An Abstract Interpretation Scheme for
Groundness, Freeness, and Sharing
Analysis of Logic Programs

Renganathan Sundararajan
e-mail: renga@cs.uoregon.edu

CIS-TR-91-06 (Revised)
October 91

Abstract

Static, global analyses based on abstract interpretation have been used for deriv-
ing properties of logic programs. The analyses differ mostly in the expressiveness of
the abstract domains, and the precision and efficiency of abstract domain operations.
We extend an abstract domain proposed by others and present new abstract domain
operations to derive freeness, groundness, and sharing of variables in logic programs.
Analysis of large, non-trivial, practical programs shows that our method is more precise
and more efficient at the same time than previous proposals.

Although simple data flow analyses of logic programs have been shown to be practical
by other researchers, it is believed that more informative analyses such as the one
presented in this paper are impractical. We show that this is not necessarily so. We
defined and implemented an efficient and domain-independent abstract interpreter for
computing Minimal Function Graph semantics of logic programs and instantiated it
with the abstract domain and corresponding operations presented in this paper. The
analysis times compare very favorably with those reported in the literature for much
simpler global flow analyses of logic programs. This research is part of a larger effort
aimed at efficient parallel execution of logic programs.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENGCE
UNIVERSITY OF QREGON

*This research was partly supported by a Tektronix Fellowship

1 Overview

Although the formal theory of abstract interpretation was developed originally for analyzing
programs in procedural languages [7], most of the recent work in the field has concentrated
on languages that have a large declarative component. We assume the reader is familiar
with the fundamentals of horn clause logic programming, including resolution. If not,
please refer to [16]. In the logic programming world, abstract interpretation frameworks for
static analyses were initially proposed by Bruynooghe [3], Jones and Sondergaard [15] and
Mellish [19]. There have been a number of contributions [2, 4, 8, 9, 13, 17, 18, 20, 22, 25]
to this field. Some of the proposals do bottom-up analyses and others top-down. Top-down
analyses model SLD-resolution and hence aim at deriving assertions about execution states
at various program points reached in a conventional top-down execution of logic programs.
Bottom-up analyses model the Tp semantics [1, 16].

1.1 Motivation

Abstract Interpretation based analyses for inferring groundness and independence of vari-
ables are useful for eliminating or minimizing run-time checks for groundness and/or in-
dependence of variables in parallel execution models that support Independent-And Paral-
lelism (IAP) [6, 12]. In IAP models, two goals in the body of a clause cannot be executed in
parallel unless the variables that occur in them are pair-wise independent, i.e, are bound to
terms that do not share any common variable sub-terms. Run-time tests for independence
of variables can be very costly; O(mn) where m and n are the number of nodes in the tree
representation of terms that the variables are bound to. If we can detect at compile-time
that there is no possibility of sharing among the variables of two literals, we can dispense
with the tests.

Very often programmers use a technique called difference lists to convert linear time
concatenation of lists into a constant time operation. The following quicksort example
illustrates this.

quickgort(X, ¥} - 1
quicksort(X, Y-[1).

quicksort([, Sorted-Sorted). 2

quicksort([X|Unsorted], Sorted-SoFar) :- .., 3

split(Unsorted, X, Small, Large),
quicksort(Small, Sorted-[X|LargeSorted]),
quicksort(Large, LargeSorted-SoFar).

:— quicksort{[5,2,3,8], Sorted).

Although the two recursive calls in the body of clause 3 share a variable, LargeSorted,
only the second call will instantiate it. The first recursive call will not bind it to a non-
variable term, i.e, leave it free. The method described in [10] can detect the occurrence of

free variables in some cases and Winsborough [26] provides a more complicated method for
detecting more cases of free variable occurrences. Detection of free variables allows us to
parallelize the two recursive calls by a simple source to source program transformation.

1.2 Brief Research Review and Contributions

Jacobs [13] defined an abstract domain, Sharing, to express variable sharing and indepen-
dence information. Muthukumar [21] extended the domain Sharing to derive freeness of
variables and suggested an alternative set of abstract domain operations over Sharing. In
both cases, if variables X and Y may share and Y and Z may share, they will have io
conclude that X and Z may also share. As Jones and Sondergaard point out [15], shar-
ing is a non-transitive relation. Treating it as transitive introduces imprecision in sharing
propagation.

Jones and Sondergaard presented an abstract interpretation scheme in [15] for sharing
analysis. Codish [5] used the abstract domains of Jones and Sondergaard and formally
rederived an abstract unification algorithm. The abstract domains of [15] are less expressive
than Jacobs’ (see [13] for examples) but sharing propagation is better since they don’t treat
sharing as transitive. A brief look at the abstract unify algorithms of [15, 5] will show that
their time complexity is dominated by transitive closures (of another relation called fink)
and hence O(n?).

Static analysis proposed by Debray [10] for deriving input, output modes of procedures
can detect the occurrence of free variables in some cases. Winsborough [26] provides a more
complicated method for detecting more cases of free variable occurrences.

In this paper, we extend the domain Sharing to derive the freeness, sharing, repeatedness
and groundness of variables more precisely than previous proposals. Although the warst
case time complexity of our abstract unification algorithm is exponential in the input size,
(as those of [13] and [21]) we show that the expected behavior of our algorithm is much
better than that of previous algorithms for the following reasons. The exponential compo-
nent of our abstract domain operation is executed rarely, only when terms with repeated
variable sub-terms occur. Such occurrences are not frequent in practical programs, whereas
computing transitive closures is an integral part of sharing propagation in {15] and [5).

