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Abstract

Requirements analysis includes an acquisition step where a global model for the specification of
the system and its environment is elaborated. This model involves concepts that are usually not
found in the final formal specification, such as goals to be achieved, agents and their responsibil-
ities, etc. This paper presents an approach for model acquisition which is driven by such goals.
A conceptual meta-model in terms of which requirements models are acquired is first briefly pre-
sented. Qur acquisition strategy can be viewed as a systematic way to traversing this meta-model
backwards from the goals. The goal-directed acquisition strategy and the use of the meta-model
are illustrated with a case study, the specification of a simple elevator system.
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1. Introduction

Requirements analysis is recognized as being the most critical step in the software lifecycle. Errors
made during this first step may have disastrous effects on the subsequent development steps and
on the quality of the resulting product. It is therefore useful to provide automated support for as-
sisting analysts in conducting this step.

We view requirements analysis as being made of two coroutining substeps:

- requirements elicitation, where a preliminary architecture for the specification of the system and
its environment is elaborated and expressed in an intermediate knowledge representation language;
- formal specification, where the global model elaborated during acquisition is refined and made
further precise using constructs of a fully formal language suitable for formal proofs, prototype
generation, etc.

This distinction arises from the nature of the tasks being involved:

- The acquisition of knowledge about the composite system involves concepts that usually are not
found in the final formal specification, such as, e.g., goals to be achieved, agents involved and their
responsibilities, etc. (In the following, we will use the term "composite system" [Fea87] to refer
to the whole system made of the application to be automated and of the part of its environment
which is of interest in formulating requirements).

- Acquisition processes are more relying on domain knowledge whereas formal specification pro-
cesses are more relying on knowledge about the specification formalism being used.

- The basic operators being applied in such processes are rather different; requirements elicitation
involves learning operators [Lam91] whereas formal specification involves data/operation decom-
position and structuring, modularization, parameterization and instantiation, etc [Dub87).

We are involved in modelling and formalizing the processes for both substeps through two com-
plementary projects: KAOS (for requirements elicitation) and ICARUS (for requirements formal-
ization). Requirements elicitation is viewed as a cooperative learning task between clients and an-
alysts. An Acquisition Assistant is being developed in that context to guide analysts in the elabo-
ration of the preliminary requirements model. Among the major tasks of requirements elicitation
are: (i) the acquisition of goals, (ii) the specification of those goals, and (iii) the integration of di-
vergent goals [Rob%0]. Once goals are acquired, they must be operationalized in a specification.
Goal acquisition is thus a critical task for the Acquisition Assistant.

As in learning-by-instruction systems, requirements elicitation should be structured in terms of a
model for acquiring requirements models. In Section 2 we present a proposal for such a meta-mod-
el.

The concept of goal is a central component of this meta-model. Goals are useful in several re-
spects.

- They lead to the incorporation of specification components which should support them;
- They justify the presence of specification components;

- They may be used to determine the respective roles of agents in the system; more precisely, they
may provide the basis for defining which agents should best perform which actions (according to
their responsibilities, ability, reliability, motivation, ...);

- They provide the "roots” at which conflicts should be resolved and multiple viewpoints should be
reconciled [Rob897;
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- They allow to trace back low-level descriptions, incomprehensible for clients, to global client
goals.

This paper presents a strategy for concept acquisition which relies on the goals that must be met in
a specification. The conceptual meta-model in terms of which requirements models are being ac-
quired according to that strategy is first briefly discussed. The goal-directed acquisition strategy is
described in Section 3, together with a scenario of acquisition for the specification of a simple el-
evator system. Some concluding remarks are made in Section 4.

2. A Conceptual Meta-model for Requirements Modelling

The requirements model built gradually during acquisition is maintained in a requirements
database. The requirements database is organized according to components of a conceptual meta-
model; this means that the requirements model built during acquisition is expressed as domain/
task-specific instances of domain/task-independent components of this meta-model. An
acquisition session consists of traversing the meta-model to acquire the corresponding instances by
use of acquisition operators; the order for traversing the meta-model and the composition of
acquisition operators is determined by the acquisition strategies selected among those made
available (this paper presents one of those acquisition strategies).

