LP, PL}) = 50%
PF,,({LP, BL)) = 10%
PF,,({BL, PL)) = 10%
PF5os({PLY) =5%

Using a slightly more illustrative notation:
({LP, BL, PL},09q, {LP, PL}5pq, [{LP, BL}, {BL, PL} l;o4, {PL}sg, ...}

In this case, the administration agent states that implementing a loan period, a borrowing limit, and
a patron limit will satisfy the SOS goal completely. The second preference only satisfies the SOS
goal to a 50% degree. Following alternatives quickly drop off from there.

Some goals may have an infinite number of scalar values as alternatives. For these type of goals

we introduce ranges as part of the power set of the alternatives. For example, the alternatives of the
loan period (LP) goal might be ordered as follows:

{[0 .. 14]1009, [15 .. 451504, [46 .. ==,]p4,)

Here, the administration agent has specified that a loan period of 0 to 14 days is first preference
and will completely satisfy the LP goal, a loan period of 15 to 45 days is second preference and
will partially satisfy the LP goal, and that a loan period of 46 days or beyond is unacceptable in
satisfying the LP goal.

To complete the loan period example, assume that the patron agent has defined the following pref-
erence for the LP goal from its perspective:

({180 .. o, 11009, [30 .. 1791509, [0 .. 29]gq; }

Assume further that the patron agent has given inclusion of the goal of utilizing borrowed items
effectively (UBIE) a high preference. Likewise, the administration agent has given a high prefer-
ence to SOS.

Page 19

At this point we have the initial goal sets for both agents and begin to develop a specification from
each perspective [Robinson 1987], [Bearmand&:Fickas 1988], [Robinson 1989]. The result is shown
in figure 13.

Development Development
Step 1 Stepm
Initial Statep..m Final Statepatron
{LP = 6 months)
Development Development
Step 1 Stepn

Initial State, s, Final State, s
(LP = 2 weeks)

Figure 13

We are now ready to compare the two specifications, model,,, and model,; for consistency. The ib-
critic carries out analysis in three steps: 1) correspondences among specifications are identified, 2)
conflicts between the specifications are detected, and 3) specification conflicts are reformulated
into conflicts among goals.

Step 1: Correspondence Identification. Since two specifications have been constructed indepen-
dently, we can expect that terminology is not consistent. The correspondence identification step
determines specification equivalences. In our example, this equivalence mapping must be carried
out between tokens, places, and transitions in modely, and model;,. This is currently an interactive

process: the ib-critic suggests equivalences based on name, type, and I/O equivalences; the human
analyst uses this information as a guide to decide which components represent the same concept

Step 2: Conflict Detection. After correspondences are determined, the non-corresponding com-
ponents are checked for conflicts. In our example, suppose the ib-critic notes a conflict between a
loan period value of 14 days in model,, and a loan period value of 180 days in modely,. This is a

specification or feature conflict.

Page 20

Step 3: Issue Formation. Next, issues are identified by tracing incorporation links from conflict-
ing specification components to the leaves of the ordered goal hierarchy. In this case, both the 14
day and the 180 day values for loan period are traced directly to the loan period goals shown in
figure 12. This ends the ib-critic’s role in validation. It has found specification level conflicts
among different perspectives, and has connected these conflicts into the leaves of the goal tree in
each perspective. This information will be put to use during the modification process discussed in
section 5.2.2,

5.2 Modification: adjustments in response to criticism

We have explored two general techniques for overcoming criticism encountered during the valida-
tion process: 1) modifying the model, and 2) modifying the goals. The first approach we will dis-

cuss addresses model modification, and the second approach both model and goal modification®.
5.2.1 Plan-based modification

The input to the plan-based modifier (pb-modifier) is a scenario from the cb-critic or a plan from
the pb-critic that demonstrates a goal violation, i.e., either an achievement goal is shown to be un-
achievable, or an avoidance goal is shown to be achievable. The following two model modification
options are available in the pb-modifier:

1. Redesign. Change the set of actions provided by the model. The assumption here is that the
development of a specification is a design process: it involves selection of a specific set of
actions or functionality from a larger set of alternatives. If we catalog these alternatives in a
formal way, we might be able to go back and reconsider them when we run into trouble with
the set we have chosen [Alterman 89]. The pb-modifier provides such a catalog.

2. Acquire. Add new actions to the catalog (and hence, new alternatives to the model). The as-
sumption here is that the catalog may be incomplete; attempting to choose other alternatives
may fail if we do not have all the plausible alternatives represented. The key question is what
is plausible. The pb-modifier uses a form of analogical reasoning to suggest plausible new op-
erators.

We will look at each of these two techniques in turn for the loan period example. Looking back to
figure 10, we will assume that the pb-modifier is given a critique for the avoidance of overdue
items as an abstract scenario (figure 14):

overdue violation

check out with Ip |-> use responsibly M allow Ip to expire

Figure 14

We will choose to redesign the model to foil the above plan. To do so, we will have to consider
removing or changing one or more of the three actions (henceforth, operators) used to gain a bad
result. The pb-modifier divides operators into two classes, artifact and environment. The assump-

1. All of our tools allow manual modification of cither the model or the goals, i.e., all have built-in model and
goal editors. We focus here on tools that support the modification process more actively.