To substantiate our claim, we defined and implemented a domain independent abstract
interpreter for computing Minimal Function Graph semantics {14] of logic programs [23]
(that do not include assert, retract, call and other non-logical and meta-logical features).
We instantiated this interpreter with the abstract domains and operations of Jones and
Sondergaard [15], Jacobs and Langen [13], and our own. Analyses of non-trivial, and often
used programs show that our analysis captures variable sharing and independence informa-
tion more accurately than previous proposals. These analyses also confirm our belief that
the execution time of our algorithm (at least for the examples we tested) is much less than
other algorithms, including the polynomial time algorithms of [15, 5]. Furthermore, analysis
times for the complex domains and operations proposed here compare very favorably with
the times reported in the literature for much simpler analyses.

1.3 Definitions

A substitution o : Subst = Var — Term is a mapping {v; — #;,...} where the v; are dis-
tinct, dom(c) = {v; | v; — t; € 0 A t; # v;}, range(a) = {t;|vi = t; €0 A 1; # v;} and
v; do not occur in any of the ¢;. Var is the set of all variables and Term is the set of all
first order terms. The definition of substitution can be extended homomorphically from
Var — Term to Term — Term. The composition of substitutions, denoted by o; o o; is
defined as Az.o;(o;x) where z € Term, and o associates to the right. The domain of the
composition is dom(o;) U dem(c;). Substitutions, the way we have defined them, are idem-
potent. In this paper, we deal with idempotent substitutions only and use o,0’:+-8,8'- - -
to denote substitutions, |o|y for the restriction of dom(c) to V.

There is a natural pre-ordering of substitutions: oy < o3 iff o3 € Subst such that g, =
g3 o 0y, i.e, oy is more general than o2. A unifier o of two terms 1,15 is a substitution such
that oty = ota, i.e, the term obtained by applying the substitution o, to t; is syntactically
identical to the term obtained by applying o, to 1;. The most general unifier of two terms
is a unifier which is least with respect to < (modulo variable renaming). Define a function
mgu : Atom X Atom — SubstU { fail} that yields the most general unifier of two atoms if
there is one and returns fail otherwise. In the rest of the paper we assume that the variables
in a program have been renamed so that a variable does not occur in more than one clause.
Hence we can refer unambiguously to the set of program variables Pvar. In the rest of the
paper, we use vars(A) to denote the set of variables in A which may be a term, body, head,
or an abstract domain (to be defined later).

2 Abstract Interpretation

Cousot and Cousot [7] formalized the idea that static analyses of programs can be viewed
in terms of abstract interpretation. Their original work was done in the context of analysis
of flow chart programs which have nodes, states associated with the nodes and program
points between nodes. For logic programs, the counterpart to states is substitutions; literals
correspond to nodes and a program point is between two literals in the body of a clause.
In the abstract interpretation framework, it is customary to define a core semantics for
the language, leaving some semantic domains and semantic functions (such as unification)
unspecified. An interpretation / of the core semantics supplies the missing domains and
semantic functions. A collecting semantics, which is an interpretation of the core semantics,
associates with each program point a set of all substitutions that may prevail at that point
during any execution of the goal(s). The collecting semantics is like the standard semantics
for the language except that it gathers and preserves the association between program points
and the sets of substitutions encountered at these points during an execution.

All analyses are done using abstract interpretations which are approximations of the
collecting semantics. An interpretation I of the core semantics is an abstract interpretation
if the domains and semantic functions of I are abstractions of their counterparts in the
collecting semantics and if I safely models the collecting semantics. The domains left

unspecified in core semantics must be either a complete lattice or at least a complete partial
order (cpo) [14]. In an abstract interpretation, the domains are also required to be of
finite height to ensure termination. The notion of soundness or safety is stated in terms
of modeling relations. A modeling relation between the abstract domain Asub and the
corresponding standard domain P(Subst) is given by two continuous functions « and v

a : P(Subst) — Asub, 7 : Asub — P(Subst)
such that for any © € P(Subst) and & € Asub
€ Cv(«(0)) and 2 =o(y(®)).

The function « is called the abstraction function and v the concretization function. Fur-
thermore, each abstract function f over an abstract domain corresponding to a concrete
function £ over the standard domain must obey the following constraint. For every x in the
standard domain, f£(x) C 7(f(e(x))). That is, the abstracted function f when applied to
the abstraction of an object x of the standard domain must yield an an abstract object y
such that its (y’s) concretization must contain (describe) the set of objects of the standard
domain obtained by applying £ to x.

2.1 Abstract Interpretation Framework for Logic Programs

We briefly describe the standard interpretation of logic programs before discussing the
proposed abstract interpretation. We are given a program P, a goal G = {a;,...,a,} and
a current substitution 8. A subgoal a., is selected using a fair computation rule [16] and
removed from the set of subgoals {a;,...a,}. A matching clause j is selected using a search
rule [16], the variables of clause j are renamed, the head h; of a clause j is unified with
@ ap. If the unification succeeds, the body literals b;y,...,b;) are added to the set of goals
to be solved and the new current substitution is & o #, where #' is the mgu of the head and
the goal. The above process is repeated until it terminates because the set of goals is empty
or there is a subgoal fa such that it does not unify with the head of any of the clauses.
If the set of goals becomes empty, then the current substitution is one answer substitution
corresponding to the initial substitution.