The KAOS meta-model (see Fig. 1) is made of meta-concepts, meta-relations linking meta-con-
cepts, meta-attributes characterizing meta-concepts and meta-relations, and meta-constraints on
these various kinds of components (e.g., cardinality constraints on meta-relations); such con-
straints must be satisfied in the final state of the acquisition process. The requirements model ac-
quired is made of instances of the meta-concepts, linked by instances of the meta-relations and
characterized by instances of the meta-attributes. The "meta" prefix is used here to avoid confu-
sions between the three following levels involved:

- the meta level, where domain-independent abstractions are defined;

- the domain level, where concepts specific to the application domain are defined as instances of
meta-level abstractions;

- the instance level, where particular instances of domain-specific concepts are introduced (if nec-
essary).

Each meta-concept is defined by a set of characteristics; a characteristic is either a meta-attribute
or a meta-relation in which the meta-concept participates. This set of characteristics is inherited
by any meta-concept instance. For example, the characteristics of the action meta-concept are
propagated to the openDoors action concept: the openDoors action has a pre_ and a post_condition,
a trigger_condition, etc; these characteristics are inherited from the meta-attributes of the action
meta-concept. Each meta-relation is also defined by a set of characteristics; a characteristic here
is either a meta-attribute or the ordered list of linked meta-concepts that make the meta-relation,
together with their respective role and cardinality constraint. Finally, each meta-attribute is de-
fined by features such as its naming, its intuitive meaning, its domain (i.e., the set of possible at-
tribute values), the unit to which such values refer (optional), the inheritance mode through spe-
cialization hierarchies, etc.
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Figure 1: The KAOS Conceptual Meta-model

The meta-model is just outlined here; a precise definition of its various components can be found
in [Lam90]; some of them will be made further precise as needed in Section 3. The current version
covers the following meta-concepts: object, which can be specialized to entity, relation, event, and
agent; action; constraint, goal which can be specialized to leafGoal, scenario. The meia-relations
introduced so far include: application and yield between action and objects, insurance between
constraint and actions or objects; frigger and sfop between event and action; link between relation
and objects; performance between agent and actions; reduction over goals; responsibility between
agent and goals; operationalization between leafGoal and constraints [Mos83] (those constraints
are ensured by restrictions defined on actions and objects under control of agents); composition-of
between scenario and action; representation on objects (any instance of it links an external
environment object to the internal object(s) that represent it in the automated application); etc. The
view ternary meta-relation (not represented in Fig. 1) allows different views on a same object,
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action, or goal, to be associated with different agents. The meta-artributes introduced so far include
duration, pre_ and post_conditions, trigger_ and stop_conditions for the action meta-concept;
Jfrequency for the event meta-concept; reduction_mode for the goal meta-concept (with "and", "or"
as possible values); situation for objects and actions (with possible values "external” or "internal"”
according as the corresponding object/action pertains to the external environment or to the sub-
system to be automated); etc.

3. A Goal-directed Acquisition Strategy

Qur aim is to support the elaboration of intermediate requirements representations that are guaran-
teed to satisfy the goals of the clients, and that record how that satisfaction is realized.

Agents, goals and constraints as they are defined in our conceptual meta-model fulfill an important
role in the acquisition strategy. They are therefore more precisely defined below.

3.1 Agents and Goals
3.1.1 Agents

In KAQS, an agent is an object which is a processor for one action at least (as any object, it can
evolve from one state to the other).

3.1.2 Goals and Constraints
Our notions of goal and constraint can be defined as follows:
- A goal is an objective that has to be met by the composite system.

- A constraint is an operational assertion on object states which satisfaction contributes to the
achievement of one or several goals.

In order to clearly distinguish goals from constraints, their specific features are more precisely de-
scribed hereafter.

Goal

- A goal is in general not formalized; in general it cannot be described exclusively in terms of ob-
jects and actions of the composite system being considered: we say that the expression of a goal is
nonoperational.