Page 21

tion is that environment operators may be changed or removed, but only with great effort. In the
pb-madifier, both the use-responsibly and allow-1p-to-expire operators are marked as (abstract) en-
vironment operators. Hence, we will look at them only as a last resort.

QOur first naive attempt might be to remove the check-out-with-loan-period operator: if items can’t
be checked out, they can’t become overdue. This foils the above plan, but introduces other goal
failures having to do with giving users effective access to (i.e., possession of) material.

Our next alternative is to replace check-out-with-loan-period with another type of check-out oper-
ator, one that foils this plan, and at the same time does not introduce new goal failures. We can use
the enabling conditions of the abstract operator allow-loan-period-to-expire as a focus:

Time (T) where T = Due or unenforced-contract (Item, Patron, Due).

If we can disable one of these, we can eliminate the plan as a counter-example. And by eliminating
an abstract plan as a counter-example, we eliminate all of its more concrete manifestations!

We set our task as finding an alternative check-out operator that does not enable the allow-lp-to-
expire operator. No candidate artifact operators have any effect on time, so we focus on the unen-
forced-contract relation. For this example assume that the pb-modifier has one alternative check-
out operator to choose from, one with no loan period nor any record of borrowing. This operator is
found by looking at the operator abstraction hierarchy (see section 5.1.2) for siblings of check-out-
with-loan-period (see figure 15).

borrow book

N

check out with Ip unrestricted check out

unrestricted check out (Patron, Item)
Uses: poiential-borrower (Patron)
Consumes: available(Ttem)
Produces: possesses (Patron, Item)
Figure 15

Page 22

Replacing check-out-with-loan-period with unrestricted-check-out does foil the plan in figure 14.
Because there is no due date, there is no possibility of a book becoming overdue. However, it also
violates other goals related to keeping adequate stock on the shelves.

It appears that we will not be able to foil the abstract plan successfully. Our next approach will be
to look at the more concrete versions of the plan by specializing the allow-item-to-become-overdue
operator into each of its children. Using this divide-and-conquer strategy, we may be able to foil
each specialized plan individually, i.e., find a means of preventing forgetting, find a means of pre-
venting irresponsible use, find a means of preventing discarding.

Looking first at the allow-1p-to-expire operator (figure 9), we note that the more specific willful-
neglect operator has a new pre-condition of unenforced-contract. If we can find a check-out oper-
ator that does not produce this relation, i.c., enforces the borrowing contract, then we can foil this
abstract plan. For this example no such operator exists in the operator hierarchy for library sys-
tems. However, this may be because our model of libraries and their potential borrowing policies
is incomplete. Assuming for the moment that this is the case, we will look to other borrowing ap-
plications for plausible additions to the pb-modifier’s library check-out operators. That is, we will
attempt to use analogical reasoning to find operators in a base domain to add to the target (library)
domain. To do so, we will use the same mechanism we used to find alternatives earlier: we will
look up the operator abstraction hierarchy. Figure 16 shows a piece of the operator class hierarchy
that includes the borrowing domain of video rental. Looking at video rental check-out operators,
we notice rent-video-with-enforced-contract. The effects of this operator are shown in figure 17.

borrow item
borrow book rent video
rent video w/ contract
Figure 16

Page 23

The operator produces a contract between the store and patron for the return of the video by the
due date. The contract provides a way for the store to enforce responsible behavior on the part of
the patron. According to our simplified model, patrons will not act irresponsibly if there is an en-
forced contract. This appears to be a plausible operator for the library domain, and hence we begin
the process of transferring it.

-borrowe
<P>

as-money
<P, $X>

avallable
<V

as-money
<5, $X>

Possesses
<P, V>

rent video
w/ contract

&nf-contra
<S,P.V,Due>,

on-loan
<P, V, Due>

rent video with enforced contract (Patron, Video)

Uses: potential-borrower (Patron), ime(T)
Consumes: available(Video), has-money (Patron, $X)
Produces:; possesses (Patron, Video), has-money (Store, $X),

on-loan (Video, Patron, Due),
enforced-contract (Store, Patron, Video, Due)

Figure 17

Transfer consists of two parts: 1) substituting corresponding objects and 2) adding and removing
relations. Currently, the pb-modifier does not automate either of these two steps. However, the first
step, substituting objects, is supported by the abstraction hierarchy. For example, in the pb-modi-
fier ‘book’ and ‘video’ both belong to the abstract class of borrowable items. Thus, ‘book” can be
substituted for ‘video’ wherever it appears in the operator definition.

Page 24

Adding and removing relations from the produce, consume and use lists cannot be automated. A
human user must edit the operator description to produce the new library operator shown in Figure
18. The relations dealing with money changing hands have been removed.

n-borrowe
<P>
avalilable
<V>

checkout book
w/ contract

énf-contra

<L,P.V,Due>
on-loan

checkout book with enforced contract (Patron, Book)

Uses: potential-borrower (Patron), time(T)
Consumes: available(Book)

Produces: possesses (Patron, Book), on-loan (Book, Patron, Due),
enforced-contract (Library, Patron, Book, Due)

Figure 18

Once the new check-out-book operator has been formed, it is added to the operator hierarchy. Po-
sitioning a new item in the hierarchy is done automatically [Anderson&Farley 1988]. The new op-
erator is compared to each operator in the hierarchy with at least one shared effect. For each
comparison, the intersection of the two operator descriptions is extracted as the generalization of
the pair. If an abstract operator exists which matches the generalization, the new operator becomes
a child of the abstract operator. If no such abstract operator exists, a new abstract operator is created
and is added to the hierarchy in the same way.