Abstract interpretation of a logic program starts with a program or module P and a
set of entry points. These entry points can be examples of actual queries together with an
initial abstract substitution for the variables in the query. Alternatively, the entry points
may be query patterns.

At any point during computation there will be a current substitution. Call it . The
current substitution is given different names depending on the state of computation. If goal a
is about to be unified with the head of clause i, the current substitution (to be applied to the
goal} is known as the call substitution of goal a. If a has just been successfully unified with
the head of clause i (which has been renamed), the unifier is the entry substitution for clause
i and also the call substitution for the first literal in its body. If the last literal in the body
has just been solved, the current substitution is known as the ezit substitution of clause i.

Restricting the exit substitution of a clause i to the non-local variables and then composing
it with the call substitution of a gives us the success substitution of clause i. In section 3, we
use the function entry_substitution to safely approximate head unification and produce an
initial environment for the body of clause i and the function success_substitution to safely
approximate the composition of exit substitution of clause i with the call substitution of
goal a. The least upper bound (lub) of the set of success substitutions of all the clauses
whose heads unified with goal a is called the success substitution of goal 4. The operation
lub is domain dependent.

Given an entry substitution for a clause, its exit substitution is computed as follows. If
it is a unit clause, the exit substitution is the same as the entry substitution. Otherwise,
compute the success substitution of the body literals sequentially, using the success substi-
tution of literal ¢ as the call substitution of literal i+1. The success substitution of the last
literal in the clause is the exit substitution of the clause.

In an abstract interpretation over domains of finite height, we can solve the current
set of goals #{a;,...a,} depth-first without destroying completeness. Since a program may
contain recursive predicates, abstract interpretation involves fixpoint computation. Please
see [11, 23, 9, 20] for details.

In next sub-section, we define our abstract domain Asub and then discuss the abstract
operations entry_substitution success_substitution and abstract_unify in the following sec-
tion.

2.2 Abstract Domain Asub: Free X Repeat x Sharing

The abstract domain Asub is the product of the domains Free, Repeat and Sharing. We first
define each of these domains and then present abstraction and concretization functions.

Definition 1
Jree: Subst — P(Var)

Jree(o) = {z;|z; € dom(o) A z;—~z, €0 A z; € Var) m]
Example 1

Let o = {W f(A,C,A),X — g(A,C),Y — B,Z — h(A, B,C, D)}

Then free(a) = {Y}. i

Definition 2 Abstract domain Free

Free: P(Var),,

The partial ordering on Free is defined to be
LCFrree? Vz € Free
T Efree ¥ ifft Dy Ve,y€ Free A z,y# L

and the least upper bound operation is defined as
UuX =1 —-if X ={L}
UX =N(X\{L}) — otherwise 0

The lub operation on Free is set intersection since we wish to derive definite freeness of
variables,

Definition 3
repeat: Subst — P(Var)
repeat() = { z; |z — t; €6 A Iz € Var s.t. zp occurs more than once in
t;)} o

repeat(8) returns a set of variables that are mapped by 8 to terms containing multiple occur-
rences (i.e, more than one) of at least one variable. It can be shown that repeat(8)Niree(d) =
@, V6. In the example given above, repeat(ac) = {W}. Note that we lose information about
the positions where a repeated variable occurs, in this case, argument positions 1 and 3 of
the principal functor f.

Definition 4 Abstract domain Repeat
Repeat: P(Var)

The lub operation on Repeat is set union since we want to conservatively estimate the set
of variables bound to terms that may have repeated occurrences of a variable sub-term.

The following definitions relate to the domain Sharing. Definitions [5-9] are due to
Jacobs and Langen [13]. A Sharing is a set of sets of variables. It expresses the sharing
among and independence of variables caused by a substitution. We say that a variable u
occurs through a variable v in a given substitution o, if u occurs in a term bound to v in
o. A set of variables is in a sharing(c) iff there is at least one common variable occurring
through all of them in &. In other words, two variables A, B may share in a substitution &
iff there is a set X € sharing(o) such that A € X and B € X. A and B are independent (in
o) otherwise. Further, a variable A € dom(o) is ground iff it is not a member of any set in
sharing(o).

Definition 5
oce : Subst X Var — P(Var)
oce(o,u) = {v € dom(o) | u € vars(ov)} o

Definition 8
sharing : Subst — Sharing
sharing(a) = {oce(o,u)| u € Var} o

Definition 7 Abstract Domain Sharing
Sharing: P(P(Var))
I;Sha,ring =C and XjUX; = XjUX,, for X1,X5 ¢ Sharing O

Using the o defined in example 1, sharing(c) = {0,{W,X,Z},{Y,Z},{Z}}. The vari-
ables {A,C} in the range of ¢ occur through the variables W, X, and Z in o; {B} occurs
through Y, and Z; {D} through Z. It can be shown that free(c) C vars(sharing(c)) and
repeat(c) C vars(sharing(o)).

-1

Let a component of a variable X be a non-empty subset of the set of variables in a
term ¢ that X is bound to in a substitution o. The abstract domain Sharing represents
a variable by its components and collects together in a set all the variables that share the
same component(s). Thus each set I in a Sharing is a set of variables that share the same
component. Furthermore, we can think of each set [of variables in a Sharing as representing
a particular component of each of the variables in I In the above example, variable Z has
three components {A,C}, {B} and {D} represented by the sets {W,X,Z}, {Y,Z}, {Z} in
sharing(o). It shares {A,C} with W and X, {B} with Y, and {D} with none.

