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Abstract

Our general interest is in the design of multi-agent (composite) systems. We focus in this
paper on the design of joint problem-solving strategies for such systems. In particular, we
are interested in a) the creation of agents, b) their assignment of roles and c) their
communication or problem-solving protocol.

We make two claims in the paper: 1) there is a general, formalizable set of multi-agent
protocols that account for an interesting class of composite systems, and 2) one can
evaluate a given protocol on the ability and reliability of its constituent agents, and on the
amount of interference agents have in carrying out their roles. We describe a design model
based on these two claims, and then rationally reconstruct an existing composite system
using our model. From this we make sufficiency and necessity arguments.
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1. Introduction

Our general interest is in the design of multi-agent systems, or what Feather has referred to
as composite systems [Feather 1988). Composite systems encompass multiple agents
involved in ongoing, interactive activities. We focus in this paper on the design of joint
problem-solving strategies for such systems. In particular, we are interested in a) the cre-
ation of agents, b) their assignment of tasks and c) their communication or problem-solv-
ing protocol as part of a composite solution to a problem.

We have studied representative composite systems from different domains. From this
study, we make two claims:

Tractable set. A general, formalizable set of multi-agent protocols account for an interest-
ing class of composite system solutions.

Evaluation criteria.The choice among competing protocols is founded on three criteria:
1. Is an agent capable of carrying out an assignment (duty, role)?
2. Given that an agent is capable, will it be reliable in carrying out an assignment?

3. Given that an agent is capable, will an assignment interfere with its other responsi-
bilities, either in the current system or some other system where it plays a role?

The two claims, together, form a theory of design founded on state-based search: there is a
general set of operators for producing members of composite systems; there are criteria
for pruning the search space and judging/comparing the value of proposed solutions in a
particular application domain.

We have defined a model of design for composite systems that is based on this theory. At
the heart of the model is an operator we call assignment of responsibility, It is through this
operator that problem-solving protocols are built. In typical composite design problems,
there is more than one way of applying the assignment of responsibility operator. It is here
that the 3 evaluation criteria come into play.

We have used our model to both synthesize new composite systems and rationally recon-
struct the design of existing composite systems. In this paper, we will use the latter
approach to provide evidence for our claims: we will use our model to rationally recon-
struct the design of an existing (circa 1880) composite system, that of a multi-agent train-
scheduling system. In doing so, we will make two arguments: 1) our model is sufficient to
generate an interesting class of composite systems, and 2) our model provides, in some
cases, the only means that certain composite design components can be generated/ratio-
nalized, i.e., the model is necessary (at least in these cases).

2. Our design model

Our design model is based on a transformational approach. We start with a naive, incom-
plete representation of a system and gradually transform it into a composite solution. QOur
representation of a system comprises two parts:

1. a generative part denoting the possible behavior produced by agents in the system.
In our model, this takes the form of a discrete event language that can be viewed,
alternatively, as a subset of Gist [London and Feather 1982] or a superset of
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Numerical Petri Nets [Wilbur-Ham, 1985].We will use the latter view in this paper
for presentation purposes.

2. aconstraining part consisting of a set of goals, i.e., constraints on behavior. Goals
are expressed in terms of system-wide properties, regardless of how responsibility
is decomposed among agents. In our model, goals are represented in a style of
temporal logic roughly similar to that of that of the ERAE language [Dubois and
Hagelstein, 1988].

Transformations are defined such that they map one system state to another. This mapping
may be correctness-preserving or not. In particular, new agents may be introduced, the
specification of existing agents may be changed, new problem-solving protocols may be
introduced, and even the sysiem-wide goals may be modified.

The control of our design model is patterned after the Glitter system [Fickas, 1985]: an
open task is selected; methods are found that address the task; a choice is made among the
methods; the selected method is applied, leading to a new design state. As with Glitter, we
define a design state to be the combination of system state and task agenda (represented in
our model as a problem reduction tree). An overview task agenda for the design in this
paper appears in Appendix A.

The further details of both specification and development state representations are found
elsewhere [Fickas and Helm, 1990]. We will present a simplified representation in this
paper to allow us to concentrate on our true focus, that of agent responsibility and general
multi-agent problem-solving protocols.

