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Abstract

Our interest is in formal models of the specification process. In recent years, there
have been a number of small-scale studies investigating the feasibility of automating
some or all of the specification process. Unfortunately, because the field is quite
young, each project team has been forced to invent their own vocabulary to describe
their results. This makes it difficult to compare two projects and identify their similari-
ties and differences.

In this paper we propose a single model of specification, the composition model.
We claim that three recent projects exploring automated specification are all based
on the same model. The three projects are the Requirements Apprentice [Reubenstein
91], the IDeA / ROSE project [Lubars 89], and the ASAP / OPIE project [Anderson
and Fickas 89]. We first describe the general model, then discuss the individual differ-
ences between the three projects.



1 Introduction

Our interest is in formal models of the specification process. In this paper we pro-
pose a single model of specification, the composition model.

Compositional specification: an example

Figure 1 presents a graphical description (i.e., a specification) of a simple check-out
operation. A specification is made up of three kinds of elements: object symbols, rela-
tion symbols, and action symbols. These symbols are associated with each other via
association links. There are several kinds of links. Action symbols may be linked to
relation symbols via produces, maintains and consumes links. Action symbols may be
linked to object symbols via agent and patient links. Action symbols may be linked to
relation symbols via subject and object links.
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Figure 1. Specification of check-out action

In Figure 1 an action symbol, check-out, is linked by a consumes link to a relation
symbol, has-possession, which in turn is associated with object symbols for library
and book. The check-out symbol is also linked by a produces link to another has-pos-
session relation, this one with patron as its subject. The check-out action symbol is
linked to patron as its agent and book as its patient.

Figure 2 shows a condensed description of the same specification, this time using
the standard shorthand of listing objects as arguments of action and relation symbols.
While this notation is easier to read, it is somewhat misleading in that it hides the fact
that object, relation and action symbols are all equal ‘first-class citizens’ in this repre-
sentation.



has-possession \ consumes [ check-out |produces/ has-possession
(library, book) (patron, book) (patron, book)

Key:

action symbol (:) relation symbol

Figure 2, Shorthand specification of check-out action

In the composition model, a requirement is basically a specitication with holes in it
For example, Figure 3 shows the requirement that a patron be able to obtain a book
from the library. The holes in a requirement are called roles.
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Figure 3. Requirement for check-out action

In order to get from a requirement to a specification, we must have a way of deter-
mining possible fillers for roles. This requires storing information about the possible
associations among objects, relations and actions in a knowledge base. For example,
suppose we have stored the knowledge that check-out is an action that produces has-
possession(patron, book). We use pattern-matching on has-possession({patron, book) to
access the corresponding relation in the knowledge base. We then follow the pro-
duced-by link to find possible fillers for the role.

Note that check-out is only one possible filler for the role of producer for has-pos-
session(patron, book). Other fillers include buy and steal. Therefore, at some point we
must make a choice among the alternatives. However, by using incremental selection,
a decision need not be made immediately. Instead, a single action symbol that repre-
sents all of the alternatives is used to fill the role at first. In our example, the action ob-
tain(patron, book) would be inserted as an abstract representation of all actions
resulting in has-possession(patron, book).



After the abstract action symbol 1s inserted, it can be specialized with the help of
constraints from other design decisions. Constraints are used to prune unsatisfactory
alternatives from the set of possible fillers for a role. For example, suppose that at
some point the requirement is added that the relation owns(library, book) must be
maintained. This requirement acts as a constraint to eliminate buy and steal as possible
specializations of obtain(patron, book). Assuming check-out is the only remaining al-
ternative, it is selected to fill the role.

Frequently, after a filler is specialized the next step is to decompose the specializa-
tion into parts. For example, the check-out operator might be subdivided into the steps
of locating the book, bringing the book to the counter, and recording the transaction.

Introducing or specializing an element may introduce a new set of requirements.
For example, locating the book may require that the patron have access to a catalog of
books in the library. These new requirements become additional roles to be filled.
Also, a new or specialized element may add constraints to existing roles. For example,
some other decision might add the constraint that reference-books be excluded from
the check-out operation.

