Abstract Interpretation of
Logic Programs

Renganathan Sundararajan
e-mail: renga@cs.uoregon.edu

CIS-TR-91-05
December 91

Abstract

This paper is intended to be an introduction to the field of abstract interpretation
of logic programs. Abstract interpretation can be thought of as providing a new (or
abstract) semantics for the language under consideration and then showing how the
meaning of a program in the new semantics is an abstraction of the meaning of the
program in standard semantics. We discuss the issues involved in deriving an abstract
interpretation scheme and present an efficient and domain-independent algorithm for
computing fixed points in the context of abstract interpretation of logic programs. A
brief introduction to denotational semantics is also provided in order to make the paper
self-contained.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Contents
1 Overview

2 Introduction to Denotational Semantics

2.1 Functions as first classobjects.
2.2 Curried Functions i i it ittt e e e
23 LambdaNotation. i ittt ittt tns .
2.4 Denotational Definitions - A simpleexample..

24.1 Recursive Functions 0. ..
25 Domain Theory i i i i i i e e e
2.6 Domain Constructors. v v v v vt i i it s et e e e e e
2.7 Recursive Domains i it i it e e e e

3 Logic Programming
3.1 Abstract Syntax it i e e e e e e e e e e
3.2 SemanticDomains ittt e

3.3 Valuation Functions i i i i i it s e e e e e e e e
34 AnExample. e e e e e e e

4 Abstract Interpretation
4.1 CoreSemantics ittt i i e e e e e
4,2 Conditions on Asub, entry_sub, and successsub .,
4.3 Correctness i i e e e e e e e e e e

5 Design and Implementation Issues

5.1 Data Abstraction it ittt e e e e e e e e
5.2 Abstract Domain Operations0t enn..
5.3 Fixed Point Computation
53.1 TheNaiveMethod innrnen.
5.3.2 Minimal Function Graph Strategy
5.3.3 An algorithm for MFG computation
5.4 Correctness and Termination

6 Extensions and Summary

[&)

B O =1 bW

14
14
16
17
18
19

22
23
25
25
26

30
30
31
32
32
34
35
39

40

1 Overview

Abstract Interpretation is a formal approach to deriving properties of programs. Com-
pile time analyses within the framework of abstract interpretation cover many areas such
as source to source transformations [24)], software validation, strictness analysis, reference
counting, and flow analysis [1].

The field of abstract interpretation has grown considerably in the last decade. Al-
though the theory was developed originally for analyzing programs written in procedural
languages [7], most of the recent work in the field has concentrated on declarative languages.

This paper is intended to be an introduction to the field of abstract interpretation of
logic programs. Abstract interpretation can be thought of as providing a new (or abstract)
semantics for the language under consideration and then showing how the meaning of a
program in the new semantics is an abstraction of the meaning of the program in standard
semantics. As is the case with any abstraction, in defining an abstract semantics for a
language one pays attention to aspects that are relevant to the purpose at hand and ignores
others. Abstract semantics is usually defined in such a way that the meaning of any program
is computable in a finite (usually short) amount of time.

In order to make this paper more or less self-contained and the material understandable,
we provide a brief introduction to denotational semantics. As an illustration of abstract
interpretation, we show how some of the properties of pure logic programs can be derived.
We discuss the issues involved in deriving an abstract interpretation scheme and present
an efficient and domain-independent algorithm for computing fixed points in the context
of abstract interpretation of logic programs. We assume the reader is familiar with the
fundamentals of logic programming including resolution. If not, [18) is a good introduction
to the subject. In a companion paper [27], we present an abstract interpretation scheme
for efficient and precise derivation of such properties as independence, groundness, sharing
and freeness of logic variables.

2 Introduction to Denotational Semantics

Semantics of a programming language may be defined using operational, axiomatic or de-
notational approaches. In all approaches, the meaning of a program in a given language is
defined in terms of the meanings of the language constructs. The meaning of a program is
usually the composition of the meanings of its sub-parts.

An operational semantics for a language is defined by giving an implementation indepen-
dent interpreter, an abstract machine, for the language. The meaning of language constructs
is then defined in terms of the instructions and transformations of the state space associated
with the abstract machine. The abstract machine instructions and the state space must be
simple and precise, leaving little scope for ambiguity.

In the axiomatic approach, certain assertions, called input and output assertions, or
pre and post condilions, are associated with each language construct. Input assertions
are assumed to be true just before the execution of a language construct. The meaning

of a construct is defined by giving (output) assertions that are true immediately after its
execution. The language used for specifying input and output assertions is usually first
order predicate calculus.

In the denotational approach to semantics, meanings of language constructs are defined
by valuation or semantic functions. Valuation functions map syntactic constructs to seman-
tic value spaces such as numbers, truth values, and functions. The meaning of a construct
is defined as a composition of the meanings denoted by its proper sub-parts.

We need a notation to define the valuation functions and value spaces. Lambda calculus
is the language most often used for this purpose. A brief introduction to higher order
functions (or functions as first class objects), curried functions and lambda notation is
provided in this section as a prelude to the discussion on denotational semantics. A more
in-depth discussion of the same material can be found in [26].

2.1 Functions as first class objects

In order to understand lambda notation and appreciate the rationale behind it, one must
first deal with functions as first class objects. We explain below what we mean by first class
objects.

Many popular programming languages can be studied in two parts. There is the ap-
plicative or descriptive part which is used to build expressions, and there is the command
or imperative part which is used to specify state transformations and control flow. One can
see a dichotomy in the treatment of expressions. Arithmetic and logic expressions may be
assigned to variables, passed as parameters to functions and procedures, returned as results
of function invocations, selected by conditional expressions, and stored in arrays. All this
can be done without naming the expressions. In order to use a function, one must not only
define a function but also name it. Functions may be passed as parameters but not returned
as results. In the words of Stoy, they are under-privileged objects.