An example of goal for an elevator system is “safety during transportation”. This goal refers to the
concepts of safety and transportation which are not explicit components of the specification of an
elevator system.

- Goals are linked in two different ways to agents: by the responsibility and the wish meta-relations.
An agent is responsible for a goal if it must guarantee, maybe jointly with others, that the goal will
be achieved in the system (see [Fea87]). An agent can guarantee that a goal will be met by perform-
ing appropriate actions. Goals for which agents are responsible are called system goals. System
goals are application-specific. System goals have to be met by the composite system.

An agent wishes a goal if it wants it to be met. Each agent may have its own goals that it wishes to
be met. Goals wished by agents are called local goals. An example of local goal is the “gain time”
goal wished by a passenger. Local goals are most often application-independent. Local goals do
not have to be met by the composite system.

- A reduction meta-relation is defined to capture the goal-subgoal structure. This relation corre-
sponds to the classical reduction operator in the problem reduction approach to problem modeling
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[Nil71]. The overall goal structure is an and/or graph. Alternative goal reductions can thus be cap-
tured; a goal node can have several parent nodes as it can occur in several reductions. A goal which
is not reduced further is called a leafGoal.

- Goals can also be conflicting; e.g., abstract goals such as "minimize waiting time for a resource”
and "keep resources as long as desired"” are conflicting as soon as multiple agents are considered.
It is important that such conflicts can be explicitly recorded. Two goals are linked via a conflict
meta-relation instance if and only if they cannot be achieved both together.

Constraint

- A constraint can be formalized; it is operational in that it refers to actions and objects available
to agents. Constraints are formalized in the (first-order) assertion language used to express pre_-
conditions, post_conditions, trigger_conditions, etc.

An example of consiraint is
V elevator: elevator.state="still’ = 3 floor | position(elevator,floor).
(This constraint says that when the elevator is not moving, it must be positioned at a floor).

Note that constraints are not directly linked to agents (the responsibility and wish relations apply
to goals rather than constraints).

Link between Goal and Constraint

The link between goals and constraints is captured in the operationalization meta-relation: a goal
is operationalized by being translated into constraints; the satisfaction of each of them then con-
tributes to the achievement of the goal. The operationalization meta-relation captures the fact that
a constraint is some sort of abstract "implementation” of one or more leaf goals. Our model here
somewhat refines the notion of operationalization in explanation-based learning ([Mos83],
[E1189]), in that we split the notion of operationalization of concepts through actions into the no-
tions of (i) operationalization through constraints and (ii) constraint insurance through restrictions
on actions and objects. This permits a finer grained explanation of how goals are supported by
specification components such as actions and objects.
For an elevator system, the goal “go to requested floor” can be operationalized by being associated
with the following constraint:

if performs(x,makeRequest) and

applies-to(makeRequest, floor:f)
then triggers(ev,goToFloor) and
applies-to(goToFloor,f).

This constraint is operational in the sense that it is exclusively described in terms of specification
components (entity, action and event). More examples of goals, constraints and operationalization
links can be found in Section 3.2.2.

3.2 Acquisition Strategy

For each step of our strategy, we explain what the step does, why it is necessary to do it at this point
in the strategy and how it is done. For each step, we also mention which components of the meta-
model are involved: the strategy corresponds in fact to a directed way of acquiring instances of
meta-concepts and meta-relations. Starting from the goal meta-concept, the specification is ac-
quired incrementally and backwards by considering at each step new instances of specific meta-
concept(s) and/or meta-relation(s) (see Fig. 1 to follow the acquisition path through the meta-mod-
el).
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The strategy will be illustrated by specifying a simple elevator system [Doe90]. We consider a sin-
gle elevator system. The maximum capacity of the elevator is one passenger at a time. Only one
passenger is considered at a time: elevator requests are treated in a fully sequential way (there is
no interference between requests). This problem is a simplification of the elevator described in
[Fea87].