Finally, the specification must be evaluated to ensure that none of the requirements
are violated. Recall that during specialization any filler that directly violated a con-
straint was pruned. However, the possibility remains that some combination of ele-
ments causes a constraint violation even though no one element alone is responsible.
For example, placing an unchecked book in one’s backpack is not stealing, nor is car-
rying one’s backpack out of a library. But the combination of those two actions results
in a stolen book. Therefore, we require an evaluation step to check the overall consis-
tency of the specification. If an inconsistency is found, some previous commitment has
to be changed.

2 The composition model

In this section we discuss the representations used in compositional specification,
followed by the operations used to compose the specification.

2.1 Representations

Knowledge base

Compositional problem solving requires a knowledge base of stored descriptions of
potential solution components and the possible associations among them. The knowl-
edge base contains descriptions of zypes of objects, relations and actions. A description
consists of a symbol plus all of the symbols directly linked to it. Such a description is
called a schema.!

Each of the three kinds of schemas (object, relation, action) are organized into a



taxonomic hierarchy. For example, ‘obtain’ might be the parent of make, buy, steal and
check-out. Furthermore, the schemas are also organized into a partonomic hierarchy.
For example, one form of check-out may be composed of locate-book, bring-book-to-
counter, and record-transaction. The combined taxonomic and partonomic hierarchies
form an AND / OR graph. In addition to the links mentioned previously, the knowl-
edge base contains specialization and decomposition links to form these hierarchies.

Specification

While descriptions in the knowledge base refer to generic types and possible associ-
ations, a specification describes a particular combination of objects, relations and ac-
tions and the associations among them. Every specification element is linked to its
corresponding type in the knowledge base. An element linked to an abstract type is
considered to be an abstract element.

Requirements

A requirement is a partial specification in which some roles are left unfilled. A role
is a place-holder for an element just as a variable is a place-holder for a value. Roles
can be action, relation or object roles. A requirement consists of sub-requirements
which determine how the roles are to be filled. Composition is essentially a process of
filling the unfilled roles while conforming 1o the requirements. A standard representa-
tion for unfilled roles is a frame [Minsky 77]. In a predicate calculus representation,
unfilled roles correspond to unbound variables.

A software requirement generally contains action roles described in terms of rela-
tions. These requirements fall into four classes: achievability, retractability, mainte-
nance, and avoidance requirements. For example, the requirement for a library might
state that the relation ‘has-possession (patron, circulating-book)’ should be both
achievable and retractable, ‘in-library (reference-book)’ be maintained, and ‘stolen
(book)’ be avoided.

Achievability and retractability requirements define action roles to be filled; main-
tenance and avoidance requirements serve as constraints on the fillers for those roles.
Itis important for an artifact to not only enable certain goals of potential users, but also
to disable certain actions of potential mis-users.

Action roles are not the only kinds of roles. Preconditions of actions define relation
roles; both actions and relations can define object roles.
2.2 Operations

Figure 4 presents a high-level view of the operations in compositional specification.
The process begins with a requirement containing unfilled roles and/or abstract ele-

1. See [Sowa 84] for an extensive review of structured representations.
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Figure 4. Operations in the composition model

ments. The first step is to select a task: either a role to fill or an element to specialize. If
the task selected is an empty role, the next step is to fill it; if the task selected is an ab-
stract element, the next step is to specialize it. If the newly specialized element is com-
posed of sub-parts, it is decomposed. The next step is to introduce and propagate
constraints based on the roles associated with the new filler or specialization. These
constraints may prune non-solution components without search.

Once the constraints have been introduced, the entire specification is evaluated for
unforeseen constraint violations. If found, the specification must be revised by retract-
ing a previous commitment and making an alternative choice.

In order to be considered finished, a specification must be complete (all roles are
filled), unambiguous (all elements are completely specialized), and consistent (no con-
straints are violated).

Choose a composition task

A task is either a slot to fill or an abstract element to specialize. Methods for choos-
ing a task include LIFO [Fikes et al 71], criticality [Sacerdoti 74, Knoblock 90], deter-
ministic tasks first [Stefik 81], tasks with fewest remaining options first [Anderson and
Farley 90], and random selection. Another approach is to treat task selection as a sepa-
rate problem to be solved [Laird 86].