In the expression (z + y) X (z — y), the symbols = and y are variables, i.e., they denote
some value from the space of say, integers. But, the symbols + and — are not variables
denoting some function from the space of functions that map an integer pair to an integer.
Each denotes a specific function. Even when there is overloading of function/operator
symbols, the overloading may usually be resolved from context, Likewise, in the expression
f(z,y), f is regarded as a constant standing for a specific function and z and y are variables.
As mentioned before, z and y may have functions as their values but f may not return a
function as the result. In a language in which functions are first-class objects, we may write
Jzy instead of f(z,y) to emphasize that f may be a variable ranging over functions, just
as z and y may be. If we use juxtaposition to mean function application, we run into 2
difficulty. Does fzy mean f(z,y) or f(z(y}) or (f(z})(y)? We solve this problem by using
curried functions and an implied rule of associativity which are discussed next.

2.2 Curried Functions

To any function of two or more arguments, there exists an equivalent set of functions that
take one argument at a time. Such a function is known as a curried function, named
after H.B.Curry who made use of this technique introduced by Schonfinkel [26). Let
f(z,y) be a function of two arguments. Then its curried version is a function f' such
that (f'(z))(y) = f(=,9), i.e., f’ is a function of one argument z that returns an unnamed
function, which when applied to y, produces a result that is equivalent to f(z,y). Notice
that we have started treating functions as first class objects. First, f' returns a function.
Second, we did not name that function in order to use it, i.e., apply it to y. We don’t need
to, just as we don’t name sub-expressions in an expression. Since we will be using only
curried functions, we no longer need to use parentheses around the arguments. With the
understanding that function application associates to the left, we will write f’zy to mean
((Fz)y).

Functions are specified in two parts: the first part gives the type or functionality and
second part describes the actual mapping. The mapping may be described by an equation,
a set (graph of a function), or a table. We will use equational definitions most of the
time but occasionally we may list part of the mapping (i.e., the argument, result pairs) to
understand the function intuitively. Let us look at a familiar example. We define Add to
be a function that adds two natural numbers and returns the result, a natural number. To
indicate the functionality of Add, we write

Add: NxN-—-N

Some times we may assign a meaningful name to the above functionality, and use it wherever
the functionality may be used. For example, we may write

Add: PaitToN= Nx N - N

to mean that PairToN is the set of all functions that map a pair of natural numbers to a
natural number and that Add is one such function. In subsequent sections, we impose some
constraints on such sets and call them domains. Let Add’ be the curried version of Add. Its
functionality is

Add': N > (N —N)

By convention, the function builder — associates to the right and we denote the type of
Add' as:

Add': N-N->N

What is the value of Add’z, where € N? It is a function which takes an argument y € N
and returns z+y as the result. To make things clear, let us look at the graphs of Add and
Add'. Add has the following graph.

{ ((0,0),0), ((0,1),1), ((0,2),2),
((1,0),1), ((1,1),2), ((1,2),3),

The graph of Add is an infinite set. Each element of this set is an ordered pair of
argument and result. For example, Add maps (0,0) to 0, (0,1) to 1 and so on. The graph
of Add' is

{ (0,{(0,0),(1,1),(2,2),...}),
(1,{(0,1),(1,2),(2,3),...}),

The graph of Add’ is also an infinite set of ordered pairs of argument and result. In
the case of Add, an argument is a pair of natural numbers. For Add’, it is just a natural
number. The result of Add is a natural number obtained by adding the first and second
element of the ordered pair. Add’, on the other hand, maps a natural number, say i, to a
function which in turn maps a natural number j to j+i.

2.3 Lambda Notation

In the previous section, we used curried functions and a left associativity rule for function
application to avoid any ambiguity. But we did not specify a syntax for defining functions.
We use lambda notation introduced by Church [26]} for this purpose. An ezpression in
A-notation is defined as follows.

expr = variable |
€XPpr expr
A variable . expr |
(expr)

The first two rules are simple to understand. A variable is a valid expression. Juxtapo-
sition of two expressions, fr, denotes the application of function f to z. An expression fry
is traditionally taken to mean (fz)y, i.e., function application associates to the left. The
fourth rule allows one to override the default left associativity of function application. The
third rule introduces something new. It defines an operation called A-abstraction or simply
abstraction. If M is an expression denoting values from some set D, and z is a variable
ranging over the set D), then the expression Az.M denotes the function f: Dy — Dj such
that for any d € D, fd can be obtained by evaluating M using the value d for z. In
programming language terms, z is the formal parameter of the function defined by the ex-
pression Az.M, and M is the body of the function. We will not rigorously define the phrase
evaluating M using the value d for z, since it would take us into the realm of substitution

rules, and free and bound variables. Instead, we rely on intuition and direct the curious
reader to [26).

2.4 Denotational Definitions - A simple example

A denotational definition of a language consists of three parts: abstract syntax, semantic
value spaces, and valuation functions. Abstract syntax defines the structure of sentences of
a language at the level of words or tokens. The syntax rules defining the form of individual
words (or tokens) of a language are not considered. For example, an identifier may be
defined as a string of alphabets or numerals, starting with an alphabet. Such definitions do
not deal with the sentence structure but with the structure of individual words. Examples
of semantic value spaces are numbers, truth values, ordered pairs, and functions over these
spaces. A valuation function maps an abstract syntactic construct to a semantic value
space.

The syntactic and semantic value spaces of many practical programming languages are
defined recursively. In order to give meanings to the recursive definitions of programs and
data types, domain theory is used. Domain theory, developed by Dana Scott, is about
sets called domains and functions that are general enough to model computation, including
recursion and self-application. We can think of a domain as a set together with a structure
or a partial ordering imposed on its elements.

We will also be interested in the operations defined for a domain. For a simple domain
like N, the operations may be plus, times etc. Before defining domains formally, we will
motivate their use with examples. Consider the langrage of binary numerals defined by
the following BNF rules, where <zero> and <one> are the tokens corresponding to the
numerals 0 and 1.

