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Abstract

We generalize the result of Bernhard, Hedetniemi and Jacobs by providing
a linear time algorithm that computes the efficiency number of a partial k-tree
(given with its embedding in a k-tree).

1 Motivation

For a fixed value of the integer parameter k, partial k-trees are exactly subgraphs
of those chordal graphs that have at most k 4+ 1 completely interconnected vertices
(see, for instance, {3, 10, 12]). Thus, partial 1-trees are the acyclic graphs (forests),
and partial 2-trees are the series-parallel graphs (graphs with no K, minors or home-
omorphs).

The class of partial k-trees is identical to the class of graphs of tree-width & [11].
These graphs have been in the focus of attention in recent years because of their
interesting algorithmic properties. Namely, for a large number of inherently difficult
(on general graphs) discrete optimization problems, partial k-trees admit a linear
time solution algorithm when the value of k is fixed and any partial k-tree is given
with its embedding k-tree {4]. We exhibit this property by applying the standard
for this approach Dynamic Programming methodology to the problem of determining
the efficiency number of a graph. This parameter has been defined by Bernhard,
Hedetniemi, and Jacobs [5] as the maximum number of vertices uniquely dominated
by a subset of vertices in the graph. They proved the problem to be NP-complete even
when restricted to bipartite graphs and provided a linear time algorithm computing
the efficiency number of a tree. We generalize their result to partial k-trees. Because
of the separation of series and parallel reductions, we will discuss our result restricted
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to partial 2-trees (series-parallel graphs) first. We then use the introduced concepts
to present the general result.

2 Definitions and terminology

We will use standard graph theory terminology, as found, for instance, in Bondy and
Murty (7]. In addition, we define some basic concepts.

For a graph G = (V,E) and a set D C V, we define the efficiency of D to
be the number of vertices in V\D such that each vertex is adjacent to exactly one
vertex in D; we say that such a vertex is efficiently dominated. We call the set D a
dominating set, even though it does not necessarily dominate every vertex in VAD.
The efficiency of G, £[G], is the maximum efficiency of any subset of V. The efficiency
of a disconnected graph is clearly the sum of the efficiencies of its components. For
the purpose of exposition, we assign states to the vertices of G for a given D C V as
follows:

if v not dominated and v & D
if v efficiently dominated

if v dominated by more than one vertex and v ¢ D
ifveD

state(v) =

W N = O

We say a (partial) state assignment function @ : V — {0,1,2,3} is legal if and only
if it corresponds to an assignment of states to V for a particular D C V according to
the above.

A graph G is a k-tree if and only if there exists a perfect elimination ordering of
its vertices, peo = vy, ...,vn, such that for every 1 <i < n —F, the higher numbered
neighbors of v; form a k-clique K. We then call K the base of v;, and v; a descendant
of K. In the (k+1)-clique induced by {v;} U K, there are k other k-cliques, in addition
to K. We call these the faces of v;. Each of these faces may in turn be a base of
other vertices, and at any time during the reduction process, the reduced branches of
a k-clique K is the transitive closure (across faces) of descendants. The base of v,_j
is termed the root of the k-tree. A partial k-tree is obtained by removing edges from
a k-tree; we call the latter an embedding k-tree.

3 Efficiency of partial 2-trees

In our algorithm, we will follow the structure of a given partial 2-tree as defined by
a perfect elimination ordering of vertices determined by an embedding 2-tree. In
doing so, we will combine optimal solutions to the efficiency subproblems restricted
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to subgraphs of the original graph with given states of some vertices. We define an
operation of collapsing two vertices of a given graph: U(G;z,,z,) will denote the
graph resulting from identifying the collapsing vertices z, and z; in the graph G. We
will refer to the collapsed vertex as z. Furthermore, given a partial state assignment
state to a set of vertices S of a graph G, we define £[G; state(S) = 3] to be the
efficiency of G when the state of any vertex z in S is restricted to state(z) = s,
without the possible contribution of any vertices in S as efficiently dominated. To
justify our notation, state(S) = 3, we should actually view S as a sequence.