Assign an element to a role

Achievability and retractability requirements drive the initial assignment process.
For every achievability requirement, an action which achieves the relation must be in-
cluded in the specification. The action is found by using the relation as a retrieval cue
into the knowledge base. The producer of the corresponding schema in the knowledge
base is used as the filler’s type. This is essentially the process used in means-ends anal-
ysis.

Relation and object roles are filled using the same process. An element linked to the




role is used as a retrieval cue, the corresponding association link is followed to a sche-
ma which is used as the filler’s type.

A new element of the correct type may be created, or an existing element in the
specification may be assigned as the filler. For example, the same door used by a pa-
tron to enter the library may be used to leave it.

Constraint propagation

Typically, 2 new element will be linked to an abstract type whose descendants rep-
resent alternative candidates for filling the role [Friedland 85]. In the compositional
model, selecting a single alternative is a process of selection by elimination. Con-
straint propagation [Stefik 81] is used to prune alternatives which are inconsistent with
the overall requirements. There are two primary forms of constraints: type constraints
and link constraints.

A type constraint ensures that two linked elements are of compatible types. For ex-
ample, suppose we start with a generic form of check-out that has two specializations:
one for checking out library books and another for checking out rental videos. Since
our requirement states that the patient of the action must be a book, the video check-
out can be eliminated.

A link constraint prohibits certain links between certain elements. A maintenance
requirement is a link constraint that prohibits a consumes relation between certain re-
lations and actions. An avoidance requirement is a link constraint that prohibits a pro-
duces relation between certain relations and actions. For example, the requirement that
owns(library, book) be maintained is a link constraint that eliminates buy and steal as
producers of has-possession{patron, book).

Specialize an element

If all but one of the candidates for a role is eliminated by constraint propagation, the
choice becomes deterministic. At this point it is an easy matter for the remaining alter-
native to be selected as the specialization.

If more than one alternative remains and additional constraints are not forthcoming,
it may be that all options are equally acceptable. In this case the best of the remaining
alternatives can be selected, or one may be selected at random. However, it might turn
out that the selected alternative conflicts with a constraint that is introduced later.
Therefore, whenever an arbitrary choice is made it is marked as a potential backtrack-
ing point.

The method of first filling a role with an abstract element, then using constraints to
eliminate alternatives, and finally selecting a specialization is referred to as incremen-
tal selection. Incremental selection allows interactions among solution elements to be
detected before one option or another has been selected arbitrarily. By avoiding arbi-



trary selections and using constraints to prune alternatives, much of the work associat-
ed with search can be avoided. Rather than trying each of the options in turn,
constraints are used to prune some of the options without search.

Decomposition

Decomposition occurs whenever an element is introduced that is composed of mul-
tiple parts. There is a separate parent node for each possible decomposition, so that
once the parent is selected the decomposition is deterministic.

Evaluation

The next phase of the design process is to critique the specification. Many, but not
all constraint violations can be avoided using constraint propagation. Additional eval-
uation is required to ensure that the interaction of several actions do not violate a con-
straint. For example, if an avoidance requirement is a conjunction of several relations,
and no one action adds all of the relations, it is still possible that several actions can
combine to produce the prohibited condition.

Revision

If a constraint violation is discovered during evaluation, the solution is to go back
to a decision made earlier in the specification process that contributed to the conflict.
That decision is retracted, which means that every subsequent choice that depended on
that decision may need to be reconsidered. By saving the complete dependency histo-
1y, it is possible to retract only the suspect decisions while preserving other, unrelated
decisions made after the initial error.

3 Comparison of compositional specification systems

In this section we look more closely at alternative views of each aspect of the gen-
eral composition model. We base our discussion primarily on three projects: the Re-
quirements Apprentice [Reubenstein 91], the IDeA / ROSE project [Lubars 89], and
the ASAP / OPIE project [Anderson and Fickas 89].

We begin by noting that the three projects had very different research goals, and
therefore differences are to be expected. In fact the degree of agreement among the
projects about the basic operations required is rather remarkable.