Page 25

The generalization process is illustrated for the new operator ‘checkout-book-with-enforced-con-
tract’. When the new operator is compared to ‘rent-video-with-enforced-contract’ their generaliza-

tion is ‘checkout-item-with-enforced-contract’ shown in figure 19.

checkout item w/ contract

/N

checkout book w/ contract

rent video w/ contract

checkout item with enforced contract (Patron, Item)

Uses: potential-borrower (Patron), time{T)
Consumes: available(liem})
Produces: possesses (Patron, Item), on-loan (Item, Patron, Due),

enforced-contract (Repository, Patron, Item, Due)

Figure 19

This abstract operator is also added to the hierarchy using recursive application of the pairwise

comparison method. The final result is shown in Figure 20.

bo

rrow item

/

borrow book

T~

rent video

// checkout

item w/ contract

N

checkout book w/ contract

rent video w/ contract

Figure 20

i

e —

T e =

Page 26

Once the knowledge base has been updated, we return to the problem of modifying the specifica-
tion. The new checkout-book-with-enforced-contract operator is substituted for the check-out-
with-loan-period operator and the new specification is sent back to the critic. Since there is no long-
er an unenforced contract, this operator foils the critic’s plan for allowing the loan period to expire
via willful neglect. At the same time, the goal of allowing patrons to use books responsibly is still
achieved. Thus, we have solved a general class of problems, covering both irresponsible use and
discarding the borrowed item, with a single modification.

Finally, the pb-modifier tackles the problem of allowing the loan period to expire due to forgetting.
As before, the pb-modifier first tries to find an operator in the catalog to foil the plan. Since the
preconditions of forgetting are the same as for the abstract allow-loan-period-to-expire operator,
we know the search will fail. There is also no checkout operator in any other domain that can pre-
vent a patron from forgetting.

In our example, part of the difficulty is that the forget operator has not been represented in suffi-
cient detail. As seen in figure 21, adding detail to the forget operator requires changes to the defi-
nitions of other operators as well: the checkout operator now produces the relation ‘knows (Patron,
Contract)’. This relation is consumed by either the return operator or the forgets operator.

checkout return
' T « DUE
avallable available
<> <l>
checkout forget

avallable
<l>

on loan
«<l, P, Due>

Figure 21

The problem of forgetting cannot be attacked using the previous methods. The only way to prevent
forgetting is to keep the patron from knowing about the contract, but the patron must know in order
to return the book. Thus, we cannot disable the forget operator. The next best alternative is to coun-

Page 27

teract the effects of forgetting, through reminding. In more general terms, if an undesirable action
cannot be prevented, the next alternative is to try to 1) minimize its occurrence, and 2) restore the
desired conditions if it does occur.

The pb-modifier could be used to find a plan for achieving ‘knows (Patron, Contract)’. The pb-
modifier would suggest some form of notification, which could be adapted to the current problem.
Notification might occur before the due date as a precaution or after the due date as a remedy.
Unfortunately, it is still possible for a patron to forget after a reminding, which means that there
can never be an absolute guarantee that items will be returned on time. (Similarly, a patron can
ignore even an enforced contract.) However, we are better off than we were before, in that the like-
lihood of overdue books has been reduced. The pb-modifier is not equipped to reason about vary-
ing degrees of likelihood, so we must turn to other tools. The use of qualitative modeling is one
approach that we are exploring [Downingé&Fickas 1990]. The nb-modifier discussed in the next
section is another.

5.2.2 Negotiation-based modification

The ib-critic produces a critique that consists of specification conflicts among multiple perspec-
tives and links from specification to goals for each perspective. We have developed a negotiation-
based modification tool, the nb-modifier, that uses such a critique to modify either the goals, the
model, or both. Negotiation aims to dissolve conflicts, and if that fails, to find “fair” compromises.
The nb-modifier employs a two pronged strategy to the negotiation problem: 1) find a “ballpark™
resolution using an analytic method based on multicriteria analysis [Zeleny 1982], and 2) improve
the resolution by applying heuristic strategies [Robinson&Fickas 1990].

We will illustrate the nb-modifier on the loan period example. Assume that the nb-modifier is given
the example conflict seen in section 5.1.3: a loan period of 14 days from the administration’s per-
spective; a loan period of 180 days from the patron’s perspective. Assume further that the ib-critic
has linked these values to the LP goals as described in section 5.1.3. The nb-modifier has the fol-
lowing negotiation techniques at its disposal.

Analytic Compromise. When the first preferences of two perspectives cannot both be met, con-
sider less preferable alternatives. With this approach, compromises are generated based on goal
preferences using a weighted, multicriteria analysis. In the loan period example, using such an
analysis would suggest a loan period of 37.5 days. While this is a simple split of the difference,
more complex cases lead to a more complex resolution. In particular, the nb-modifier’s multicrite-
ria analysis algorithm’s complexity turns on the number of specification components, specification
conflicts, goals per conflict, and components per conflict. The loan period example is simple be-
cause is has few specification components, one conflict, one goal per conflict, and one component
per conflict.