We initially view the 2-tree as a disjoint collection of initialized 2-cliques (edges)
and combine solutions by collapsing corresponding vertices. Our intermediate goal is
to establish the value of e[G, state(z) = 3] for the graph G’ = U(G;zy,z,) given
the efficiency ¢[G, state(z,) = s;,state(zy) = s;] for a partial state assignment
state(z;) = s; and state(z,) = s,. We will relate the state of the collapsed ver-
tex = to the states of the collapsing vertices z1,z, through the function r defined
below:

if (81,52) = (0,0)
if (s1,52) € {(0,1),(2,0)}
if (s1,s2) € {(0,2), (2,0), (1,2),(2,1), (1,1), (2,2)}
3 it (o e) = (09
otherwise

state(z) = 7(s1,82) =

W= o

Before giving the algorithm for computing the efficiency of partial 2-trees we
establish two theorems needed for correctness analysis.

Lemma 1: For two vertices z, and z, in G, not sharing a neighbor, and a legal
partial state assignment 3 to a subset of vertices S C V\{z,,z,},

e[U(G; 21, z2); state(z) = s, state(S) = 5] =

Er}a’gc{e[G; state(x,) = 51, state(z;) = s3, state(S) = 5]}

where s = 7(s,, 52).

Proof: Let G' = U(G; z,2,). Let any dominating set D in G’ yield state(x) = s
and let v be a vertex of G'\{z} with d neighbors in D.

For the case z ¢ D (s=0,1 or 2), consider G with the same dominating set D.
Any dominating set of G not including z; or z, will be considered as D varies in G.
Since G and G’ only differ by edges with end vertex z, the vertex v has d neighbors
in D also in the graph G. Hence v’s contribution to the efficiency value is preserved.
Recall that the efficiencies of the lemma do not count the contributions of z,, =, or
z. The states of vertices z; and z, vary depending on the number of neighbors they
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have in D. Since x, and z, share no neighbors, it can be argued easily that the only
legal states of these vertices are those given by the r function. Thus the lemma holds
for this case.

For the case z€ D (s=3), consider G with the dominating set D\{z} U {z41, z,}.
Again the efficiency contribution of an arbitrary vertex v € G'\{z} is preserved in G
since z; and z, do not share neighbors. The state pair 8; = 85 = 3 is the only one
considered by 7. Any dominating set of G that includes z; and x5 will be considered
as D varies in G'. Hence the lemma holds. O

A collapsed vertex contributes to the efficiency value of the graph if and only if
its state is 1. We describe this contribution through the function o a(0) = o(2) =
a(3) =0 and o(1) = 1.

Theorem 1: For v, and v, not sharing a neighbor in G, and the state of some
other two vertices of G, = and y, restricted to sz and s,, respectively,

e[U(G;v1,v,); state(z) = s,, state(y) = s, =

{elG; state(v,) = sy, state(v,) = 83, state(z) = s,, state(y) = sy)]+o(state(v))}

ma
state(v)=7(s1,93)

Proof: Follows from Lemma 1 and the fact that when state(v) = 1 we must
account for its contribution to the efficiency value. O

Let us extend the operation U to several sets of collapsed vertices, so that collaps-
ing vertex x, with vertex z, and vertex y, with vertex y2 is denoted U(G; z1, z23 1, 12)-

Theorem 2: For z;,7, and y,,y,, two disjoint pairs of vertices in @, such that
vertices of neither pair share neighbors, and (z2,1) & E(G)

elU(G; 21, 22341, 32); state(z) = sz, state(y) = s, =

max  {e[G; state(z1) = sz, state(zs) = s.,, state(y;) = 3y, state(ya) = s,,]}
e T TR

where s; = 7(sz,,5,) and s, = 7(s,,, s,,).