B: Binary Numeral := BD

B: Binary Numeral := D

D: Binary Digit = <zero>
D: Binary Digit = <one>

A binary numeral B is defined to be a binary digit D or a B followed by a D. A binary
digit D is either a <zero> or a <one>. The meaning of a binary numeral is simply the
natural number it denotes. The semantic value space is N together with the operations
times and plus. The elements of N are zero, one, two, ... We use boldface letter A (by
convention) to denote the semantic function associated with a syntactic category A. A
semantic function is defined by a set of equations, one for each option of the BNF rule
defining the syntactic category. The category B has two BNF rules and hence two semantic
equations. It is customary to enclose a syntactic object in [] when it appears in semantic
equations.

The valuation functions have the following functionality

B: Binary Numeral - N
D: Binary Digit = N

and are defined as

B[BD] = (B[B] times two} plus D[D]
B[D] = D[D]

D<zero>)] = =zero

D[<one>] = one

Note that the meaning of a syntactic object is defined either directly (i.e., mapped to
an object in the semantic domain) or as the result of some operation(s) applied to the
meanings of its sub-parts. In the case of functions, we would like to capture the mapping of
a function as its denotation. In the next two sections, we develop this intuitive idea further,
leading towards the formalization of the denotation of a function as the least fixed point
of the associated functional. The terms “fixed point” and “associated functional” will be
explained shortly.

2.4.1 Recursive Functions

Consider the following specification of a function ¢

g:N—=N;
g = Az.z equals zero — one | g(z plus one)

The symbol N | stands for the domain of Natural numbers augmented by the least element L
(pronounced bottom). L can be thought of as denoting the “undefined value” or equivalently,
non-termination. The domain construction operation of adding L to a domain is known as
lifting. This and other domain construction operations are discussed later, in section 2.6.

According to this specification, ¢ maps zero to one. For all arguments i > 0, all that
the specification says is g(i) = ¢(i plus one). The specification is silent about the value of
g(i) for i > 0. One may choose some k£ € N or L to be that value and still satisfy the
specification. In the operational treatment of recursion, evaluation of g(i} for any i > 0
does not terminate. Since L models non-termination, choosing L to be the value of the
function for all i > 0 corresponds to the operational treatment of recursion. Moreover,
this choice yields the function with the least arbitrary information as compared to all other
choices. This notion of least information will be formalized later as the least fized point.
Let us consider another example, the recursive specification of factorial.

factorial: N — N
factorial(n) = An. n equals zero — one | n times (factorial (n minus one))

Unlike the previous specification, there is only one function that corresponds to this speci-

fication. The graph of this function is the infinite set
{(zero, one), (one, one), (two, two), (three, siz),(3, i), ...}.

Although it is an infinite set, we can produce any particular element of this set in a finite
number of steps (i.e., it is recursively enumerable). To find the value of factorial(i), for any
t € N, we don’t have to construct this infinite object. All we have to do is to unfold the
recursive specification i + 1 times. For example, if we unfold the specification zero times,
then the corresponding graph is {}, the empty set. If we unfold it once, the graph is {(zero,
one)}. In general, if we unfold the specification n+1 times, the graph looks like

{(zero, one), (one, one),...(n,n!)}.

It is notable that each unfolding yields a graph that wholly contains the graphs of all previous
unfoldings. In other words, each successive unfolding, which we now call approximation, is

¢ consistent with the previous approximations and
¢ contains more information.

The graph produced at i unfolding defines a finite sub-function factorial;. It is clear that,

Vi > 0, graph(factorial) C graph(factorial;,,) and
Vi > 0, graph(factorial;) C graph(factorial),

i.e., each factorial; is consistent with the ultimate solution to the specification. It is easy to
prove that

oo
graph(factorial) = U graph(faciorial;) (1)
=0
It means that factorial can be understood solely in terms of the finite sub-functions. It is
the union of the meanings of the finite sub-functions. Each sub-function factorial; can be
defined and understood non-recursively in terms of the sub-functions factorial,, 0 < j < i.
Define factorial;, for i > 0 as:

factorial; : N — N
factorialy = An.L
factorial; = An. n equals zero — one| n times factorial;_, (n minus one), Vi > 0.

Each factorial; is non-recursive and we now have an infinite family of finite sub-functions.
The next step is to extract the common form from their definitions to yield a functional
F and then show that factorial is a fixed point of F. A function (such as F, to be defined
soon) that takes a function as an argument and produces another function as its result is
called a functional.

What is common to all the finite sub-functions of factorial? It is the free identifier
factorial;_; in the definition of factorial; (i.e., in programming language terms, neither a

8

parameter to the function nor locally defined). Let us define a new function F by converting
the free identifier to a parameter f.

F:(N—rNJ_) —F(N—*NJ_)
F = Af. An. n equal zero — one| ntimes(f(n minus one)).

Compare the definitions of F and factorial,, The only difference is that F has an
additional parameter f which is used in the body of F exactly where factorial;_; was used
in the body of factorial;. It is clear that

factorial; = F(factorial;_y), Vi > 0 (2)

We have defined all the finite sub-functions factorial; in terms of F and we know that
Jactorial is just the infinite union of all factorial;. So it should be possible to define factorial
in terms of F. From equations 1 and 2, it can be shown that

graph(factoriel) = G graph(F'(An.1)).

=0
Furthermore, if we apply F to factorial, we will see that factorial is a fixed point of F, i.e.,
F(factorial) = factorial

If g(x) = x for some function g, then z is called the fixed point of g. F is what we have been
calling the “associated functional” of factorial. Any recursive function f can be defined as
f = F(f) and the meaning of f is defined to be the least fixed point of F'. We have shown
that the meaning of factorial is a fixed point of the associated functional F. The notion of
leastness is formalized in the following section, after introducing some basic notions from
domain theory.