Search for Dissolution. When an acceptable analytic resolution can’t be found, either because no
preferences could be found in common, or because the compromise proposed by the pb-modifier
was rejected by one or both of the parties, the pb-modifier will attempt to remove the cause of the
conflict.

In the loan period example, one could subdivide the inputs of the loan process and distribute the
loan periods over subclasses of items, i.e., text-books, reference-books, journals. The pb-modifier
has a Predicate Input rule that suggests just this type of resolution. It is not specific to loan periods,
nor borrowing systems in general. Instead, it uses means-ends analysis of the specification to con-
struct a proposed refinement to the specification and goals [Robinson&Fickas 1990]. Applying this

Page 28

rule to loan period, new components must be added to the specification (text books, reference
books, journals) and new goals must be considered in the two perspectives (text-book-SOS, refer-
ence-book-SOS, journal-SOS, text-book-UBIE, reference-book-UBIE, journal-UBIE).

In summary, dissolution rules such as Predicate Input use strategies that uncouple conflict into
smaller issues which may be individually resolved or resolved through their combination [Pruitt
1981].

Once the loan period problem has been subdivided, the nb-modifier reexamines the SOS versus
UBIE conflict in a more refined light. For instance, the analyst may wish to use the nb-modifier to
look anew for an analytic solution to the smaller issues. In the best outcome, all conflict will be
dissolved analytically: patrons will be satisfied that keeping some material for longer periods and
some material for shorter periods will satisfy the more refined view of UBIE; the administration
will come to the same conclusion in regard to the refined view of SOS. More typically, analytic
resolution of some sub-pieces will be possible with other sub-pieces remaining in conflict. The an-
alyst may then ask the nb-modifier to reapply dissolution to these remaining sub-pieces, or move
on to the following method.

Search for Compensation. When an acceptable means of dissolving remaining conflict cannot be
found, compensate the parties whose goals have not been satisfied. This method increases the sat-
isfaction of goals which indirectly contribute to the satisfaction of unsatisfied goals. For example,
if the administration agent will not compromise on a value of 14 days, attempt to compensate the
“losing” LP goal of the patron by increasing the satisfaction of that agent in more indirect ways,
e.g., focusing on BL, a sibling of LP. If this fails, we might attempt to move further up the tree,
looking at UBIE’s parent and siblings.

The nb-modifier’s compensation method views the goal tree in a causal and qualitative fashion: if
we decrease our satisfaction of X, and Y is a sibling of X, can an increase in the satisfaction of Y
counter-balance it? Along these lines, we have implemented a tool called qm-tool that attempts to
answer such questions in qualitative modeling terms [Downing&Fickas 1990]. Like the nb-modi-
fier’s search of the goal tree, qm-tool will search a causal model for the most direct action that will
compensate for an increase or decrease of satisfaction. However, it goes one step further: if it is
unable to find an appropriate compensation action in the causal model it is given, it will locate the
places in the model where a new component/goal could be added to bring about compensation.
While the exact form the new goal should take is still very much up to the human analyst, pinpoint-
ing its location in a complex model is still a valuable service.

Case-based Reasoning. Each of the above three methods uses a form of search to find a satisfac-
tory compromise. Further, this search is carried out anew for each new conflict in each new prob-
lem. In well studied domains, such as borrowing systems, conflicts are well known and their
resolutions often documented. In these applications, it would appear wasteful to reinvent the same
resolutions over and over.

The approach we are exploring in the nb-modifier is to 1) note when a new conflict is similar to
one previously considered, and 2) use the old case to construct a resolution. We may wish to con-
sider cases that have resulted in a satisfactory resolution, as well as those which resulted in an im-
passe: successful cases can be instantiated and modified for the current context; unsuccessful cases
can prune analytic compromises, dissolutions, and compensations from consideration.

Page 29

As an example, suppose the loan period conflict is eventually recast as that between SOS and
UBIE. This is a fairly typical problem in borrowing systems: the administration agent needs to keep
enough items in a repository for potential borrowers to choose from; the borrower agent needs to
remove material, for as long as it needs, to complete a task. Suppose that we find, among others, a
recall-on-demand case that is indexed on this type of SOS-UBIE conflict. The resolution suggested
by the case is one that uses a mechanism of giving a borrower a large Joan period, but with the pro-
viso that material may be recalled after a much shorter loan period if another borrower has request-
ed it. If this compromise is deemed acceptable by both parties, then it is left to the analyst, assisted
by the nb-modifier to instantiate the case in the library domain and incorporate it into the final spec-
ification.

Use of the case-based approach here saves two types of effort:1) it avoids a complex combination
of dissolution and analytic compromise methods needed to produce recall-on-demand from
scratch, and 2) it directs the nb-modifier where to place the alternative in the goal trees of the patron
and administration, i.e., under the UBIE and SOS goals, respectively.