Proof: By reversing the process of collapsing the two pairs of vertices, we can
make use of Lemma 1. Let G' = U(G;zy,z,). Note that y; and y2 do not share a
neighbor in G’ since they do not share neighbors in G and (%2,¥2) € E(G). Hence,
by Lemma 1,

e[U(G's1,2), state(y) = s,] = max {e[G'; state(y)) = s,,, state(ys) = s,,]}
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By the definition of G’ and applying Lemma 1 again, the last expression is equal to

max { max {¢[G; state(z1) = s, state(zz) = sz, state(y1) = sy,, state(ys) = sy,]}}
v113y2 Oz eixp

We thus get the desired result by the associativity of the maximum function.O

In the following algorithm, we use the above theorems. The right-hand side of
the formulas in the theorems are computed using the fact that the efficiency of a
disconnected graph is the sum of the efficiencies of its components.

Algorithm 1: Efficiency of partial 2-trees

Input: G = (V, E) , a partial 2-tree, given with an embedding 2-tree G' = (V, EU E)
and a corresponding vertex elimination ordering w(V'). Note that En E' = 0.
Output: €[G]

1. Initialize efficiencies of all edges (z;,z;) € EU E' as follows: If (s;,3;) is a
legal state assignment (for the edge viewed as a disjoint component), then
e[(z;i, z;), state(z;) = s;, state(z;) = s;] := 0 and otherwise &[(z;, z;), state(z;) =
s;,state(z;) = s;] 1= —oo. The legality of a state assignment depends on
whether (z;,z;) € E or (z;,z;) € E'.

2. Fori =1 to |V|— 2 do Reduction step:

Let v be such that w(v) = i. In G, let v have faces (v,a) and (v,b), so that
(e, b) is its base. Let the disjoint representatives of these edges be the 2-cliques
(v1,a1), (v2,b2) and (aa,b3), respectively. Each of these may represent some
previously reduced branches.

First, compute the efficiency of the graph resulting from collapsing v; (in the
subgraph reduced onto the face (v1,a;)) and v; ( in the subgraph reduced onto
the face (vz,b;)). This corresponds to a series reduction, and the result follows
from the formula given in Theorem 1.

Then, use this result to update the efficiency values of the base (a3, ;) as the
efficiency of the graph resulting from collapsing the pair a,,a23 and the pair
by, bs. This corresponds to a parallel reduction, and the result follows from the
formula given in Theorem 2.

The total effect is the inclusion of v into the reduced branches while updating
the optimal efficiency values of its base according to the optimal efficiency values
of its faces.

3. Let (r,s) be the root of G’. Return the maximum efficiency value associated with
this edge, while accounting for vertices r and s if they are efficiently dominated.
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Timing and correctness

The algorithm follows the standard approach for solving discrete optimization
problems on partial k-trees [4]. Note that an illegal partial state assignment will
always have the efficiency value —co by virtue of the initialization step and the rules
for combining efficiencies of components. Correctness thus follows from the theorems.
Finding an embedding 2-tree and a vertex elimination ordering can be done in linear
time [12] and each iteration of the Reduction step involves a constant amount of work.
Hence, the linear time complexity of the algorithm.