The Requirements Apprentice (henceforth RA) was proposed as an automated tool
to be used by an expert requirements analyst. IDeA / ROSE (henceforth ROSE) was
proposed as an expert system to be used by a novice. ASAP / OPIE (henceforth OPIE)
was proposed as a model rather than as a tool.

According to the authors’ descriptions, the three systems perform three different

tasks. RA takes informal requirements as input and returns a formal requirement.
OPIE takes a requirement and returns a specification. ROSE takes a specification and



returns a design. It would appear that it takes all three of these systems to get from in-
formal requirements to a design. Actually, despite the differences in terminology, all
three systems solve the same problem.

3.1 Representation

Knowledge Base

All of the projects use schemas (called cliches in the RA) to represent information
stored in the knowledge base. The representations in the knowledge base define types
while the representations in the specification stand for instances of those types. How-
ever, the schemas themselves are still somewhat ad hoc structures that are used in
slightly different ways in each of the systems. It is likely that the contents of the
knowledge base will be the last aspect of the composition model to become standard-
ized.

In this paper we have proposed a uniform treatment of objects, relations and actions
as schemas linked by association links. All three projects explicitly include schemas
for objects and actions. However, it is difficult to determine exactly how relations are
handled in RA and ROSE.

ROSE uses at least three kinds of components: “design schemas™ expressed as data
flow transformations correspond to action schemas. “Data object definitions™ corre-
spond to object schemas and “data object features” seem to correspond to relation
schemas. However, the discussion of features is a sub-section under the discussion of
data objects, which suggests that features are not treated as ‘first-class citizens’.

Discussion of the RA also indicates that relations may not be given full schema sta-
tus. “The roles of a cliche are represented by the slots of the associated cliche frame
type. The constraints on the cliche are represented by a predicate on these slots.”
[p11]. That is, at least some relations are contained within another schema rather than
being a separate schema.

All of the projects organize schemas into hierarchies. In OPIE, this is accomplished
automatically by taking the intersection of two schema descriptions and making an ab-
stract schema with the shared association links. The generalization process is de-
scribed in detail in [Anderson and Farley 88]. In ROSE and RA the hierarchies are
constructed by the programmer.

Requirements

All of the systems use basically the same information as input. The input describes
the objects and relations that are to be manipulated by as yet unspecified actions, How-
ever, this information is expressed in different ways.

OPIE assumes inputs are relations which should be achievable, retractable, main-
tained, or avoided. The input also includes any objects associated with the relations.



RA assumes inputs are a series of definitions of terms. The terms are primarily ob-
jects and needs. Although expressed in a different form, the needs appear to corre-
spond to OPIE’s achievability requirements. “The needs section gives a high-level
description of the desires of the end-users (e.g., the need to keep track of which books
are in the library).” [p10]

In the data flow representation, actions produce and consume objects rather than re-
lations. Therefore, in ROSE inputs are descriptions of data objects and not relations.
However, the data objects serve to define the required actions in the same sense that
relations are used to define required actions in OPIE and RA.

Specification
All of the projects appear to output a network of action and object descriptions.

The RA provides two forms of output: a human-readable requirements document
and a machine-manipulable “Requirements Knowledge-Base” (RKB). One of the key
features of the RKB is that it is “coherent,” whereas the input is “disorganized impre-
cise statements.” Since the RKB is composed of instantiated cliches, we can assume
that it resemnbles the specification described at the beginning of this paper.

ROSE uses data flow diagrams as the output representation. Again, it is not too
much of a stretch to map data flow diagrams onto the representation used in this paper.
Also, the next version of ROSE will be based on Petri net representations [Lubars 90].
The diagram in Figure 2 can also be viewed as a type of Petri net representation.

3.2 Operations

Choose a task

All three projects treat unfilled roles and abstract fillers as tasks to be completed.
The RA also treats terms which have been introduced but not defined as tasks.

OPIE first looks for tasks which can be completed without making an arbitrary de-
cision. If an abstract element is left with only a single specialization then specializing
that element is the next task. If all of the tasks have more than one possible comple-
tion, then the task with the fewest alternatives is selected. If there is still a tie, one is
selected at random.