We expect each of the negotiation methods of the nb-modifier to leave an explicit link to changes
made in the specification. Thus, our 37.5 day loan period would be rationalized as an analytic com-
promise between the two LP goals. The need for sub-types of library material would be rationalized
by the dissolution technique used to generate them. A large book limit (BL) would be rationalized
as compensation to a patron for a short loan period. A recall-on-demand mechanism would be ra-
tionalized as a case-based solution that has worked in other systems. This type of negotiation
record is crucial in understanding the final specification or the final delivered system. In applica-
tions like library systems, almost every component of the delivered system can be seen as a com-
promise among competing concerns. Attempting to modify the system (or the specification)
without understanding what those compromises were and what they turned on is disastrous.

In the end, we return to the question we posed in section 2: isn’t a loan period a simple specification
problem? We’d answer by posing another two questions: Can you change it? If so, what are the
ramifications of the change you make? Without a representation of the development process that
lead to it, one that includes system goals, multiple perspectives, preferences, and compromises, we
would argue that either question is impossible to answer reliably.

6. Discussion

‘We have proposed a two-cycle methodology for constructing closed specifications for complex do-
mains. We further posited three issues that are key factors in any attempt to formalize or automate
the methodology:

1. We must find a means to model the unmodelable, i.e., an environment that might include hu-
man behavior, behavior of complex hardware/software subsystems, behavior of natural pro-
cesses.

2. We must recognize that clients specifying a problem should be given certain freedoms, free-
doms that might be intolerable in the implementation process but that are necessary in the
specification process.

3. We cannot pretend that there is only one perspective or set of goals for a system. Instead, we

must represent 1) multiple perspectives, and 2) the process that allows them to come together
in a single artifact.

Page 30

The Kate tools we described in section 5 do not totally solve these problems, either individually or
collectively. However, as we discuss below, they do act to further refine the solution space.

6.1 Modeling complex domains

We have presented two approaches to approximating complex domains, one that addresses a model
of behavior and one that addresses a representation of goals and preferences. We will take up each
in turn.

6.1.1 Approximating system behavior

We may never be able to fully model the myriad ways patrons, administration and staff can inter-
act, either responsibly, irresponsibly, or errorfully, with a library and its material. However, it is
not clear that we have to. In well studied applications, known cases or scenarios can replace a first-
order theory of the domain. In some sense, we pick out the features of environment behavior that
we wish to address in our system, and ignore the rest. The cb-critic embodies this case-based style
of modeling.

The cb-critic’s case-base approach works well for routine specification problems in well known
domains with standard terminology. Outside of these limits, fragileness increases. Thus, if a client
proposes an exotic component, it is likely that matching will fail - while each case is represented
as an abstract sub-net, it is nevertheless meant to be a fypical abstraction, one that will never cover
all of the specifications possible.We have some interest in a more sophisticated matching algorithm
that might be able to perform transformations on a case pattern to “jitter” it into matching a speci-
fication, thus increasing the number of specifications matchable from a single case. However, we
have yet to attempt a transfer of earlier jittering techniques to the critic’s matcher problem (a dis-
cussion of goal-directed, automated jittering techniques that is the source of our optimism in this
approach is presented in [Fickas 1985]).

If a client wishes to apply the critic to an area where little domain analysis has been carried out,
then finding agreement on the key goals and cases to represent is problematic. There have been
suggestions that a case-base like that of the cb-critic might be acquired by various learning tech-
niques, e.g., example-based generalization. However, such approaches require at least a partial the-
ory of the domain, something currently lacking in the cb-critic in any usable form for learning.

The plan-based approach of the pb-critic and pb-modifier also addresses problems with modeling
complex behavior. It provides a type of approximation through abstraction. In essence, it allows us
to represent and use abstract operators in exactly the same way that we would represent and use the
concrete operators that form the first-order theory of the domain. Lacking such a theory, the ab-
stract operators can be viewed as types of active place-holders that allow both validation and mod-
ification processes to continue.

The problem with the plan-based approach is that, at the same time, it is too formal and too weak.
It relies on a standard planning representation that views goals as universally quantified state de-
scriptions. While this promotes general, automated tools, it also rules out representation of non-
operational goals/requirements, e.g., keep cost below some threshold, maximize reliability. Both
the case-based and negotiation-based approaches we have discussed allow non-operational goals
to be stated as long as they can eventually be cast in operational terms. However, the reasoning
techniques they employ are more ad hoc and difficult to automate and extend.

Page 31

6.1.2 Approximating system goals

The ib-critic and nb-modifier address the representation of the often conflicting, continually shift-
ing, partially satisfiable goals of multiple interest groups or perspectives. Clearly this is not an area
where we can expect a first-order theory soon. Instead, these two tools rely on a combination of
user assistance and approximation techniques to navigate in this space. There is no denying that
the approximation issues faced in building the two tools have been difficult:

We must represent all known methods. The construction of a goal decomposition hierarchy under
this constraint is particularly difficult. A child is one subgoal of the various subgoal decomposi-
tions of its parent. We attempt to determine a set of subgoals which both (1) covers the various
means of satisfying a goal and (2) contains relatively independent subgoals. Coverage is obtained
through experience, but is limited by ever changing technologies. Independence is not easily con-
trolled, as it is a matter of the problem solving methods and technology.