3. Anexample

We will demonstrate and evaluate our design model with an example of composite system
design. The example we have chosen is the multi-agent station-train signalling protocol
described in McGean [McGean 1976], henceforth simply the “McGean design”!. The
problem-solving protocol attempts to prevent collisions of trains by allocating regions of
track of 5 to 15 mile length (called blocks) to a single train at a time. Each block has a sin-
gle station associated with it. When a train T enters a block B (by passing or stopping at
the station for B) the operator of that station sets a signal that block B is now occupied. No
other trains may enter B until the signal is cleared. The operator clears the signal when the
next operator down the line sends a signal back that the train T has been spotted (and
hence, has vacated block B).

The occupied/clear signal is actually broken into two components, a “distant” signal and a
“home” signal. Both are always in the same state. The distant signal is set out far enough
from the station (in the preceding block) to guarantee that a train can stop before reaching
the station. The home signal is in front of the station (Figure 1). In essence, the distant sig-
nal tells a moving train when to start stopping, and the home signal tells a stopped train
when to start moving. If a train sees a clear distant signal then it will see a clear home sig-
nal (see the constraint of one train per block at a time).

Looking at the solution from a composite system view, the protocol makes engineer

1, This is clearly a misnomer, for McGean is only the chronicler of the 1880 design. However, the identity
of the original designer is unknown to us, and hence, McGean becomes the stand-in.
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agents responsible for entering a block of track between stations only if the signal for that
block reads clear (vertical). Station operator agents are given the responsibility of 1) set-
ting the distant/home signal to occupied (horizontal), 2) resetting the signal to clear, and 3)
passing information among themselves. Finally, dispatcher agents (not shown in Figure 1)
are responsible for making sure trains enter a system in a safe fashion.

Figure 1  Simplified McGean design.,
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We will rationally reconstruct the McGean design to make the following points:

The design uses a standard constraint satisfaction technique, which we call brinkman-
ship, for keeping trains from colliding. Two agents, a dispatcher and an engineer, are
made jointly responsible for not moving beyond the brink.

The design uses a standard, multi-agent problem solving protocol, which we call
sequential split, to break collision avoidance into two temporally-disjoint pieces. A sep-
arate agent is assigned to each piece, with responsibility shifting from one agent to the
next.

The design uses a standard, multi-agent problem solving protocol, which we call set/
reset, to allow station operators to communicate with engineers.

The design uses a standard, multi-agent problem solving protocol, which we call
remote/note send, to allow station operators to communicate with each other.

The design addresses some, but not all of the reliability problems resulting from
responsibility assignments. For instance, it provides an active warning (distant) signal
of a train ahead (as opposed to just relying on line-of-sight or a painted warning sign).
It also implements communication between operators that is partially fail-safe - a train
may not proceed if communication is lost between operators. On the other hand, the
design does not provide for recovery or redundancy if a dispatcher, engineer or opera-
tor became incapacitated at a critical time. We will assume that such agent reliability
was considered and dismissed in the original design.

The design addresses some, but not all, of the interference problems resulting from
responsibility assignments. For instance, the design overloads operator agents, assign-
ing them three separate responsibilities: 1) set a signal when their block of track is
occupied, 2) reset the signal when it is clear, and 3) send a signal to the previous opera-
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tor O when it is safe for O to reset her signal. In our model, overloading is one type of
interference issue: how many different responsibilities can a single agent take on before
the cumulative effect begins to interfere with its ability to perform?

The McGean design does not explicitly address interference arising from motivation,
i.e., does an assigned responsibility interfere/conflict with other responsibilities or local
goals of an agent. However, it is interesting to speculate whether the human operators
were playing an implicit motivational role for engineers. In particular, there is no report
of a problem with engineers “running the distant signal” (which would have been
caught by a human station-operator), but McGean does report a problem in modern day
systems (with hardware versus human operators) of engineers “riding the yellow”, i.e.,
not completely stopping when signaled to do so.