Any variable E which is not in vars(range(o)) occurs through the empty set of variables,
hence @ € sharing(c). When a variable is independent of all other variables, it is in a set
by itself. Likewise, when a variable X is bound to a ground term in o, no variable occurs
through X and hence X does not appear in any set in sharing{c). By extension, if @ is the
only element of sharing(c), then all variables in dom(o) are ground in o. Note that X and
Y are independent since no variable occurs through both of them, and grounding Z grounds
W, X, Y but not vice-versa. The partial ordering reflects the fact that a Sharing is intended
to express possible (as opposed to definite) sharing among the variables.

The following definition of multioccurs determines if a term T may have repeated vari-
able sub-terms given the sharing abstraction of a (set of) substitution(s). A term T may
have repeating variable sub-terms if a variable occurs more than once in term T or two
distinct variable sub-terms of T may share in the given abstraction.

Definition 8
multioccurs : Term x Sharing — Bool
multioccurs(t, S5) iff (3X € vars(t) s.t. X occurs more than once in t) or

(3X,Y e vars(t), X #£Y, 35€ §5 si. {X,Y}C) m|

Definition 9
relevant : A x Sharing — Sharing
relevant(t,5) = {X € § | vars(t) N X # 0} a

The function relevant takes a term or a set ¢ and a sharing S and returns a set of those
elements of S that represent a component of a variable in ¢, i.e, the sets of variables that
may share with a variable in {.

Definition 10 Closure under union
The closure under union of a sharing S, denoted by §* is the smallest super set
of S suchthat X € S*AY € 5* =2 XUY € 8§~ m}

The closure under union of a sharing § approximates further sharing among the variables
of § that may be caused by ay o o where oy is any substitution and sharing(c,) C S.

Definition 11 Strongly Connected
sc: Var x Var x Sharing — Bool
sc(zi,2;,8) iff i, z; € vars(§) A relevant(z;, S) = relevant(z;, §)} m)

8

It can be shown that sc is an equivalence relation and it partitions the variables of a Sharing
S into equivalence classes. All variables 2q,-+,2, in an equivalence class I are bound to
(possibly different) terms t;,--,1, in the substitution ¢ where sharing(c) = S, such that
vars(ty) = -+ = vars({,). This follows from the definitions of relevant(z;, §), sharing(c)
and occ(o,u). We now define Asub as the product of the domains Free, Repeat and Sharing.
The partial ordering on and lub of Asub are derived from the component domains.

Definition 12 Asub = Free X Repeat x Sharing

CAsub = EFree X ERepeat % CSharing
UAsub = UFree X URepeat X USharing =

Hereafter we will omit the domain subscripts from C and U when it is clear from the context.

Definition 13 Abstraction Function
a : P(Subst) — Asub

a(0) = | | {(free(8), repeat(8), sharing(8))} w
te

Our definitions of the component domains and their associated orderings make the above
abstraction function safe in the sense that

¢ the abstraction of a set of substitutions © includes all possible sharing of variables
induced by each substitution # € ©, since set union is the lub operation for Sharing.
In other words, variables X and Y occur together in a set in the sharing component
of the abstract substitution if there is at least one substitution # € © such that
vars(8X) N vars(8Y') # 0.

¢ avariable X is ground only if it is ground in all the substitutions, i.e, it does not occur
in any set in sharing(8), ¥ 8 € ©.

o the repeat component of Asub includes a variable z; if, in at least one substitution it
is bound to a term with a repeated variable occurrence.

e 2 variable is free in the abstract substitution only if it is free in a/l the substitutions
abstracted.

Definition 14 Concretization function
7 : Asub — P(Subst)
Y(A) = {o € Subst | (free(s) x repeat(c) x sharing(c)) C A} 0

It is easy to verify that our definitions of a and v fulfill the modeling relation between Asub
and P(Sub) specified in section 2. The next function restrict is used to restrict an Asub to
a set of variables.

Definition 15 restrict
restrict : Asub x P(Var) — Asub
resirict((F, R, 5),V)=(FnV,RNV{X'|X €S A X'=XnV)}) m

3 Operations on Abstract Domains

We now define the functions entry_substitution, success_substitution, and abstract_unify.
We use | for projection and tuple notation for injection. For example, Asub..y]Repeat
refers to the Repeat component of Asub.,y.

Definition 16 entry_substitution: Atom x Clause x Asub — Asub
entry substitution(Goal, Head :- Body, Asub.p) =

let (H,B) = rename((Head, Body)) 1
F = Asubeay)Free U vars(H) U vars(B) 2
R = Asub.ylRepeat 3
S = Asubey|SharingU {{X}| X € vars(H)U vars(B)} 4
ESub = abstract_unify(Goeal, H,(F, R, 5)) 5
in rename™!(restrict{ Esub, vars(H) U vars(B))) 6

O

The above function first creates an initial environment (F,R,S) from the call substitution
and the renamed clause. abstract_unify updates the initial environment to approximate
head unification and the result Esub is restricted to the variables of the clause and then
inverse of rename applied. Let 6 : Pvar — Var be a renaming substitution which maps
program variables to variables that do not occur in a program and #-! be its inverse. Then
rename is a homomorphic extension of # to Term — Term and rename=! is a homomorphic
extension of #~! to Asub — Asub. Step one renames clause variables to avoid conflicts with
goal variables. Union of the set of free variables of the call substitution and the set of
renamed clause variables gives the set of free variables just before unification. The set of
variables bound to terms with repeated variable sub-terms (just before head unification) is
the same as that of call substitution, since all renamed clause variables are free at this point
(step three). Before head unification, all renamed clause variables are independent of each
other (step four). Esub is the substitution induced by Goal when abstractly unified with
the renamed head H in the environment (F,R,S). In step six, Esub is restricted to renamed
clause variables and then inverse of the renaming function applied.