A function may not have a fixed point or may have more than one fixed point. In the
case of function g which we discussed at the beginning of this section, the least fired point
maps non-zero arguments to L. All other fixed points contain more information (i.e., map
non-zero arguments to some arbitrary n € N) not warranted by the specification. Thus it
seems reasonable to take the least fixed point of the associated functional of a function to
be the denotation or meaning of that function.

2.5 Domain Theory

The domains we are interested in have partial elements approximating total (or limit)
elements. In the previous section, we arrived at the meaning of factorial as the infinite union
(or the limit) of all finite approximations (or partial elements) factorial;. Hence we require
that such limits exist in our domains. A domain must also have a least element so that we
can compute any approximationin a finite number of steps by starting with the least element
and computing each successive approximation from its predecessor. Functions over domains

must be continuous. Continuous functions allow us to describe finite approximations of
infinite objects, such as the function factorial. We will explain this after introducing some
terminology from basic set theory.

Definition
A partially ordered set, poset, is a pair (D, C) where D is a set and C is a binary
relation (on D) that is reflexive, anti-symmetric and transitive, o

C is pronounced as less defined than or approzimates. Some times we use Cp to indicate
that we are talking about the partial ordering defined on D, but when there is no room for
confusion, the subscript D will be omitted.

Example 1 (P(Q),C)is a poset, where @ = {1,2,3,4} and P(Q) is its powerset.

We can talk about elements being less defined than sets and vice versa. Let (D, C) be a
poset, X C D and u,l € D.

Definition
u is an upper bound of X (X Cu)iff Vz€ X, zCu.
lis a lower bound of X (IC X)iff Vze X, ICx.]

Using the above example, {1} is a lower bound of {{1,2} {1,2,3}} and {1,2,3,4} is an upper
bound of {{1,2} {1,2,3}}.

If A is the set of all upper bounds of X, the least element of A (that element ap € A
such that ag C a; for every element a; € A) is called the least upper bound (lub) of X and
denoted as UX. For example, UX = {1,2,3} where X = {{1,2} {1,2,3}}. When we take
the lub of a set containing two elements, say z and y, we may write zUy instead of U{z, y}.

Definition
A nonempty X C D is a chain of D iff X is totally ordered, i.e., for any
a,beX,aCborbC a. a

The set X = {{1},{1,2},{1,2,4},{1,2,3,4}} C P(Q) is a chain, since any two elements of
X are related (or comparable).

Definition
A poset (D, C) is a complete partial order, cpo, iff the lub of a chain X is in D
for every chain X C D. o

It is easy to see that P(Q) is a cpo. Here is an example of a poset which is not a cpo. Let
R be the set of all finite subsets of N. (R, C) is a poset. The least upper bound of the chain
{{1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4,5} ...} is N itself and since N is not a member of
R, R is not a cpo.

10

Definition
A cpo D is a pointed cpo iff there is an element d € D such that dC z Vz € D.
d is the least element of D. (=]

Since the empty set ¢ is less defined than all other elements of P(Q), it is the least element
and P(Q) is pointed cpo.

Definition
For cpos A and B, a function f : A — B is continuous iff for any chain X C A,
fuX)=u{f(z)|lz € X}. o

In other words, the image (under f) of the least upper bound of a chain X contains the
same information (or is the same) as the least upper bound of the images (under f) of the
elements of X. Continuous functions preserve the limits of chains.

Definition
A function f : A — B is monotoniciff Vz,y€ A zCay= f(z)Cp f(y). O

Continuity implies monotonicity and when the underlying set is finite, monotonicity and
continuity are equivalent. Continuous functions allow us to compute finite approximations
of infinite objects. We may not be able to store and process F(f) for some infinite object f.
But if f is the least upper bound of some chain {f;} and each f; is finite, then we can store
each f; successively and apply F to it. The value F(f} can be constructed piece by piece as
F(fo)U F(fA)U F(f2)u F(fa)U....

In the factorial example, the finite sub-functions factorial; constitute a chain, since
graph(factorial;) C graph(factorial,_,). We cannot store and process the infinite mapping
corresponding to the meaning of factorial. However, we can compute factorial(i) for any
it € N by storing and computing the successive finite approximations factorial,, 0 < k < i.

We are now ready to define the axioms of Domain theory.

¢ A domain is a pointed cpo.
o Functions over domains are continuous.

The second axiom does not mean that all functions over domains are continuous. It
just means that only continuous functions over domains are considered (as part of domain
theory).

We now prove a theorem [26) that if D is a domain and F : D — D is a continuous
function, then there exists a d € D such that

F(dy=d d is a fixed point of F and
Vec D,ife= F(e)thendC e d is the least of all fixed points

The least fixed point d of F, fiz F, is defined as
fiz F=U{F(L)]i 2 0}

11

where Fi is Fo Fo-..F, i times. fiz is a fixed point operator. The proof of this fixed point
theorem is given below for the sake of completeness.

Proof: First show that fiz F is a fixed point of F.

F(fir F) = FU{Fi(L)i>0}) by definition of fiz F
= U{F(Fi(L))i> 0} by continuity of F
= U{Fi(L)[i>1}
= U{Fi(L)|i>0} since FO(1) = 1 and L C F(L)
= fiz F

Next show that fiz F' is the least fixed point of F. Let e be a fixed point of F.

L C e bottom is the least element
Fi{(L),¥Vi>0 LC Fi(e),V¥i>0 by monotonicity
Fi(L),¥i>0 C e since F(e) = e
L{Fi(L)i=0} C e by definition of lub
fiz F C e by definition of fiz F

Thus the denotation of a recursive specification f = F(f) is taken to be the least fixed point
fiz F of F. For any recursive specification f, we can construct the corresponding functional
F' by following the method used in the factorial example and apply the fixed point operator
fiz to obtain its least fixed point.