The remainder of this section follows the development of the McGean system using our
design model. Before starting the reconstruction, a note about the presentation is in order.
The designer (D) sometimes calls on a critic (C) to find a counter-example, in terms of
system behavior, that refutes a goal. This critic is implemented. Its initial version is
described in [Anderson and Fickas 1990]. In its current state, it can use reachability graphs
to produce behaviors (paths) that involve transitions wirhout a not-arc. While the McGean
system can be modeled with such transitions, it is unbearably messy. Hence, we will trade
lucidity for automation in the following sections: transitions with not-arcs will be used and
scenarios that reference them are manually produced.

We also apply transformations during the design. We have constructed a composite system
editing tool that allows primitive composite-system modifications. All transformations
seen in the example were carried out by manual calls to the editing tool.

3.1 The initial system

We will start our design with the system shown in figure 2!.To paraphrase, there are
objects called trains (t) that are created and deleted. There are objects called blocks (b) that
represent locations and destinations. Some blocks are adjacent to one another. Trains have
locations and destinations, (i.e., there are relations Location(t,b) and Destination(t,b)),
which can be created (asserted), deleted (retracted) or modified. The deletion of a train
must be accompanied by the deletion of its associated relations. Trains cannot be in more
than one place at the same time. Trains have a unique destination.

There are two system goals: two trains should never be at the same location (safety); trains
should eventually get to their destination (progress).
The system of figure 2 represents one that captures both correct and incorrect behavior.
The designer will now try to develop a new system which satisfies all of the system goals.
We start by looking at “safety” goals [Alpern and Schneider, 1985], in which some state
must be maintained indefinitely:

D) Verify the ProtectTrains goal in SYSQ given Block(b1)

The critic generates a scenario in which two trains enter the system at the same location, a
violation of the ProtectTrains goal.

1. Our approach is to generate an initial system that is consisient with the types appearing in the goal state-
ments. This process does not rely on domain knowledge. Aliermative approaches to initial systems construc-
tion that rely on a more domain-specific approach include retrieving from an abstract library [Reubenstein
and Waters, 1989], or using a domain theory 10 acqudre the initial system [van Lamsweerde et. al., 1991].
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{C): The goal ProteciTrains is violaied by scenario S1 in state SYSO:
1. given Block(b1),
2. train-enters => t1/Train,
3. train-enters => 12(Train,
4. start (11, bl ) => Location (t1, bl),
5. start ( t2, bl ) => Location (12, bi),
Violation: ProtectTrains in SYS0

Figure2  System state SYSO0.
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The designer has three alternative (but potentially complementary) methods to address the
negative scenario S1:

1. Modify the system. The designer could change the system so that the scenario no longer
occurs. For instance, the designer may decide to provide separate arrival points for each
train, making it impossible to generate the “crash on arrival” scenario of S1.

2. Modify the goal. The designer could adopt a less stringent goal, such as, “No more than
N trains are ever at the same location”, or “99 % of all trains never encounter another
train at the same location!”. This would lead to a new task of verifying that the occur-
rence of S1 is in some acceptable tolerance.

3. Assign responsibility for the goal to a class of agents.

An agent is a component of a composite system which can sense a portion of the system’s
state, make decisions, and perform or prevent actions of the system which the agent con-
rols. Assigning responsibility for a goal to an class of agents requires that all agents in that
class limit their actions so the goal is achieved. Informally, only those agents responsible
for a goal are expected to limit their own behavior to ensure satisfaction of that goal. For
example, if a train engineer/agent is alone responsible for keeping her train from colliding
with another, then she must limit her actions accordingly, and in particular, cannot rely on

1. Unfortunately, the latter goal would be impossible to express in our requirements language, or any other
Jformal requirements language that we are aware of, However, it is a common type of requirement statement
that clearly needs more attention.
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other agents to constrain their actions to avoid collision.

The designer chooses the third method, and introduces a new agent class called “dis-
patcher”, which controls the arrival of trains into the system. The designer assigns
instances of the dispatcher agent (henceforth, “dispatchers”) to control trains so that they
do not collide. But now the designer must define how dispatchers will protect the goal.
Using scenario S1 as a guide, the designer decides that a dispatcher should control the
choice of starting location for a train. This is done by instantiating a standard control trans-
formation, called brinkmanship, that maintains a constraint by manipulating transitions so
that all of the constraint conjuncts never become true at the same time. Stated another
way, the agent prevents transitions which are the last step in breaking the constraint!. In
our example, this means never allowing a train to start at the same location as another
train.