Definition 17 success_substitution: Atom x Clause x Asub x Asub — Asub
success_substitution(Goal, Head :- Body, Asubgy, Asubezig) =
let (H,B,Asub.zit) = rename'((Head, Body,Asube,irg)) 1

Asubyg = Asub..y; U Asubgy 2
Asubgyco = abstract_unify(Goal, H, Asubyys) 3
in restrict{ Asubyycen, Poar) 4

g

Success_substitution is very similar to entry_substitution. We use the Astbgz; (after con-
sistent renaming) as the abstract substitution for the clause variables. After abstract unifi-
cation is used to propagate information from the clause to the goal, the result is restricted
to program variables (i.e, variables in the environment of the goal). rename’ renames the

10

variables in (Head, Body, Asub) consistently to non-program variables. We now define
abstract_unify and propagate_frs.

Definition 18 abstract_unify: Atom X Atom x Asub — Asub
abstract_unify(Goal, Head, Asub;,) =

let ¢ = mgu(Goal, Head)
Groundy = (vars(Goal) U vars(Head))\ vars(Asub;, | Sharing)
Ground; = Groundg U {X|V; = T; €8 A V; € Groundp A X € vars(T})}
Ground = Ground; U {V;|V; — T; € 8 A vars(T;) C Ground, }
fo ={z;—=t;|z;— 1, €6 A z; & Ground A t; = update(t!, Ground)}
Sharingy = Asub;, |Sharing \ relevant(Ground, Asub;, |Sharing)
Repeat, = Asub;,|Repeat\ Ground
Freey = Asub;, | Free\ {] relevant(Ground, Asub;, | Sharing)

in propagate_frs((Freey, Repeaty, Sharing,), 8o)

a

Head unification is approximated by abstract_unify. Tirst, the mgu 8 of Goal and Head is
obtained and then groundness information is derived. The set of ground variables Ground
is used to refine Free, Sharing and Repeat components of Asub;,, and the mgu 8. Since
propagale_frs performs an imprecise but safe approximation of sharing in the case of vari-
ables which may be bound to terms with repeated variable sub-terms, identification and
removal of ground variables from Asub;,|Repeat improves the precision of the analysis.

o Recall that if a goal (head) variable does not occur in the sharing component of the
abstract substitution for the goal (head), then it is ground in all the corresponding
concrete substitutions (see the discussion following definition 7). Step two computes
the initial set Groundy of goal and head variables that are ground in all concretizations
of Asub;,|Sharing.

e Steps three and four compute the set of ground variables implied by Asub;, |Sharing
and 8. Since substitutions are idempotent, a substitution can be viewed as a bi-
partite graph [15]. Let 8 = {X — f(Q,P),Y ~ g(P,R),Z — h(R,S)} be rep-
resented by the following graph. Further assume that Groundy = {X,R}. Step
three corresponds to propagating information downwards in the graph which yields
Ground, = {X, P,Q, R}. Step four corresponds to upwards information propagation,
resulting in Ground = {X,Y,P,Q,R}.

11

0 -1 ov b

=}

¢ Step five refines @ to reflect the groundness of variables. We haven’t formally defined
the function update: Term x P(Var) — Term. Informally, update replaces ground
variables in a term T by constants.

o Step six updates Asub;,]}Sharing to reflect the groundness of variables in Ground.
Likewise, variables bound to ground terms are removed from Asub;,|Repeat, the
set of variables that may be bound to terms with repeating variable sub-terms (step
seven). In step eight, ground variables and other variables that may share with the
ground variables are removed from the set of free variables. Function propagate_frs is
discussed next.

Definition 18 propagate_frs: Asub x Subst — Asub
propagate_frs((F, R, S),0) =
if o ={} then (F,R,S5)
else
let Binding=V; = 1T; € 0, ¢' =o\ {Binding}
A = relevant(V;, §), B = relevant(T;, S)

B'=if V;€ R then B else B fi
A" =if (vars(T)) N R # 0 vV multioccurs(T;, §)) then A* else A fi
5'=(S\ (AU B)) U pairwise union of A’ and B

R'=RU (if V; € R then B else 0§ i)
R'" = R'U (if (vars(T;)N R # 0 v multioccurs(T;, S'))
then (JAelse 0 fi)
R"=R'U(HXNY|X €AY € BY)
F' = Free\ (if V; ¢ F then |Jrelevant(T;, 5’) else @ fi)
F" = F'\ (if (T; g Var v T; € F') then Jrelevant(V;, 5) else 0 fi)
in propagate_frs((F", R", §"), o")
fi
o

In the following discussion, we refer to the current abstract substitution as Asub,,, and its
components Free, Repeat and Sharing as F, R and § respectively. Let A be the set of sets
in sharing § that are relevant to V; (i.e, each set X in A represents some component of V;
that V; may share with other variables in X) and B be the one relevant to T;.

12

)y)

Xn) (X1,...,Xn) (X1y...,X5)

Vi

(X1,.00,X5) (Xy,..