Domain theory guarantees the existence of unique functions corresponding to our re-
cursive specifications and these functions are the least, from an information theoretic point
of view. The fact that they are the least also corresponds to the operational treatment of
recursion. (See the discussion about function ¢ at the beginning of this section).

2.6 Domain Constructors
Primitive Domains

A primitive domain such as N is a set whose elements are atomic and which is used in
constructing other domains. Strictly speaking, N is not a domain according our definition
since there is no least element (as defined by C) in N. However it is trivial to add a least
element to NV as we will see. Another example of a primitive domain is the domain T of
truth values. An element in a primitive domain has no more or no less information than any
other element. For example, zero has the same amount of information as one. Primitive
domains have a discrete partial ordering in the sense that each element in the domain is
not related to any other element,i.e.,z C yiff z = y.

Any set D with a discrete partial ordering is a cpo and any function f : D — E where E
is some domain, is continuous. This is easy to prove. Since chains in D are singleton sets,
the lubs of these chains exist in D and D is a cpo. The continuity of f can be established

12

similarly.

Lifted Domains

For a poset (A, C4), its lifting A, is the set AU {1}, partially ordered by the relation C
such that for z,y € A),z Cyiffeitherz = Lorz C, y. If A is a cpo, then A, is a cpo
and f: A) — B, is continuous when f : A — B is continuous. As mentioned before, the
¢po N can be made into a pointed cpo by lifting. All the operations on the original domain
carry over to the lifted domain. For proofs of this and subsequent claims about domain
constructors preserving domain properties, the reader is referred to [23].

Product Domains

For posets (A, E4) and (B, Cg), their product A x B is the set {(a,b)]a € AAb € B}
partially ordered by the relation C such that (a,b) C (a',¥") if aCaa’ and bCg¥. If
A and B are (pointed) cpos, then A x B is a (pointed) cpo. The product domain has
an assembly operation (called injection) to build an element of the product domain from
two elements of the constituent domains and its inverse, a disassembly operation (called
projection) and these are continuous. The product domain construction can be generalized
to products of n domains, where n > 2. For a domain D, D™ denotes the product domain
DxD...ntimes. Forade Dy x---D, and 1 < i < n, d]i refers to the i*# component of
d, i.e., |t is the projection operation.

Function Domains

For posets (A, E4) and (B, Cp), we define a function space A — B (read A to B) to be
the set of all continuous functions with domain 4 and co-domain B. These functions are
partially ordered by the relation C such that for f,g: A — B,

fCg iff YaeA f(a)Cp g(a)

In other words, we compare the functions pointwise. If A and B are cpos, then A — B is
a cpo. The operations function abstraction and application are continuous.

As an example, the set of functions {factorialy, factorial,, factorial,, . .., factorial} (which
is a subset of the set of all continuous functions N — N,) is a cpo and the partial ordering
is factorial; C factorial; and factorial; C factorial for all i. It is easy to see that factorial,
is the least element of this domain since it is undefined everywhere. Fach factorial;,, is as
defined as factorigl; at all points zero through i-/ and is also defined at point i whereas
factorial; returns L for i.

Other Domains

We will introduce a few more domain constructions without explaining them in detail. If D
is a domain, D" denotes the domain of finite sequences of d € D. If D is a set, then its power
set P(D) is a domain with set inclusion (or set intersection) as the partial ordering. For

13

other domain constructions such as digjoint-sum, see [23]. (Readers familiar with ML may
note that ML’s datatype declaration constructs a disjoint-sum domain out of component
domains.}

2.7 Recursive Domains

We motivated the least fixed point construction by developing a series of non-recursive finite
sub-functions that approrimated the meaning of the recursive function. The meaning of the
recursive function was then shown to be equivalent to the least upper bound of an infinite
chain of finite sub-functions. The domains we used in the examples (N, N x N, and N,)
are not recursive. If a language has recursive data types such as trees and lists, we will
need recursive domains to define a denotational semantics for the language. We can give
meanings to recursive domain specifications the same way we handled recursive function
specifications.

The inverse limit consiruction method developed by Scott [23] finds a solution to a
recursive domain specification. It is analogous to the way we construct the meaning of
a recursive function specification. We build a series of approximating domains D;. The
approximating domains will be contained in the solution domain and each approximating
domain D; will be a subdomain of approximating domain D;,,, i.e., the elements and the
partial order structure of D; will be preserved in D;;;. The least element of this chain
of approximating domains, Dy, is taken to be {1}, Clearly Dy is a pointed cpo and each
successive D;y, constructed from D); and the recursive specification will also be a pointed
cpo. We will not go into the formal details of inverse limit construction method. For
any recursive domain specification of the form D = F(D) where F is an expression built
with the domain constructors which preserve the domain properties, there is a domain Do,
that is isomorphic to F(Dy) and D, is the least such cpo that satisfies the specification.
The recursive domains (also called reflexive domains) are general enough to permit self-
application without giving rise to paradoxes.

In conclusion, domains and continuous functions over domains are general enough to
model computation and to give meanings to the syntactic entities called programs. For a
detailed explanation of the ideas presented here, see [26, 19, 23, 28].

3 Logic Programming

In this section we provide a denotational semantics for a pure Horn Clause Logic program-
ming language. We first define the abstract syntax of the language and then the semantic
domains. After a brief review of SLD-resolution [18], we define the valuation functions.
Finally, the meaning of a small program is derived using the valuation functions.

3.1 Abstract Syntax

We start with some definitions. In First Order Predicate Calculus, a literal is an atomic
formula or the negation of an atomic formula. A disjunction of literals is a clause and a

14

clause with at most one positive literal is 2 Horn Clause. A clause with exactly one positive
literal is also known as a definite or program clause and a clause with no positive literal is
a goal clause. In order to keep the presentation simple, the definition of a program (given
below) includes a single goal clause, bg. The positive literal of a clause is known as its head
and the negative literals its body. In an atom p(i;,...,t,), p is the predicate symbol and
t1...1; are its arguments which are terms. A term ¢ is either a variable or of the form
f(t1,...tx) where f is a function symbol of arity k£ and ¢;,...%; are all terms. When £ is
zero, we omit the parentheses and f is called a constant. All the variables ir a clause are
universally quantified and hence we omit the quantifiers.