The brinkmanship transformation is shown in Figure 3. The top portion is the applicability
condition: The agent A will control a transition T whose firing allows C1&C2 to become
true, and hence, violates a constraint. The right side replaces the transition T with two sep-
arate transitions: Tc, a version of T that is under the control of agent A; Tu, a version of T
that is uncontrolled, acting as a type of reality check - few control regimes are perfect. We
will return later to the designer’s handling of Tu in the McGean design.

Finally note that the grey arcs in Figure 3 represent virtual communication lines: they
must be established (a separate design task). This is done by verifying that the controlling
agent, the dispatcher in this case, can access whether another train is at the location of a
train about to enter. In this case, the designer gives the dispatcher direct access to this
information (i.e., the designer changes the grey arcs to black ones).

Figure 3  Brinkmanship transformation.
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Figure 3 shows the state of the system after application of the brinkmanship transforma-
tion. We can paraphrase Figure 3 as follows:

There are sub-nets for creating and destroying trains and dispatchers (shown as dashed
boxes). Trains normally arrive (start-c) under the control of a dispatcher (Dispatch-con-

1. Other control strategies for maintaining constraints include 1) never allowing a specific condition in a
constraint 1o ever be true (e.g., never allowing trains in the system), and 2) ensuring that twe conditions in a
constraint are mutually exclusive (never allowing more than one train in the system).
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trol). Using start-c, a train is not allowed to enter at the same location as an existing train.
If no dispatcher is in control then it is possible for unrestricted entrance of trains (start-u)
to take place.

3.2 The use of certification

Have we now foiled the 51 scenanio? Only if we can count on start-c as always being cho-
sen (i.e., that control is always reliably created and never lost). But SYS1 leaves a loop-
hole: if the critic can remove all Dispatch-control(d,t) relations then it can again produce
something like S1 using start-u. In at least one view, this can be seen as a reliability ques-
tion: how likely is it that the controlling agent (dispatcher) will lose control (i.e., that lose-
dispatch-control will fire)? If the designer decides that this is a problem, then at least two
modifications are possible: Weaken the ProtectTrains goal to allow an infrequent loss of
control; lessen the odds of disaster by firing the add-dispatch-control several times, gener-
ating more than one dispatch-control relation for each train, i.e., create back-up dispatch-
ers for each train.

Figure 4  System state SYS1: Application of brinkmanship transformation.
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Figure 5  System state SYS2: Application of certification transformation.
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There is yet another reliability problem with the current specification state as seen in Fig-
ure 3: there is no guarantee that control will be created “in time”. That is, there is nothing
preventing the sequence train-enters => start-u => add-dispatch-control. i.e., a train enters
before a dispatcher can be assigned.
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The McGean design does not 1) address either of these reliability problems, or 2) suggest
that the ProtectTrains goal was weakened. Hence, we will allow the designer to certify that
uncontrolled entry (start-u) is impossible. Our model provides a transformation for such
certification, one that adds an explicit record of the designer’s claim. The result is shown
in Figure 3. The certification token, c1, can be paraphrased as “all scenarios involving
uncontrolled train arrival have been considered and dismissed as either implausible or not
worth handling”.

3.3 A split of responsibility
The designer again asks the critic if the ProtectTrains goal is satisfied:
(D) Verify ProtectTrains in SYS2 given Block(b1) and Block(B2)

The planner generates a scenario in which two trains enter the system safely, but still end
up at the same location.