ROSE allows the user to select a task or turn control over to the program. If the pro-
gram is allowed to select the task, it first looks for deterministic tasks. If no tasks are
deterministic it makes a random selection. _

The RA, in keeping with its role as a tool used by an expert, maintains a list of tasks
but leaves it to the expert to select the task to address next. However, like the others, if
a specialization has only one remaining alternative that alternative is immediately se-
lected without consulting the user.
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Assign filler to role

ROSE and OPIE use pattern matching between requirements and schemas in the
knowledge base to identify potential fillers for roles. In OPIE, means-ends analysis is
viewed as the primary method of filling roles. ROSE also employs MEA under some
circumstances, but uses object descriptions as the primary retrieval cue. In both cases
the program makes the assignment of filler to role. In OPIE there is always one schema
which represents all of the alternative fillers for a role [Anderson and Farley 88]. A
choice need not be made immediately; all of the alternatives remain valid candidates
until pruned by constraints.

In ROSE, not all levels of abstraction are represented in the knowledge base. There-
fore, it is sometimes necessary to make a choice among alternatives immediately. This
is done by counting the number of matches between the requirements and the schemas.
If this heuristic fails to produce a clear winner, the choice is turned over to the user.

In RA the user generally makes the assignment. However, “some roles have default
values associated with them that are used when no other value is specified.” [p14]

Propagate constraints
All three of the systems use some form of constraint propagation to help select

among alternative specializations of abstract elements. Unfortunately, the descriptions
of how constraints are used in making choices are somewhat vague.

In the RA, specialization is referred to as “disambiguation.” An ambiguous term is
one which has multiple meanings, i.e., multiple descendants in the cliche hierarchy.
Disambiguation is a process of using clues from the context (i.e., constraints) to select
the most appropriate interpretation. We can find references to both type constraints and
link constraints in RA.

In contrast to OPIE and RA, ROSE has specialization rules which direct it 1o the
correct alternative. However, the specialization rules accomplish exactly the same pur-
pose as constraint propagation in OPIE and RA. The rules take the form “If design
family is X and Y is a constraint then subfamily is X’*. If it is not known whether Y is
a constraint then ROSE asks the user. We can find explicit reference to type constraints
(“constraint variables™) in ROSE, but nothing resembling link constraints.

Specialize element

In all three systems, whenever only a single option remains, that option is immedi-
ately selected. If more than one alternative remains, the systems take different ap-
proaches. ROSE uses specialization rules to select the best choice. OPIE resorts to
search to explore one option and, in case of failure, backtrack and try another option.
In RA the choice is left to the user.
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Decompose element

OPIE uses the partonomic hierarchy to determine whether an element should be de-
composed and, if so, into what parts. ROSE uses refinement rules to accomplish the
same task. RA does not appear to do decomposition.

Evaluate specification

OPIE uses a planner as a devil’s advocate, trying to poke holes in the specification
by finding plans which violate maintenance and avoidance requirements. RA uses a
bounded amount of deductive inference to detect contradictions. No mention is made
of evaluation in ROSE. This may be based on the assumption that the rules are correct
and need no evaluation.

Retract commitment

If the RA detects a contradiction, it can propose alternative premises that might
avoid the contradiction. Furthermore, by recording the dependency history of every
design decision and inference, the RA can quickly re-compute the ramifications of a
change to the requirements.

OPIE uses less sophisticated backtracking methods to explore alternative options.

ROSE does not appear to have an explicit retraction mechanism. One might pre-
sume that an expert system is designed to make the right choice the first time, so that if
it fails there is no alternative that might have succeeded.

4 Summary

We have proposed a general model of compositional specification. We have argued
that several recent projects studying the automation of the specification process can be
described in terms of this model. Finally, we have discussed the differences between
the projects.

The contribution of our work is two-fold. First, we have described the model under-
lying current efforts towards automating the specification process. More importantly,
we have tied this model to current work in Al planning. This means that many of the
operations that are currently performed manually in the RA and ROSE can be auto-
mated using existing Al planning techniques.
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