L et T
L R

V;
|
|
|
|
|
|
[

T

|
|
|
|
|
I
I
A T'.
(¥1,...,Yy) Y1,...,¥%) (Yi,...,¥r) (Yh,...,Y%)

(a) (b) (c) (d)

Each binding V; ~ T; in ¢ (the mgu of the head and the goal) propagates sharing,
repeatedness and freeness as follows. According to Asub.y,, V; and T; may or may not have
repeating variable sub-terms, leading to four possibilities as illustrated below. A solid edge
from V; (or T;) to itself indicates that 8V; (or #7;) may have a repeated variable occurrence,
where 8 € y(Asub.,,). Broken edges represent unification. 8V; is represented as a generic
term (Xy,...X,) where Xj,...X, are the variables that occur in 6V; and likewise 07} is
represented as (Y7,...Y}), without loss of generality.

The binding V; — T; may cause three types of sharing: sharing among the variable
sub-terms of V; (and hence among other variables which share with V;); sharing among
the variable sub-terms of T; (and hence among other variables which share with T}); and
sharing between any sub-term of V; on the one hand and any of T; on the other. The effects
of these three types of sharing are safely approximated as follows.

(a) Neither 8V; nor 6T, has a repeated variable sub-term. This means that the only sharing
caused by the binding V; — T is the sharing between any sub-term of V; and any
sub-term of T; and this is approximated by the pairwise union of A and B.

(b) 6T; may have a repeated variable sub-term, but #V; doesn’t. The repeated variable(s)
in 0T; may cause some sub-terms of V; to share, which is approximated by taking
the closure under union of the sharing sets relevant to V; (= A’). However, no further
sharing among the sub-terms of 7; is caused by the binding V; — T;. Finally, the
sharing between any sub-term of V; and that of T} is approximated by the pairwise
union of A’ and B.

(c) is symmetric to (b).

(d) can be derived analogously.

13

We now discuss the propagation of repeatedness due to the binding V; = T%. If V; may
have a repeating variable sub-term, then we have to conclude that all variables in 87; may
have the same property and so does any other variable which may share with 7;. Thus
R' = RUJrelevant(T;, §). Likewise, if there is a repeating variable in 87; (before unifying
#1; with V;, indicated by vars(T;) " R # @) or two variable subterms of T; are brought to
share due to the unification of 8T; and V;, then V; and other variables that may share with
Vi may now have repeating variable sub-terms. Hence, R” = R’ U] relevant(V;, §).

The last step in the propagation of repeatedness safely approximates the case where
two previously distinct variable sub-terms of 8V; or 8T; may now be aliased to each other.
Consider the substitution ¢’ = {P — (T,U),Q — (T,U),R — (U, N)} and the sharing com-
ponent of its abstraction Asubg |Sharing = {{P,Q},{P, R},{R}}. Suppose that P is now
unified with R. The new sharing {{P,Q,R}, { P,R}} is obtained by taking the pairwise union
of relevant(P, Asubg | Sharing) = {{P,Q}, {P, R}} (call it A’) and
relevant(R, Asubg: | Sharing) = {{R}, {P, R}} (call it B"). Two previously distinct compo-
nents T and U of P are now aliased to each other and P and @ will have a repeated
variable occurrence. Such cases can occur only when X NY # 0 where X € A’ and Y € B.
Each variable in the intersection of A and ¥ may (but not necessarily) have two of their
previously distinct components aliased. We safely conclude that each such variable may
now be bound to a term with repeating variable sub-terms.

Freeness propagation can be reasoned similarly. If V; is not free, then any variable that
occurs in T; may not be free and so do variables that share with T;. Likewise, if T; is not a
variable or a variable that is not free, then V¥; and any other variable that shares with V; in
6 may not bee free. Note that if V; is free but T; is not, then any free variables that occur
in T; will remain free after unifying 8V; with 47;.

3.1 Correctness

Correctness (or safety) of our analysis can be established by proving the correctness of the
functions entry_substitution, success_substitution and the following main theorem about
abstract_unify. We provide only sketches of the proof.

Theorem 1
{mgu(bh,og)} C v(abstract_unify(g, h, a(8)Uc(s))) where dom(8)Ndom(c) =
@ o

The condition dom{#) N dom(o) = @ reflects the fact that the clause whose head is h and
the goal g are renamed apart before unification. To prove the above theorem, it is enough
show that

a({mgu(6h,09)}) C a(y(abstract_unily(g, h,a(d) U a(0))))

with the same proviso that dom(#) N dom(s) = @. From our definitions of @ and 7 it can
be shown that a(y(A)) = A, which simplifies the above equation to

o {mgu(bh,og)}) C abstract-unify(g, h,a{8) U a(c))

14

The above correctness condition can be stated in terms of the component domains and
the partial ordering on them, as follows. (We use LHS and RHS to mean the left and right
hand sides of the above equation.)

LHS| Free 2 RHS|Free
LHS|Repeat C RHS|Repeat
LHS|Sharing C RHS|Sharing

We provide below a sketch of the proofs of the above correctness condition.

1.

e

3.2

For any @, ground._variables(8) N Free(f) =
For any @, ground_variables(8) N Repeat(§) = 0
For any 8, ground_variables() N vars(Sharing(#)) = 0

For any @, it can be proved from the definition of sharing that the set of vari-
ables dom(8) \ vars(sharing(#)} are mapped to ground terms by 8. (Step two of
abstract_unify function.)