{C); The goal ProtectTrains is violated by scenario S2;

1. given Block ( bl)

2. given Block (b2)

3. train-eniers => t1

4, create-dispatcher => d1

5. add-dispatch-control( d1, t1) => Dispatch-control( dI, t1)

6. start-c( t1, bl) => Location( 11, bl)

7. move( Location( t1, bl), b2) => Location( t1, b2)

8. train-enters => 12

9. create-dispatcher => d2

10. add-dispatch-control( d2, 12 } => Dispaich-control( d2, 12 )

11. start-c( 12, b1} => Location( (2, bl)

12. move{Location{ 12, b1), b2) => Location( 12, b2)

Violation: ProtectTrains in SYS2
Of course the problem is that we fixed the dispatch problem of scenario S1, but not the
movement problem of S2. The step the designer takes to counter the S2 scenario is similar
to that taken to counter S1: the brinkmanship transformation is applied. Figure 6 shows
the result of this development. To paraphrase, the brinkmanship transformation introduces
a new move-c transition which can only occur when (1) an engineer is controlling the
train, and (2) the conditions of brinkmanship are met. As before, the new system retains a
move-u transition, which can fire for uncontrolled trains. The combination of the brink-
manship applications to the dispatcher and the engineer gives us a sequential split of
responsibility, a common joint problem solving approach: break the problem into pieces
(temporal in this case) and assign separate agents to each piece.

As with dispatch, we have reliability problems to address in Figure 6. Can a train move
before an engineer is assigned? Perhaps more realistically in the transportation domain,
can an engineer (driver, pilot) be lost/incapacitated? If either question is a concern then we
may need to introduce a fail-safe mechanism to disable uncontrolled movement (see the
“dead man’s switch” on power lawnmowers, trains), or an understudy mechanism to
recover from it (see “co-pilots” on large ships, planes). Adding more sophistication, we
may decide to consider an auto-pilot mechanism that allows temporary but anticipated
loss of control.
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Figure 6  SYS3: new model of frain protection behavioral
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Since no discernible design effort was made to handle these type of reliability issues in the
McGean design, we will again allow the designer to certify that it is not a concern by
applying the certification transformation to block move-u (not shown in Figure 6).

3.4 Deriving interface requirements.

As can be seen in Figure 6, the brinkmanship transformation has introduced virtual (grey)
arcs between the move-c transition and the Location place, and between the move-c transi-
tion and the Movement-control place. When faced with such arcs in the earlier dispatcher
case, the designer simply blackened them, stating that it was expected that a dispatcher
had direct access to the vacancy of entry blocks. To blacken the grey arcs here requires
answers to the following questions:

1. Can the engineer directly access the move-c transition?
2. Does the engineer know the train’s current location?
3. Does the engineer know if the track adjacent is empty (see the not-arc in figure 6)?

The designer decides that engineer agents will have direct access to both the location of
the train they control, and to the “throttle” itself, and blackens the appropriate arcs. While
this seems like common sense knowledge if one uses on-board humans as engineers, one
can imagine vehicles that are controlled remotely by an engineer (e.g., unmanned space-
craft), that require sophisticated two-way communication devices to bring about control.

The last question asks if engineers can “see” into adjacent blocks? This was not realistic in
McGean’s domain: blocks were 5 to 15 miles long and engineers could not directly sense
the entire length of blocks adjacent to them. Fortunately, a standard solution is available:
ask another agent to act as middleman, and gather the vacancy information for the engi-
neer and pass it along to her. To select this joint problem-solving protocol, the designer
will apply a transformation we call set/reset that is defined to handle just such problems!.

Figure 7 shows the effects of this decision on the development state, with the result of the
set/reset transformation in the left portion of the figure. As with other transformations we
have seen, the application of set/reset generates further design questions:

Januvary 31, 1991 10



1. Can the designer guarantee that each block will be controlled at all times, or at least,
whenever it is occupied? What agents will control the various actions?

The designer certifies the first question, but deliberates more carefully on the second. The
set-reset transformation called for two disjoint sets of agents (A1 to control “reset” and A2
to control “set”) to cover blocks, but the designer decides that the same agent which man-
ages “set” (sets the home signal) can also manage “reset” (clear the signal), and applies a
merge-agent transformation to agent classes. While this is clearly more economical (and
follows the McGean design), it also introduces a risk. In a particular implementation of the
agent class (now called “Operator”), an agent may not have sufficient time to carry out
both of its responsibilities (set and reset) for all of the blocks it is tracking -- it may be
overloaded. In the McGean design, this is partially addressed by assigning only one block
to each Operator. Our designer will likewise add this capacity constraint here.