We must reduce preferences to a single, linear scale. To carry out multicriteria analysis, we must
compare apples to apples, i.e., all preferences must be mapped to a single scale. Furthermore, to be
effectively computable, the algorithm is restricted to a linear scale. One might question the simpli-
fications necessary to carry out analytic resolution, or even if it is a useful technique, in general.
Speaking from the decision science field, Pruitt shows that there is real benefit in exchanging nu-
merically weighted preferences [Pruitt 1981]. He notes in the same paper that more sophisticated
types of goal representation are "theoretically capable of transmitting rich information from which
resolution formulas can be devised. However our data suggest that it has limitations ...".

We must model goal interaction. Goals may interact in a complex fashion, and eventually we will
have to reason about this interaction during conflict negotiation (see, for instance, the compensa-
tion method in the nb-modifier). There are two approaches to the problem. The first, embodied by
the nb-modifier, attempts to form a domain-independent theory of goal interaction and provide
general reasoning methods based on the theory. Thus, the nb-modifier represents goal interaction
links such as directly-interferes-with and indirectly-supports. Conklin has suggested still other pos-
sibilities [Conklin 1989]. An expert human analyst is expected to supply actual links between goals
for any particular domain. These links, then, represent a form of compiled knowledge of the human
analyst; they are given as expert knowledge of the domain with no further rationalization.

The second alternative is to integrate goals with a causal model of the domain. Using this approach,
systems like gm-tool (see section 5.2.2), XPLAIN [Neches et al 1985], and Neomycin [Clancey
1985] back up compiled knowledge with a more principled model of the domain. For gm-tool in
particular, goals are linked through a qualitative model (see [Sycara 1988] for a similar approach).
While this makes reasoning more difficult than in a tool like nb-modifier that explicitly links goals
-- gm-tool requires one to trace goal interaction through a qualitative model - it has the advantages
of reasoning from a non-compiled, principled (albeit abstract) model of the domain.

As a final note on our use of goals, in observing clients interact with an analyst we noticed an in-
teresting phenomenon: without some concrete grounding of their actions, clients navigation of the
goal/requirements space was shaky at best. They often had only a vague notion of what stating a
goal would buy them, and were quite willing to make changes to the goals (as opposed to the mod-
el) under criticism. A remedy to this problem appears to be, in part, the generation of a subset of
representative behaviors that reify a goal (another big part would be an estimation of the cost in-

Page 32

volved in achieving the goal).Without some touch with reality, one can expect a client to move
around the goal space with the same abandon shown by politicians concocting line items in a multi-
billion dollar budget.

In summary, we must eventually marry a scenario generator like that found in the gm-tool or cb-
critic to a tool like the nb-modifier. That is, a client should be able to visualize, directly or indirect-
ly, the ramifications of taking a stand on a goal, stating preferences, and agreeing to compromises.
Taking a software engineering view, this might be seen as a type of goal-directed symbolic evalu-
ation or rapid prototyping.

6.2 Requirement freedoms

Our interest is in representing and reasoning about development states that include incomplete, in-
consistent, or ambiguous components. The following table illustrates the cross product of the three
approaches and freedoms we have presented. We discuss each of the columns below.

indirect conflicts not supported
case-based [point-counterpoint
scenarios
indirect & direct .
conflicts can reason with
]) abstract operators
point-counterpoint & concepts
plan-based scenarios
indirect & direct)
conflicts [preferences & partial
negotiation- |& methods known satisfaction

based resolution methods

Incompleteness. Each of the approaches under the incompleteness column makes an important as-
sumption: any goal that a client may wish to state is known and predefined in the tool; the analyst’s
job is choosing what subset of goals should be included for any specific problem, In other words,
we have focused on reasoning about incomplete models but not incomplete goal sets. Our interest
in incomplete models has been twofold:

1. We add new components to a closed specification that has been proposed by the analyst
when it is viewed as too naive by the tool. This type of addition is seen in the discussion of
the cb-critic in section 5.1.1.

2. We add new components to the known methods of the tool itself to allow reasoning to con-
tinue. This type of addition is seen in the discussion of the pb-modifier in section 5.2.1.

Page 33

In both cases, adding new components has a distinctive deficiency-driven flavor: when a deficien-
cy is found in either model or tool as part of a larger reasoning process (validation, modification),
add whatever components are necessary to overcome the problem. This can be contrasted with ap-
proaches that center on domain analysis or requirements elicitation as separate, stand-alone pro-
cesses, things one does to fill out a tool’s representation in preparation to beginning specification
construction [Dardenne&vanLamsweerde 1990], [Dubisy&vanLamsweerde 1990]. The following
rough analogy can be drawn between the two approaches.

» Deficiency-driven acquisition is goal-directed - pieces are filled in only when needed to
achieve a validation or modification task.

+ Domain elicitation is data-directed - initial pieces are filled in by stock questions, analog-
ical reasoning, or even free form input from a domain experi. From there, implications are
followed to derive further pieces of the domain representation.

We can only conjecture that some combination of the two will be necessary; to our knowledge, no
tool has been proposed that integrates both techniques.

Inconsistency. Our major effort to date on inconsistency has been on negotiation-based tools. This
is a difficult area indeed. On the one hand, we believe that negotiation among interested parties is
intrinsic to the specification process. If we really want to capture useful rationales for the systems
we build, we will have to represent the negotiation process. On the other hand, successful negoti-
ation often appears to be a decidedly human activity, one based on intuition, discovery of hidden
agendas, politics, and human behavior in conflict settings. We have not attempted to represent any
of these explicitly. The question is, do we need to? Or can we rely on an expert human analyst/
negotiator to carry out the social aspects of negotiation, using tools like the ib-critic and nb-modi-
fier as fancy negotiation-based pocket calculators? If so, is the formal rationale produced by these
tools enough? Or will some representation of the social aspect of the final compromise be neces-
sary? All of these questions remain open.