A logic program is a finite set of Horn Clauses. A set of clauses {cy, ¢3,. .., ¢, } stands for
the conjunction ¢; Acz -+ <Acn. Since @ — b = —a Vb, we will write {pV-g;V-gzV...V-q,}
as p +— ¢1,42y...,qn. To summarize, the language has the following abstract syntax.

P: Prog u= {hg~by,...;hq by, —bo} (n2>1)
b: Body :u= ay,...,ap (p20)
a,h: Atom = piy,...,1,) {0210)
t: Term == vl f(t1,...,1) {(g=20)

The other syntactic categories are Pred, Func, and Var symbols whose members are p, f,
and v respectively. These are assumed to be countably infinite and mutually disjoint.

Semantics

An operational semantics for a Janguage is defined by giving an implementation independent
interpreter for it. Fixed point semantics define the meaning of a program as the least fixed
point of a transformation or functional associated with the program. Van Emden and
Kowalski established in a seminal paper [11] the equivalence of these two semantics for
Horn clause logic programs (provided the inference system used in defining the operational
semantics is complete).

The denotational semantics presented in this section is a variation of the usual fixed
point semantics [11] and is a simplified version of Jones and Sondergaard’s exposition [15].
In this formulation, the meaning of a logic program is taken to be the input-output relation
computed by the program. The derivation of the meaning of a program using the valuation
functions defined later in this section may resemble SLD-resolution [18]. The purpose of the
denotational definition is to emphasize the input-output relation computed by the program
and to relate the abstract semantics (to be presented in the next section) to the standard
semantics to be presented later in this section. and not to focus on the resolution process,
which is operational.

We take a logic programming system to be a goal oriented system and hence the defini-
tion of a program includes a goal. Given a program, we are interested in the substitutions
computed by the program for the variables in the goal(s) and the substitutions that pre-
vailed at various points in the program during a top-down execution of the goal(s). The goal
oriented or top-down approach is appropriate for many types of analyses, such as ground-

15

ness analysis presented in this paper. For other applications like type inferencing, a bottom
up approach may be more suitable.

3.2 Semantic Domains

A substitution ¢ : Subst = Var — Term is a mapping
{vim ti,...,0n~ 1.}

where the v; are distinct elements of Var, ¢; are elements of Term and v; do not occur in any
of the #;. Discrete ordering is the partial ordering on the domain Subst. The definition of
substitution can be extended naturally from Var —Term to Term — Term. (Hereafter we
will use substitutions to mean either the original definition or its extension and the usage
will be clear from the context.) The composition of substitutions g; o0 g;, is defined as

Az.0j(o;x) where z € Term.

It can be shown that substitutions are idempotent, i.e., 0 o ¢ = o. The significance of
idempotence is that applying a substitution one or more times to a term produces the same
result. We may view a substitution as a bipartite graph because of this property and will
do so in a later section. Define var(¢) = dom(o) U range(o) where o is a substitution
and define var(T') to be the set of variables in T, where T is a term. There is a natural
pre-ordering of substitutions:!

o1 £ o2 iff o3 € Subst such that o3 = g3 0 07.

Intuitively speaking, oy is less specific than ¢,. A unifier ¢ of two terms f;,1; is a substi-
tution such that ot; = a1y, i.e., the term obtained by applying the substitution oy to ¢, is
syntactically identical to the term obtained by applying o3 to t5. The most general unifier
of two terms is a unifier which is least with respect to < (modulo variable renaming). Define
a function mgu : Atom X Atom — SubstU {fail} (where fail is a constant) that yields the
most general unifier of two atoms if there is one and returns fail otherwise. Unification of
first order terms is decidable and the unification algorithm [22] realizes the function mgu.
We use the pre-ordering < of substitutions solely to define the function mgu.

The denotation (or the meaning) D of an atom and a body will be defined to be a
function that maps a set of substitutions to a set of substitutions. The partial ordering on
P(Subst) is set inclusion and set union is the lub operation. To summarize, the semantic
domains are:

6: Subst Substitutions
®: P(Subst) Sets of substitutions
d: D =P(Subsi) —» P(Subsf) Atom, Body Denotations

'A pre-ordering is a relation that is transitive and reflexive but not necessarily anti-symmetric.

16

We assume that the variables in a program have been renamed so that a variable does
not occur in more than one clause. Hence we can refer unambiguously to the set of program
variables Pvar. In order to avoid variable name clashes, we need a renaming function. The
renaming function uses a renaming index which is a sequence of natural numbers denoting
the depth of recursion. To keep the presentation simple, the renaming index is omitted
from all the semantic functions in the rest of the paper.

3.2.1 Review of SLD-Resolution

Given a program P, a goal G = {a;,...,a,} and a current substitution &, a subgoal a,, is
selected using a fair computation rule [18] and removed from the set of subgoals {a;, . ..a,}.
A matching clause j is selected using a search rule [18], the variables of clause j are renamed,
the head k; of a clause j is unified with # a,,. If the unification succeeds, the body literals
bj1,...,b;x are added to the set of goals to be solved and the new current substitution is
¢ o8, where & is the mgu of the head and the goal. The above process is repeated until
it terminates because the set of goals is empty or there is a subgoal fa such that it does
not unify with the head of any of the clauses. If the set of goals becomes empty, then the
current substitution is one answer substitution corresponding to the initial substitution.

We assume that the goals in the body of a clause are solved sequentially in textual order
and all the clauses whose heads match the current goal are tried in parallel. The parallel
search rule just means that we are interested not in the sequence of solutions but in the set
of solutions. The left-to-right computation rule is more troublesome and is dealt with in
section 5.