4 Efficiency of partial k-trees

For general k, the algorithm computing the efficiency of a partial k-tree again follows
a perfect elimination ordering of its vertices as determined by an embedding k-tree.
As before, we initially view the partial k-tree as a disjoint collection of initialized
k-cliques, and combine solutions with the aid of a theorem that involves collapsing
sets of corresponding vertices. This theorem updates the efficiency of the base of a
vertex in terms of the efficiencies of the separate faces of the vertex, thereby including
it in the reduced branches of its base. We call this process pruning the vertex. The
theorem, for k > 2, is complicated by the fact that, in the embedding &-tree, the faces
of a vertex share edges, which may or may not be edges of the partial k-tree (in 2-trees,
they only share the pruned vertex). Pruning involves collapsing each of k + 1 sets
of corresponding vertices. To facilitate presentation, we state a lemma dealing with
collapsing one such set. Even when collapsing only one set, the function T that gives
the state of the collapsed vertex z depends not only on the states of the collapsing
vertices zy,Za,...,Zx , but also on the presence of shared dominators. A vertex is a
shared dominator if it efficiently dominates 2 or more of the collapsing vertices. Such a
shared dominator is critical when two or more of the collapsing vertices are efficiently
dominated (have state 1) and all the rest have state 0. The state of the collapsed
vertex £ will then depend on whether all the efficiently dominated collapsing vertices
share the same dominator (in which case z is efficiently dominated, state(z) = 1)
or not (which would imply state(z) = 2). Formally, let D(v) be the dominator
of an efficiently dominated vertex v. Let N be a set of vertices, with fixed states,
that includes all shared dominators of z,,...,z;, the vertices to be collapsed. Let



state(N) = 7, and state(z;) = s;. We define state(z) = 7(sy, ..., 8¢, N, 7) to be:

if Vi(s; = 0)

if 3Vj(si =1A(s; =0V (s; =1A D(z;) = D(z;))))

if Vi(s; # 3) A (F(s; = 2) v (3, m(s; = s, = 1 A D(z)) # D(z,))))
if Vi(s; = 3)

T otherwise

7(81, ...y Sk, N, ) =

Lo =D

Note that T requires information about shared dominators only when 2 or more
of the collapsing vertices are efficiently dominated and the rest have state 0.

Lemma 2: Consider a graph G, a set of non-adjacent vertices z,,z,, ...,z of
G, and a subset of vertices N C V — {z,,...,2;} such that any shared neighbors of
1,..., Tx is in V. For a legal partial state assignment 7 of N,

e[U(G;x1, 22,...24); state(x) = s, state(N) = 7] =
max {¢[G; state(x;) = sy, ..., state(zx) = s, state(N) = 7]}

L3 FILOIT

where s = 7(s1, ..., 8, N, 1)

Proof: Follows the strategy of the proof of Lemma 1 by considering cases that
depend on the state s of the collapsed vertex. For each case one can show that the
function 77*(s) considers exactly those configurations of G that could yield this state
and that any non-collapsing vertex preserves the number of neighbors in a dominating
set.

Pruning a vertex involves collapsing k+1 sets of k vertices each, where each face (or
k-clique) is viewed as a disjoint component. According to 7, when collapsing a vertex
in the dominating set the information about shared dominators is not needed. Hence
our 2-step approach of collapsing the dominating vertices first. This provides the
information about shared dominators needed to subsequently collapse the remaining
vertices.

More formally, consider a graph G conta.mmg k+1 disjoint components, Cy,...,Ci41,
with vertices z € C;foralli # j (1 <1, < k+1). Each pair of vertices with identical
subscript has the same adjacency relation within each component (for our application
to k-trees, zx4y is the vertex to be pruned, Ciy, is its base, Cy,...,Ci are its faces
and the neighborhood relation is determined by adjacencies in the partial k-tree).

Our goal is to establish the value of

E[U(Gﬂf, Ly JJ{H: :1:2,:172, 35“, ;$i+ls$i+11'":mt+l)’ state(z;) = $1,..., State(zy) = Sk]



3{g§§k{s[G0123; state(vy) = sy,..., state(vy) = sy; state(Voy2) = Uiz, state(V3) = 53]}

with the shared dominators determined by adjacencies in Ggj53. Note that the dom-
inators of Ggps are the same as the dominators of 3. Combining this with the
inductive assumption we get

e= ’maxk{e[Gona; state(v,) = 84, ..., state(vy) = si; state(Voy2) = Dg12, state(V3) = B3]} =
1yeeeyd

s{na)stk{xga.x{e[Ga;state(C'mg) = Co2, state(vy) = sy, ..., state(vy) = sg; state(V3) = 03]} }
ey o112