Figure 7  System SYS4 with set/reset and remote/note transformation applications
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In addition to reliability and interference questions, installing the set/reset transformation
raises access issues:

2. Can each agent sense whether a block it conirols is occupied? Can it sense when the
block is clear?

The designer decides that the operator can directly sense that a train is in its block, simply
by seeing the train pass by the station. The second access issue is represented by the vir-
tual arc entering the “reset-c” transition in Figure 7. As with engineers, an operator would
have to see into the adjacent block (to see a train leaving) in order to determine whether

1. The set/reset transformation is modeled after the communication and synchronization primitives typically

found in concurrent programming languages and operating systems, distributed and otherwise {Maekawa
et. al.,19871.
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the block it controls is, in fact, empty. This is not practical given the length of blocks. The
solution adopted here is to replace the virtual arc by application of a transformation called
“remote/note” (Figure 7, right). This transformation assigns an agent to monitor an entity,
and report when the entity changes from one state to another. The recipient consumes
(“notes”) the report when it acts on it. In this context, the reporting agent (A3) generates a
report when a train enters the block it is monitoring (and hence, leaves the adjacent block,
making it vacant). An operator receiving a clear event resets the signal for its block.

As with set/reset, the report/note transformation raises issues of control, reliability, and
interference. The designer dismisses all except the interference issue: as with set/reset, the
designer merges the functions of the reporting agent A3 with those of the operator (merged
from A1 and A2). In addition to monitoring their “own” blocks, operators now will moni-
tor the blocks from which trains arrive. When a train enters a block, that block’s operator
will notify the previous operator that her block is now clear. The previous operator will
receive the report and reset its signal.

3.5 Making progress

The designer next takes up the goal TrainsShouldProgress (see Figure 2). The designer
asks the critic to verify the goal. To do so, a behavior has to be found that produces either
a state from which a train can pever reach its destination (possible if block adjacency is
not set up correctly), or an infinite behavior/plan which maintains the negation of the
goall, Asa special case of the latter, there is a counterexample in which a train “oscillates”
between two locations, neither of which is its destination. The scenario generated moves a
train back and forth between two adjacent blocks,

After studying the scenario, the designer decides to assign responsibility for the progress
goal to the engineer. While there are interesting details of how the final McGean design
falls out of this, at a high level it is more of the same: the engineer is made responsible for
controlling her actions so that the train progresses. In particular, no new inter-agent proto-
cols are added to the system,

Before leaving the example, there is one last note to make. The progress goal in real train
systems is a case where goals might be traded-off. For instance, in automated descendants
of the McGean design, engineers have been observed to deliberately ignore mechanically
actuated “early warning” signals (such as yellow lights). Effectively, en gineers behave as
if they value the TrainsShouldProgress goal higher than ProtectTrains. In one view, this is
a motivational problem: we should “make” engineers value safety first. But the larger
problem is one of interference: the safety and progress goals have points of conflict in the
McGean design (and in every other resource management problem that is of any interest).
Another member of our group, Bill Robinson, has begun to look at ways such conflict
might be detected and resolved [Robinson, 1990).

4. Summary

The outcome of our reconstruction is not the McGean design as shown in Figure 1. That
design consists of physical implementations of the abstract components of our final sys-
tem, e.g., mechanical signals, human agents, throttles, telegraph lines, etc. What we have

1. Our automated critic is capable of either type of analysis, using omega-substitution for the second case
[Huber et. al., 1986]. However, as noled earlier, the critic is limited 1o transitions without not-arcs,
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produced is a design of the agents that will participate in the composite solution, and the
joint problem-solving roles they will play. Furthermore, we have considered how those
roles interact with issues of ability (and access), reliability and interference. The actual
choice of human versus mechanical implementations of our agents is not of interest to us -
any implementation that preserves the abilities we have specified is allowable.

It is now fair to ask whether we have substantiated our claims. We have shown that our
design model, based on responsibility assignment, is sufficient to generate the McGean
design, During the design reconstruction, we pointed out the generality of the concepts we
used by showing how different choices would have lead to different transportation sys-
tems. We have, indeed, applied the same techniques to reconstruct a traffic control system,
an elevator system [Fickas and Helm, 1990], and even the user interface of a simple text
editing system.