To facilitate the understanding of valuation functions to be described, we wish to give
different names to the current substitution # depending on the state of computation. The
initial substitution for the variables in the goal is denoted as ¢.

e If a goal is about to be unified with the head of a clause, the current substitution (to
be applied to the goal) is known as the call substitution of the goal.

o If a goal has just been successfully unified with the head of a clause (whick has
been renamed), the unifier is the entry substitution for the clause and also the call
substitution for the first literal in the body of the clause.

o If the last literal in the body has just been solved, the current substitution is known
as the erit substitution of the clause.

¢ Restricting the exit substitution of a clause i to the variables in the environment of
goal a (which unified with the head of clause i) and then composing it with the call
substitution of a gives us one success substitution of goal a with respect to clause i.

Given an entry substitution for a clause, its exit substitution is computed as follows. If
it is a unit clause, the exit substitution is the same as the entry substitution. Otherwise,
compute the success substitution of literal one, using the entry substitution of the clause
as the call substitution. Using the success substitution of literal i as the call substitution

17

of literal i+1, compute the success substitution of literal i+1. The success substitution of
the last literal in the clause is the exit substitution of the clause. In the rest of the paper,
we use 6, &, ... to denote substitutions and &, ®’,... to denote sets of substitutions.

3.3 Valuation Functions

We define three valuation functions, one for each of the syntactic categories Prog, Atom,
and Body. The valuation function P maps a program P to a set of answer substitutions and
the functions B and A map a body and an atom to their denotations D which are mappings
from P(Subst) — P(Subst). We need an auxiliary 5-ary function, den_atom, which will be
discussed later. The functionalities are as follows.

P: Prog — P(Subst)
A: Progx Atom— D
B: Progx Body— D
den_atom : Prog x Atom x Atom x Body x P(Subst) — P(Subst)

When the body of a clause is empty, the exit substitutions of that clause are the same as
its entry substitutions. Thus the denotation of ar empty body, [], is the identity function.
This is described by the following equation. Remember that a syntactic object is enclosed
in [] when it appears in a semantic equation.

BLP][(I® = ¢

The next semantic equation defines the meaning of a non-empty body recursively. The
meaning of 2 non-empty body a;...a; is a function that maps a set of (entry) substitutions
® to a set of (exit) substitutions " such that the denotation of atom a; maps the set of
(call) substitutions ¢ to (success) substitutions &’ and the denotation of the remainder of
the body a;41,...a; maps ® to ®”. This is captured by the following equation.

B[P][e;,...,e;]® = B[P]lais1,-..,a;]% where &' = A[P][a;]®
When the body is a single literal, the above equation simplifies to
B[P][e]2 = A[P][e]®

Valuation function A defines the denotation of an atom e in terms of an auxiliary
function den_atom. den_atom defines the meaning of an atom a with respect to a particular
clause j of the program. Let the call substitutions of a be & and let the denotation of an
atom a with respect to a particular clause j map a and ® to ®%. Then the denotation of a
maps @ to the union of &/ over all clauses j of the program. In the following equation, h;
and b; refer to the head and body of clause ;.

A[P][a]® = CJ den_atom[P][a][h;]1[b;]®
i=1

18

We now define the meaning of an atom with respect to a single clause j in the program.
Let s :- b be the renamed version of clause k; :- b;, let § € & be a call substitution and
fentry be the most general unifier of the goal #a and head A If @entry = fail, then the
body of j** clause does not contribute to the success substitutions of a. Otherwise, let
®' = B[P][bJ{fniry} be the exit substitutions of the body of j** clause corresponding to
the entry substitution 8.n4ry. The composition of each #..; € &' with 8 gives us the set
of success substitutions corresponding to one call substitution § € ® and union of this set
over all 8 € @ results in the set of success substitutions of goal a. Thus, the denotation
of an atom a (with respect to a single clause) maps a set of call substitutions to a set of
success substitutions. The substitution 8., o 8 can be restricted to variables not occurring
in clause j without affecting the correctness of the valuation functions. In order to keep the
presentation simple, we omit the restriction step.

den_atom[P][a}[?;][6;]® =
let (h,b) = rename(h;,b;) in
U { leté.nsry = mgu(fa,h) in

fcd
if f.n¢ry = fail then {}

}

Goal bp is just a conjunct of literals and its denotation is also a function that maps a
set of substitutions to a set of substitutions. However, the initial set of substitutions for by
is the singleton set of identity substitution {¢}. The meaning of a program is simply the
answer substitutions of the initial goal by and is defined by the following equation.

P[P] = B[P][bo]{c} where P = hy « b1,...,hy — bp, — bg

3.4 An Example

We will derive the meaning of the familiar append program in standard semantics. Part
of the derivation is shown in figure 1. Symbols starting with an upper case letter denote
variables, Predicate, function and constant symbols start with a lower case letter.

append([], R, R). (1)

append([X|Y], 2, [XIW]) :- (2)
append(Y, Z, W).