- Steps three and four of abstract.unify correctly derive the set of definitely ground

variables. (See the discussion using bipartite graph representation of the unifier of the
goal and the head.)

Conclude from the above steps [1-5] that propagate_frs is called with a correct refine-
ment of the abstract substitution and the mgu.

Proof of correctness of the function propagate_frs is based on induction on the number
of bindings in the mgu of the goal and the head and on induction on the structure of
terms. We discussed the conservative derivation of potential sharing among and the
repeatedness of variables based on the structure of terms and the repeated occurrences
of variables in them.

Comparison with Other Approaches

As mentioned in the introduction, we designed and implemented a domain-independent ab-
stract interpreter in Prolog that can be parametrized by abstract domains and operations
on them. The details of MFG semantics underlying the interpreter and its efficient imple-
mentation will be reported elsewhere. We instantiated our interpreter with the domains and
operations proposed by ourselves, Jacobs and Langen [13] and Jones and Sondergaard [15)
in order to compare their precision and efficiency. In the following, we refer to these analyses
as SR, JL and JS respectively. The following five programs were used to test the precision

and

efficiency of the three methods.

o Grammar: Generates and recognizes a set of English sentences. (15 clauses)

 Bid: Computes opening bid for a bridge hand. (51 clauses)

15

No of Pairs of
Shared Variables

Program | Size | SR | JS JL
Grammar 15 6 6 6
Bid 51 0 0 5
Deriy 61 0 0 0
Read 87| 23| 29 42
RdTok 54 37| 41 60

Table 1: Precision of Analysis: Comparison of SR, JA and JS systems

¢ Deriv: Performs symbolic differentiation and simplifies the derivative. (61 clauses)

¢ Read: Public domain parser for Prolog by D.H.D Warren and Richard O’Keefe. (87
clauses)

» Rdiok: Public domain tokenizer for Prolog by Richard O’Keefe. (54 clauses)

These programs (except the first one) are of moderate size and the last two are used by many
Prolog compilers. The precision of the analysis is measured in terms of the number of pairs
of program variables reported to be sharing by each method for each of the benchmarks, in
Table 1. Since the analyses are aimed at deriving potentially sharing variables, an analysis
is more precise when it derives a smaller set of such variables. Our analyzer, SR, found
the smallest number of pairs of sharing variables in all cases. JS was a close second. JL
was not as precise as the other two. In the case of two widely used practical programs, the
number of pairs of sharing variables derived by JL was larger by about 82% and 62% than
that of SR and 45% and 46% larger than those of JS. We will see that, contrary to popular
belief that more precise analyses are necessarily less practical or more time consuming, the
improved precision of our analysis does actually contribute to faster execution.

We now compare the execution times of the three analyzers for the same programs,
in table 2. These times represent median values aover several runs. SR takes the least
time to analyze all benchmark programs. JS, although almost as precise as ours, is three
times slower in the case of Read and about six times slower in the case of Rdtok and
Grammar. This is mainly due to the transitive closures computed by JS when approximating
unification. Computing transitive closures is a central part of Jones and Sondergaard’s
technique for propagating sharing and can’t be avoided. In our analysis of most programs,
the operation closure under union (whose worst case time complexity is exponential in the
number of elements in the set and thus worse than O(n?) for transitive closure) is avoided
most of the time because of the expressiveness of our abstract domain and the matching
precision of our abstract domain operations. The fact that Jacobs and Langen’s analysis
was less precise than ours is also reflected in the analysis times. JL is slower by about three
times in the case of Rdtok where its precision is the lowest and is slightly slower in the case
of Read.

The analysis times of our abstract interpreter compare very favorably with those re-
ported in the literature such as MA® and Ms[25]. For example, the M A3 and Ms inter-

16

Analysis Times, in secs
Program | Size | SR JS JL
Grammar 15| 1.77 11.9 1.7
Bid 51| 54 6.3 5.4
Deriv 61 | 20.7 | 28.2 20.7
Read 87 | 55.2 | 183.6 57.0
Rdtok 54 | 06.7 | 404.9 178.1

Table 2: Analysis Times on a HP 9000/835, using Sicstus Prolog 0.6

preters took 60.2 seconds using Quintus Prolog-2.2 on a Sun3/50 and 68.3 seconds using
SB-Prolog-2.3.2 on a Sun3/50 for analyzing Read, whereas ours took less time, 55.2 sec-
onds using Sicstus-0.6 on a somewhat faster machine HP9000/835. There are, however, two
points to note:

o The times taken by MA3 and Ms [25] are for deriving modes for each procedure and
thus collect information at one program point per procedure. Qur analysis times are
for deriving sharing, freeness and groundness information at all program points. In
our approach, each clause has n+1 program points, where n is the number of literals
in the body.

¢ Qur abstract interpreter, written in Prolog, interprets the program to be analyzed.
The WAM code (Warren Abstract Machine [24]) of our abstract interpreter itself gets
interpreted by the WAM emulator of Sicstus Prolog. Hence, our analyzer pays the
overhead of double interpretation. The Ms interpreter transforms the programs to
be analyzed into new programs [25] which get executed directly by the underlying
Prolog system and thus avoids the overheads of double interpretation. Despite the
double interpretation overheads, our abstract interpreter’s analysis times compare
very favorably.