Given sufficiency, we turn to necessity: is our model the sparest one for designing com-
posite systems? It is too early to answer this question in general - the formal study of
mult-agent systems is in its infancy. However, we argue that certain pieces of the McGean
design require a rationale such as produced by our model. Perhaps most key, our notion of
agent ability (perhaps better stated as lack of agent ability) is tied directly to the semi-byz-
antine problem solving protocol of McGean. For example, if asked to rationalize the com-
munication (telegraph) line between operators in figure 1, one would be forced to
eventually explain both the roles of engineers and operators and their limitations as agents
in a joint problem-solving system.

5. Related work.
Bond and Gasser note in [Bond and Gasser , 1986] that

There has been remarkably little work on DAI that addresses auto-
mated problem formulation and decomposition. Correspondingly
greater effort has been put into flexible task-allocation mechanisms
that are used after a problem has been described and decomposed
into subproblems (p. 11)

Our work fills a portion of this gap. Our design model can be viewed as an (semi-)auto-
matic programming system for distributed problem solvers. It defines classes of agents or
actors [Hewitt, 1991], allocates tasks (responsibility assignments) for those agent classes,
and identifies the abilities each agent class needs in order to achieve some overall system
goals. Ideally, our model will eventually include standard protocols for changing the abil-
ities of agents [Hudlicka and Lesser, 1987], or dynamically reallocating tasks [Davis and
Smith, 1983]. In addition to DAI techniques, we are also investigating theories of cooper-
ative work in institutions, such as “coordination theory” [Malone, 1990].

The output of our model is a formal specification of the agents in a system, and their inter-
action. Qur work is thus complementary to research such as that reported in [de Bakker et.
al., 1989], which tries to develop correct distributed programs by correctness-preserving
refinement of specifications; our output is a formal specification which might serve as a
starting point for further development. Our approach similarly seems to complement
research in formal methods in human-computer interaction, such as that described in [Har-
rison and Thimbleby, 1990]. That work focuses on development of abstract models of
human-computer interaction which formally define properties such as consistency and
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learnability, and developing interface programs from specifications guided by such mod-
els [Runciman, 1990].

Our use of a transformational approach to composite system design extends and formal-
izes that of [Feather , 1987], which in particular introduced the notion of responsibility
assignment. [Dubois, 1990] has provided a formal semantics for responsibility assignment
in terms of deontic logic constructs in his ERAE requirements language. The specification
language we use to describe “specification states” was strongly influenced by both ERAE
and Gist. Our goal formalism also appears largely equivalent to that developed indepen-
dently by Castro [Castro, 1990] to describe multiagent specifications.

Gasser [1991] has argued that any theory of DAI must explain the role of agent knowledge
and communication in coordinated action. The agents and transformations of our model
amount to such a theory, although a limited one. Agents in our model cannot introspect
[Morgenstern, 1986] about their abilities, nor reason about the knowledge or goals of
other agents [Georgeff, 1983], nor about the goals or laws of the system as a whole. More-
over, due to our choice of Petri nets as a formalism, our agents can only react to the cur-
rent state of the system, and take action according to a pre-enumerated set of rules which
do not allow any inference. If a signal fails to set, for instance, an operator in our model
cannot infer that another action is necessary, formulate a new plan, and take corrective
action. There are undoubtedly design problems which require more powerful design mod-
els and representations than ours, but we believe that we can synthesize, analyze, and
rationalize interesting composite system designs by using simpler theories expressed in
tractable formalisms.
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Appendix A. Panlial development siate generated by “protect trains” sequence .
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Satisfy Goal “Protect Trains” (Figure 2).
Develop Dispatcher subnet (Figure 3).
Generate scenario 2 violating “Protect Trains” goal (section 3.3 on page 9).

Standard transformations for addressing a goal: Modify Model, Modify Goals, Assign

Responsibility (section 3.1 on page 5).
Brinkmanship Transformation (Figure 3).

Standard Brinkmanship tasks: Identify agent, verify ability, verify reliability, verify
interference (section 3.1 on page 5).

Development of the distant signal (section 3. on page 3).
Set/reset transformation (Figure 7).

Remote/note transformation (Figure 7).
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