:- append({al, [b,c,d], A). (3)

19

(P1P])
by defn of P
B[P][G}{e})

by defn of B

A[PIIGHe})

by defn of A

(@en_atoml[P]]ﬂG]][hI]ﬂbl]]{ED U @en_atom[[P][G’]][hﬂ][bg]]{fD)

since mgu(eG, hy) = fail by defn of den_atom

oe{e}

U {Bezit 0 8} where 8. € ¥, & = B[P][b:]{#'}, ¢ = mgu(8G, th

substitute € for & and simplify ¢ = mgu(eG, hy) = {X1— a,Y;1 =[], Z; = [b,¢,d]

A~ [a|W1]}
C{Bm-, o £} where 8..;; € ¥, (@' = B[P][b,]{8'}))
since by is a single goal

({8ezit 0 €} where 8., € &', @)’ = A[P][b:]{¢'} D

| derivation of & not shown here
|

C{ec.m‘t 0}, Oezit € ¥, @' ={{Xi~eY;— []’ Zy + [bye,d], A '_I’ [a,b,¢, dl, W1 = [b,¢,d], Ry — [b,c, dJ}D

Bezit 0 € = B,z since € is the identity substitution

Q{X1 = a,Y; =[], 21— [b,c,d), A [a,b,c,d], W = [b,c,d], Ry — [b,c,d]}D

Figure 1: Derivation of P[P]

20

In the following derivations, P refers to the above program, G refers to the goal, ¢ the
empty substitution. Let append([X,|Y1], Z,[X1|W1]) : — append(Y;, Z;,W;) be a renam-
ing of clause 2 and %, and b; its head and body. At each step of the derivation we either
apply the definition of a semantic function or simplify one or more sub-expressions occurring
in the previous step. Sub-derivations are indented for clarity.

o The meaning of the program P, i.e.,, P[P] = B[P][G]{c} by definition of P.
¢ B[P][G]{e} = A[PI[G]{c} by definition of B.

° AI[PMGfo:} = den_atom{[P][G][h1][01]{e} U den_atom[P][G][k2][b:]{} by defi-
nition of A.

o which is reduced to den_atom[PJ[G][A2][b2]{c}, since goal G does not unify with the
head of clause one and hence den_atom|[PJ[G][h][b:1]{c} = {}.

e Next we simplify den_atom[P][G]{h2][b2l{c} using he definition of den_atom. The
entry substitution &' = mgu(eG, h2) = {X; — a,Y; — [], Z; — [b,¢c,d], A — [a|W1]}.
Using the entry substitution &', we compute B[P][b:]{#'} in the next two steps.

— B[P][b:]{¢'} = A[P][b2]{¢"}, by definition of B. Applying the definition of
A and simplifying, we get

A[P][5:]{6'} = den_atom[PI[b2][1:]1:1]{6'} U den_atom[P][b2]{R:][b2]{8"}

- den_atom[PJ[G1][h2][6-]{6'} reduces to {}, since # b; does not unify with the
head h; of clause 2. den_atom[P}[b,1[h1][b:1]{#’} induces an entry substitu-
tion 8" = {W) — [b,¢,d], By — [b,c,d]} for clause one and since the body of
clause one is empty, the set of exit substitutions of clause one is {#”}. The
success substitutions for clause one are obtained by composing #” with &'. Thus,

den_atom[P)[b2]{h][b:]{6'} = &’, where
¥={{Xi=aY— (1,21 [b,c,d],A [a,b,c,d], Wy [b,c,d], Ry = [b,c,d]}}.

o Thus B[P][b2}{¢'} = ®'. The final step is to compose each substitution in &’ with ¢.
Since ¢ is the identity substitution, the result is ®’ itself, which is the set of success
substitutions for goal G. If we restrict each substitution in &' to variables appearing

in the goal (which is what is observable in an implementation), then the set of success
substitutions for the goal is {{A — [a,},¢,d]}}.

To summarize, we defined a denotational semantics for a simple logic programming
language with a left-to-right selection rule and a parallel search rule. We also derived the
meaning of a small program. The purpose of using a denotational definition instead of an
operational one is to show the relationship between the standard semantics and an abstract
interpretation to be presented in the following section.

21

4 Abstract Interpretation

Abstract Interpretation can be thought of as performing non-standard computations in
non-standard domains. The domains and computations are not arbitrary but bear some
relationship to the standard domains and standard computation. We illustrate this with
a very simple example. Suppose we want to know the sign of the result of simplifying the
expression 984 X —32. We don’t perform actual multiplication to find the answer. The
rule of signs tells us that the result will be negative. We mapped the standard domain of
computation, integers, onto the set D = {zero, pos, neg} and replaced the multiplication
operation on the integers with another operation (the rule of signs) f: D x D — D.

Cousot and Cousot [7] formalized the idea that static analyses of programs can be viewed
in terms of abstract interpretation. Their work was concerned with the analysis of flow chart
programs. A flowchart program is represented as a graph. Nodes correspond to basic op-
erations such as assignment and test. Arcs represent control flow. Certain constraints are
placed on the nodes. For example, a test node must have a single predecessor node and
exactly two successor nodes corresponding to the true and false branches. The state of a
program is represented by a program counter and an environment which associated values
with identifiers. Semantic functions define the meaning of various operations as transforma-
tions on the state. Cousot and Cousot define a static semantics (later on called collecting
semantics) that associates with each program point (arc) the set of all environments that
may prevail at that point during any execution of the program. Properties of programs are
then derived from finitely computable approximations of these sets.

For logic programs, the natural counterpart to states is substitutions. Literals corre-
spond to nodes and a program point connects two literals in the body of a clause. The
collecting interpretation or collecting semantics of a program associates with each program
point the set of all substitutions that may prevail at that point during an execution of the
goal(s). All analyses are done using abstract interpretations that are finitely computable
approximations of these sets of substitutions.

The semantics based approach to analysis is to define a core semantics for the language
that leaves some domains and semantic functions unspecified. An interpretation I of the core
semantics supplies the missing domains and semantic functions. The word interpretation is
used to emphasize that the undefined function symbols and domains are interpreted to suit
our purpose (subject to some conditions). The standard semantics and collecting semantics
are shown to be interpretations of the core semantics. The collecting semantics is almost
the same as the standard semantics except that it usually provides more information; it
preserves the association between program points and the sets of substitutions encountered
at these points during execution.

An interpretation I of the core semantics is an abstract interpretation if the the domains
and semantic functions of I are abstractions of their counterparts in the collecting semantics
and if I safely models the collecting semantics.

We now develop a core semantics for the language defined in section 3; show that the
standard semantics of section 3 can be seen as an interpretation of the core semantics;

22