4 Conclusions and Future Research

The feasibility of abstract interpretation based data flow analyses of logic programs has
been established for simple mode analyses [25]. We showed that it is possible to define
more informative and efficient analyses. We demonstrated that our proposed abstract do-
mains and operations are more precise than other proposals and at the same time more
efficient. It is clear from the analysis of some of the widely used Prolog programs that our
extensions to the abstract domain proposed by Jacobs and Langen and our new abstract
domain operations derive significantly more precise information, more efficiently. The pre-
cision of our analysis can be improved by keeping track of the position of repeated variable
occurrences. But the feasibility of such an extension and the improvements in precision
obtainable are to be explored.

References

[1] Apr, K. R., AND EMDEN, M. V. Contributions to the theory of logic programming.
J.A.C.M 29 (1982), 841-862.

[2] BruyNOOGHE, M. A practical framework for the abstract interpretation of logic
programs. The Journal of Logic Programming 10, 2 (February 1991), 91-124.

[3] BruyNoOGHE, M., JANSSENS, G., CALLEBAUT, A., AND DEMOEN, B. Abstract
interpretation: Toward the global optimization of prolog programs. In Proceedings of
the IEEE Symposium on Logic Programming (1987), pp. 192-203.

[4] BruyNoOGHE, M., AND JENSSEN, G. An instance of abstract interpretation inte-
grating type and mode inferencing. In 1988 Joint Conference on Logic Programming
(1988), pp. 684-699.

[5] CobisH, M., AND YARDENI, E. Derivation and safety of an abstract unification algo-
rithm for groundness and aliasing analysis. In Proceedings of the Eighth International
Conference on Logic Programming (1991).

(6] ConERry, J. S. Parallel Ezecution of Logic Programs. Kluwer Academic Publishers,
Boston, MA, 1987.

[7] Cousor, P., aAND CousoT, R. Abstract interpretation: A unified lattice-theoretic

model for static analysis of programs by construction of approximation of fixpoints. In
Proceedings of {th POPL (1977), ACM, pp. 238-252.

[8] DEBRAY, S. K. Static analysis of parallel logic programs. In 1988 Joint Conference
on Logic Programming (1988), pp. 711-733.

[9] DEBRAY, S. K. Static inference of modes and data dependencies. ACM Transactions
of Programming Languages and Systems 11, 3 (July 1989), 418-450.

[10] DeBRAY, S. K., AND WARREN, D. S. Automatic mode inference for prolog programs.
In Proceedings of the 1986 Symposium on Logic Programming (1986).

[11] HecuT, M. S. Flow Analysis of Computer Programs. Programming Language Series.
North-Holland, New York, 1977.

(12} HERMENEGILDO, M. An Abstract Machine Based Execution Model for Computer Ar-
chitecture Design and Efficient Implementation of Logic Programs in Parallel. PhD
thesis, University of Texas at Austin, August 1986.

[13] Jacoss, D., AND LANGEN, A. Accurate and efficient approximation of variable alias-

ing in logic programs. In Proceedings of the North American Conference on Logic
Programming (1989), pp. 154-165.

18

[14] JonEs, N., AND MYCROFT, A. Data flow analysis of applicative programs using
minimal function graphs. In Proceedings of 13th POPL (1986), ACM.

[15] JoNES, N., AND SONDERGAARD, H. A semantics based framework for the abstract
interpretation of prolog. In Abstract Interpretation of Declarative Languages, S. Abram-
sky and C. Hankin, Eds. Ellis Horwood Limited, 1987, ch. 6, pp. 123-142.

[16] Lioyb, J. W. Foundations of Logic Programming, first ed. Springer-Verlag, Berlin,
1984.

[17) ManiLLa, H., AND UkkoNEN, E. Flow analysis of prolog programs. In {th IEEE
Symposium on Logic Programming (september 1987), IEEE Computer Society.

[18) MARRIOTT, K., AND SONDERGAARD, H. Bottom-up dataflow analysis of normal logic
programs. In 5th International Conference on Logic Programming (August 1988).

[19] MELLIsH, C. 5. Abstract interpretation of prolog programs. In Third International
Conference on Logic Programming (july 1986), pp. 463-475.

[20] MuTHUKUMAR, K., AND HERMENEGILDO, M. Determination of variable dependence
information through abstract interpretation. In Proceedings of the North American
Conference on Logic Programming (1989), pp. 166-185.

{21] MuTHUKUMAR, K., AND HERMENEGILDO, M. Combined determination of sharing
and freeness of program variables through abstract interpretation. In Proceedings of
the Eighth International Conference on Logic Programming (1991).

{22] SoNDERGAARD, H. An application of abstract interpretation of logic programs: Oc-
cur check reduction. In Proccedings of European Symposium on Programming (1986),
Springer-Verlag,.

[23] SuNDARARAJAN, R. An introduction to abstract interpretation of logic programs.
Tech. Rep. CIS-TR 91-05, Dept of Computer and Information Science, University of
Oregon, Eugene, Oregon, U.5.A. 97403, 1991.

[24] WARREN, D. H. D. An abstract prolog instruction set. Tech. Rep. 309, SRI, Menlo
Park, CA, 1983.

[25] WARREN, D. H. D., HERMENEGILDO, M., AND DEBRAY, S. K. On the practicality of

global flow analysis of logic programs. In 1988 Joint Conference on Logic Programming
(1988), pp. 684-699.

[26]) WinsBorouGH, W. Automatic, Transparent Paralellization of Logic Programs at
Compile Time. PhD thesis, Dept. of Computer Science, University of Wisconsin-
Madison, Sept. 1988.

19