Ambiguity. We have studied two basic approaches to reasoning under ambiguity:

1. We use abstraction as a type of useful ambiguity. Both the pb-critic and pb-modifier illus-
trate this in terms of model abstraction. The goal tree of the negotiation-based tools allows
abstract goals to be stated that are, like the abstract operators of the plan-based tools, types
of place-holders for less ambiguous goals. While they must eventually be made non-ambig-
uous by their connection to actual specification components, they can still serve a useful
purpose in their abstract state (see section 5.2.2).

2. We use ordered preferences to show a natural fuzziness in goal satisfaction. The represen-
tation of such ambiguity is critical to successful negotiation in tools like the nb-modifier.

We also note that the gm-tool can be viewed in much the same light as the pb-critic and nb-modifier
- it uses a form of useful ambiguity, called qualitative modeling, to reason about abstract models.

Page 34

6.3 Multiple perspectives

The ib-critic and nb-modifier tools support multiple perspectives. However, their focus is on the
negotiation process. Hence, their representation is directed towards concepts that will aid negotia-
tion: goal hierarchies, goal preferences, incorporation links, compromise techniques.

In a related effort, we have begun to explore the larger issue of representing the means various per-
spectives (or what we now call agents) are formed, how responsibility is assigned to agents, how
agents cooperate to achieve system goals, what mechanisms we must build into a system to counter
irresponsible or errorful behavior by agents. After [Feather 1987], we call the problem one of com-
posite system specification.

One can view the composite system specification problem from several angles:

* Itisa problem of joint problem solving. There are system-wide goals, and the environment
and artifact agents must cooperate to achieve them. In this view, techniques from Distrib-
uted Al appear applicable.

* Itis an interface problem. We must devise an interface for the artifact that allows it to com-
municate with the environment agents to solve the goals. From this view, techniques from
Human-Computer Interaction appear applicable.

* Itis a reliability problem. If we make an agent responsible for achieving a goal, we must
worry about the reliability of that agent carrying out the responsibility. We may need to add
back-up or reliability-enhancement mechanisms. Work in fault-tolerant systems and soft-
ware safety appear relevant.

* Itis a motivation problem. If we make an agent responsible for achieving a goal, we must
worry about the motivation of the agent. The agent may have other conflicting goals that
will interfere with its responsibility. We may need to add carrot or stick incentives to en-
courage the agent to choose the good of the whole over its own selfish needs. We see tools
like the ib-critic and nb-modifier as applicable here, both in detecting goal conflicts and
remedying them.

Other requirements and specification projects have begun to address single pieces of the composite
system problem in isolation [Dubois&Hagelstein 1987], [Finkelstein et al 1990]. We have em-
barked, under the Kate project at Oregon and the KBSA project at Information Sciences Institute,
on a broader approach that attempts to integrate the four views above into a single representation.
Our efforts to extend the pb-critic and pb-modifier tools to the composite system specification
problem is presented in [Doerry et al 1990].

Page 35

6.4 Tool implementation

We have presented six Kate tools in this paper. The table below summarizes their implementation

status.

automatic

. case retrieval
cb-critic

scenario generation

semi-automatic

case matching

manual

spec modification

pb-critic plan generation

ib-critic issue formation

spec matching
conflict detection

goal-directed op

pb-modifier retrieval

op specialization
op replacement
op acquisition

op transfer

spec modification

multicriteria

nb-modifier analysis

compensation
dissolution

case-based
resolution

spec modification

scenario generation

qm-tool op acquisition | spec modification

We have not included entries for control, i.e., the selection of development steps in figure 2. All of
our tools are assistant-based, relying on the human analyst to guide the development process. We
do not expect this to change in the near future. As an example of the complexity of the control prob-
lem, we can turn to section 5.2.2. There, we simply took each of the nb-modifier’s four methods in
sequential order. However, dissolution, compensation, and case-based resolution cause new issues
to be considered. All four methods of resolution can be applied to the new issues; hence, the control
of these four methods is necessarily intertwined. While expert human negotiators are able to pro-
vide such intertwined control effectively [Raiffa 82], [Pruitt 81], there is no indication that we are
close to having a corresponding computer-based model.

Acknowledgments

We thank current and past members of the Kate project -- Eck Doerry, Keith Downing, Brian Dur-
ney, Rob Helm, P. Nagarajan, Susan Osofsky -- for their efforts. Eck Doerry provided substantial
conceptual and organizational advice. Lisa James provided valuable editing assistance. Finally, we
thank the National Science Foundation under grant CCR-8804085 for support of this work.