3.2.1 Step 1: Identify Agents and Goals
This step consists of two co-routining substeps.
Step 1.1: Identify Agents

WHAT: Agents are identified (i.c., instances of the agent meta-concept are introduced), but not
necessarily completely described; all their relevant characteristics might not necessarily be discov-
ered at this stage of acquisition. Local goals wished by agents are identified (i.e., instances of the
wish meta-relation are defined).

WHY:: Agents are needed for the assignment of responsibility during the construction of goal hi-
erarchies (substep 1.2), this is the reason why they must be identified at this stage of acquisition.
Coroutining with substep 1.2 occurs as new agents might be identified while reducing goals in sub-
step 1.2,

HOW: Agents are identified by interaction with the analyst. This might be a non-trivial step be-
cause in non-human systems, several alternative agents may appear as candidate processors. In so-
cial systems, agent roles are more easily identified.

EXAMPLE:
The agents identified in our elevator system are:

- Passenger.

A passenger agent wishes the following local, application-independent goals: “be where you
want”, “stay alive”, “gain time”. He might wish other local goals, but we only consider here the
goals that might be interesting in the context of an elevator system.

- ElevatorController.
An elevatorController agent wishes the local goal: “limit elevator maintenance™.

A specification methodology such as Structured Common Sense [Fin87] also includes an explicit
agent identification step; however, goals and their operationalizations are not explicitly handled
there.

Step 1.2: Build a Goal Structure for the Particular Application

WHAT: The system goals given by the client are progressively reduced in an overall goal-subgoal
structure (an and/or graph). The leaf goals of the structure are primitive goals to which operational
constraints will be associated in step 2. The elaboration of the goal structure consists of three sub-
steps:

- (i) identify goals and associate them with the parent goal(s) they reduce (i.e. define instances of
the goal meta-concept and of the reduction meta-relation);

- (ii) identify conflicts between newly defined system goals and the local goals of agents (i.e. define
instances of the conflict meta-relation);

- (iii) for each goal, assign responsibility to agent(s) (i.e. define instances of the responsibility
meta-relation).

These three substeps are not sequential, they are intertwined:
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- the assignment of responsibilities determines the need for further reduction in subgoals;

- the state of the reduction process determines the assignment of responsibilities;

- the assignment of responsibilities may highlight the need for identifying a new agent and its as-
sociated local goals, which must be checked for conflict with system goals.

WHY: The reduction of system goals into primitive goals is necessary because constraints cannot
be associated with global goals: only simple, primitive goals can be operationalized. Moreover, it
is interesting to keep the whole structure as a history of the acquisition process becanse:

- it records division of responsibility;

- it ties specification components to informal text describing goals for the analyst’s use;

- it can be used in case of negotiation required to solve conflicts, or to replay some part of the ac-
quisition process.

Each goal identified is checked for conflict with each of the goals wished by the agents. Detection
of possible conflicts between local and system goals is useful for the assignment of responsibility
(see below the Assignment of Responsibility Heuristic).

HOW: Goal structures are refined with the help of heuristics.
- Goals are reduced with the help of the Reduction Heuristic.

Reduction Heuristic

A goal for which the responsibility is shared among several agents is reduced into subgoals for
which the responsibility is shared among fewer agents.

We believe that a goal under the responsibility of a smaller group of agents is more simple to
achieve than a goal under the responsibility of a larger group of agents, because more agents re-
quire more complex cooperation. This is the reason why responsibility is our criterion for identi-
fying simple goals: using this criterion, even if an analyst should have a (vague) notion of concepts
and characteristics to refine goals, he does not exclusively rely on this notion to find appropriate
subgoals. Nevertheless, the identification of subgoals by the analyst remains a non-trivial task
which would be impossible to automate.

- The End-of-Reduction Heuristic is applied to determine when to stop refining the goal structure.
This heuristic relies on our belief that the less responsible agents, the simplest the operationaliza-
tion of the goal by constraints.

End-of-Reduction Heuristic

The reduction process ends when all the leaf goals of the structure are under the responsibility of]
one single agent or are considered as being simple enough to be operationalized by constraints.