Since all the shared dominators of v,...,v; are in G3 and since the maximum
function is associative, we can include the vertex v in the set ¥, and redefine Ggyz3
accordingly. This establishes the inductive step and hence the lemma.D

Our goal is to prune the vertex zry;. We do this by expressing the efficiency of its
base, for a particular state sequence, maximized over all possible states of z4;;. As
with the other vertices, if the pruned vertex is viewed as belonging to the dominating
set then its collapsing must occur in the first stage, otherwise it must occur in the
second stage. Since we need to maximize the resulting efficiency over all states of the
pruned vertex, we must consider each of these possibilities.

Theorem 3: The efficiency value of the base of a pruned vertex, for a particular
legal state sequence of vertices in the base, is given by the the maximum efficiency
over all 4 states of the pruned vertex resulting from the 2 steps:

1) Using Lemma 3, collapse corresponding vertices of each face (and base) that
belong to the dominating set.

2) Using Lemma 4, collapse the remaining vertices based on the adjacencies re-
sulting from step 1.

Proof: By maximizing over all states of the pruned vertex, we satisfy the maxi-

mality condition in the definition of efficiency. The theorem follows from the lemmata.
O

Algorithm 2: Efficiency of partial k-trees
Input: G = (V, E), a partial k-tree, given with an embedding k-tree G' = (V, EU E')
and a corresponding vertex elimination ordering w(V). Note that En E' = 0.

Output: ¢[G)

1. Initialize efficiencies of all state vectors of all k-cliques in G’ as follows: For a
legal state assignment to vertices in a k-clique K , e[K, state(K) = k] := 0. For
an illegal state assignment , [K, state{K) = f] := —oo (legality according to
the states of vertices in the subgraph of G induced by the vertices of K).
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2. For ¢ =1 to |V| — k do Reduction step:

Let v be such that w(v) = ¢. Include v into the reduced branches by updating
the optimal efficiency values of its base based on the optimal efficiency values
of its faces according to the 2-step formula outlined in Lemma 2 and Theorem
3. In doing so, we also make use of the fact that the efficiency of a disconnected
graph is the sum of the efficiencies of its components.

3. Return the maximum efficiency value associated with the root of G’ while ac-
counting for vertices in the root if they are efficiently dominated.

Timing and correctness

The algorithm follows the standard approach for solving discrete optimization
problems on partial k-trees [4]. Note that an illegal partial state assignment will
always have the efficiency value —oo by virtue of the initialization step and the rules
for combining efficiencies of components. Correctness thus follows from Theorem 3.
A straightforward implementation of the formula given for the Reduction step would
imply a linear time algorithm involving a constant exponential in £%. Note that our
algorithm assumes that an embedding in a k-tree is given with the partial k-tree.
Efficient computation of this embedding is a subject of active research. We know
that, for any k, there exists a linear time algorithm recognizing partial k-trees [1],
but it requires the explicit knowledge of the set of minimal forbidden minors. On the
other hand, there are O(nlog*n) algorithms finding k-tree embeddings [6]. For k < 3,
there are linear time algorithms [1, 9].

5 Conclusions

We have constructed an algorithm that, for a partial k-tree given with an embedding
k-tree computes the efficiency of the graph in linear time. A suitable modification of
the algorithm will allow for a construction of the corresponding dominating set.

The methodology used here, (introduced in [4]) can be applied to many other
dominating set problems (cf. [8]). The fact that such linear time algorithms exist
follows from the existence of a linear EMSOL (Extended Monadic Second Order
Formula) description of the corresponding problems {2]. For instance, that a set X is
efficiently dominated by a set D can be expressed as a MSOL formula EDom:

EDom(X,D) =VYv.v € X - Ju.(u € DAAdj(v,u)AVw.w € D — (u = wV-Adj(v, w)))

where Adyj is the vertex adjacency relation in a given graph.
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