Page 36

References

[Alterman 1988] Alterman, R., Adaptive Planning, Cognitive Science 12, 393-421, 1988

[Anderson&Farley 1988] Anderson, J., Farley, A., Plan abstraction based on operator
generalization, in Proceedings of AAAI-88, St. Paul, 100-104, 1988

[Anderson&Farley 1990] Anderson, J., Farley, A., Partial Commitment in Planning, TR 90-11,
Computer Science Dept., University of Oregon, 1990,

[Anderson&Fickas 1989) Anderson, J., Fickas, S., Viewing Specification Design as a Planning
Problem: A Proposed Perspective Shift, In Fifth International Workshop on Software
Specification and Design, Pittsburgh, 1989. Also to appear in Arrificial Intelligence and
Software Engineering, D. Partridge (ed), Ablex, 1990

[Bearman&Fickas 1988] Bearman, M., Fickas, S., Issues in specification design using parailel
elaborations, In Australian Software Engineering Conference, Canberra, 1988

[Clancey 1985] Clancey, W., Extensions to rules for explanation and tutoring, Rule-Based Expert
Systems, Buchanan and Shortliffe (eds), Addison-Wesley, 1985

[Conklin 1989] Conklin, J., Interissue dependencies in gIBIS, Technical Report, MCC Software
Technology Program, P.Q. Box 200195, Austin, Texas, 78720

[Dardenne&vanLamsweerde 1990] Dardenne A., van Lamsweerde A., Towards Concept
Acquisition in Requirements Elicitation, Technical Report N. 12, KAOS Project, Institut
d’Informatique, rue Grandgagnage 21, B-5000 Namur, Belgium, 1990.

[Doerry et al 1990] Doerry, E., Fickas, S., Helm, R., Feather, M., Deriving interface requirements
through composite system design, Technical Report 90-10, Computer Science Department,
University of Oregon, Eugene, OR. 97403

[Downing&Fickas 1990] Downing, K., Fickas, S., Specification criticism via policy-directed
envisionment, Technical Report 90-11, Computer Science Department, University of
Oregon, Eugene, OR. 97403

[Dubisy&vanLamsweerde 1990] Dubisy F., van Lamsweerde A., Requirements Acquisition by
Analogy, Technical Report N. 13, KAOS Project, Institut d ' Informatique, rue Grandgagnage
21, B-5000 Namur, Belgium, 1990.

[Dubois&Hagelstein 1987] Dubois E., Hagelstein J., Reasoning on Formal Requirements: A Lift
Control System, In Proceedings of the 4th International Workshop on Software Specification
and Design, pp. 161-167, 1987.

[Feather 1987] Feather, M., Language support for the specification and development of composite
systems, ACM Transactions on Programming Languages and Systems, Volume 9, Number
2, April 1987

[Fickas 1985] Fickas, S., Automating the transformational development of software, In IEEE
Transactions on Software Engineering, Vol. 11, No. 11, Nov. 1985

[Fickas&Nagarajan 1988a] Fickas, S., Nagarajan, P., Being suspicious: critiquing problem
specifications, In Proceedings of the 1988 AAAI Conference, Minneapolis

[Fickas&Nagarajan 1988b] Fickas, S., Nagarajan, P., Critiquing software specifications: a

Page 37

knowledge based approach, I[EEE Software, November, 1988

[Fickas et al 1987] Fickas, S., Collins, S., Olivier, S., Problem Acquisition in Software Analysis:
A Preliminary Study, Technical Report 87-04, Computer Science Department, University of
Oregon, Eugene, OR. 97403

[Finkelstein et al 1990] Finkelstein, A., Goedicke, M., Kramer, J., Viewpoint oriented software
development, Technical Report, Computer Science Department, Imperial College of Science
and Technology, London, 1990

[TWSSD 1987] Fourth International Workshop on Software Specification and Design, IEEE
Computer Society, Order Number 769, Monterey, 1987

[Meyer 1985] Meyer, B., On formalism in specifications, /EEE Software, Volume 2, Number 1,
January, 1985

[Neches et al 1985] Neches, R., Swartout, W., Moore, J., Enhanced maintenance and explanation
of expert systems through explicit models of their development, In /EEE Transactions on
Software Engineering, Vol. 11, No. 11, Nov. 1985

[Pruitt 1981] Pruitt, D., Negotiation Behavior, Academic Press, 1981
[Raiffa 1982] Raiffa, H., The art and science of negotiation, Harvard University Press, 1982

[Robinson 1987] Robinson, W., Towards the formalization of specification design, Masters
Thesis, Computer Science Dept., University of Oregon, 1987

[Robinson 1989] Robinson, W., Integrating multiple specifications using domain goals, In Fifth
International Workshop on Software Specification and Design, Pittsburgh, 1989.

[Robinson 1990] Robinson, W., Negotiation behavior during requirement specification, In 12th
International Conference on Software Engineering, Nice, 1990

[Robinson&Fickas 1990] Robinson, W., Fickas, S., Requirements freedoms, TR-90-04, Computer
Science Dept., University of Oregon, Eugene, Or. 97403

[Rubenstein&Waters 1989] Rubenstein, H., Waters, D., The requirements apprentice, In Fifth
International Workshop on Sofitware Specification and Design, Pittsburgh, 1989.

[Sycara 1988] Sycara, K., Resolving goal conflicts via negotiation, In Proceedings of AAAI-88,
245-250, 1988

[Wing 1988] Wing, J., A study of 12 specifications of the library problem, JEEE Software, July,
1988

[Zeleny 1982] Zeleny, M., Multiple criteria decision making, McGraw-Hill, 1982

Page 38