- The assignment of responsibility of goals to agents is guided by the goals wished by each agent.
If possible, none of the goals for which an agent is responsible should be in conflict with its wished
goals. It is therefore necessary to check for conflict between a system goal and all the local goals
before assigning responsibility for the system goal.
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The assignment of responsibility for a goal to agent(s) is done according to the Assignment of Re-
sponsibility Heuristic described below.

Assignment of Responsibility Heuristic
(for assigning responsibility for goal G)

a) G has no parent goal

--- The agents which may be responsible for G are any of the system agents (there is no
restriction on the assignment of responsibility for a root goal).

b) G has at least one parent goal
Given:
- A={ay, ..., ap)} the set of agents responsible for the parent goal(s) of G;

- g(a;) the set of goals wished by agent a; (1 <i <n)
Then:

The only agents which may be responsible for G should belong to the set
fae Ald ge g(a)s.t. conflict(g,G)).

The expression conflict(g,G) means that there is an instance of the conflict meta-relation between
the two goal instances g and G.

EXAMPLE:

For our elevator system, the first system goal is given by the client. This goal is identified as being
“rapid transportation of passengers to their destination”, The responsibility for this goal is assigned
to both the elevatorController and the passenger. This goal is reduced into AND subgoals and the
responsibilities are split among the different agents.

The three AND subgoals suggested by the analyst are “no delay to rider”, “safety during transpor-
tation”, “satisfaction of transportation requests”. In order to meet the first global goal, the three
AND subgoals must be met. Responsibilities are assigned to each of these subgoals according to
the Assignment of Responsibility Heuristic. None of the subgoals is in conflict with any of the local
goals of the agents. There is thus no restriction on the assignment of responsibilities: they may be
assigned to any of the two agents responsible for the parent goal. As the goals “no delay to rider”
and “satisfaction of transportation requests” have shared responsibilities, they should be further re-
duced.

Further in the reduction, a conflict is detected between the local “limit elevator maintenance™ goal
of the elevatorController and the system “request destination floor” goal. There is a conflict be-
cause any transportation request implies more work for the elevator and thus more maintenance.
Making a request is thus in conflict with limiting maintenance. According to the Assignment of
Responsibility Heuristic, the elevatorController may not be responsible for the “request destination
floor” goal: the only agent which may be responsible for the "request destination floor" goal is pas-
senger.

We apply the End-of-Reduction Heuristic, and we stop refining the goal structure when all leaf
goals are under the responsibility of a single agent. The resulting structure is shown in Figure 2.
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It should be noted that local goals are not reduced. Once they are identified during step 1.1, they
are not further reduced. The leaf goals of system goals structures do not include any refinement of
local goals.

3.2.2 Step 2: Operationalize Goals

WHAT: Constraints are associated to the leaf goals of goal structures in order to operationalize
these leaf goals (i.e. instances of the constraint meta-concept are defined, as well as instances of
the operationalization meta-relation). Each constraint is an operational assertion on objects and ac-
tions.

WHY: Constraints are described to operationalize the leaf goals of the structure acquired in step 2.
Such a operationalization of goals in necessary for traceability of specification components to
goals. The identification of constraints is useful for the description of concepts required to ensure
the constraints in the composite system (see the insurance meta-relation); complete concept char-
acterizations are acquired during the following step.

HOW: Constraints are acquired by interaction with the analyst. We believe that the discovery of
constraints and their associated operationalization links is a non-trivial task that cannot be fully au-
tomated with the Acquisition Assistant.

The analyst might already have in mind some concepts and associated characteristics when he de-
scribes the constraints. The support given by the Acquisition Assistant for the acquisition of con-
straints may consist of consistency checking based on the different types of concepts described in
the meta-model: e.g., check that the same concept is not referred to as an action and in another con-
straint as a relation, etc.

On another hand, some constraints can be acquired through analogical learning when similar goals
are being recognized {Dub%0].

EXAMPLE:
Each of the leaf goals of the goal structure of our elevator system must be operationalized by being
associated with constraints.
For example, the “safety during transportation™ goal can be operationalized with the following con-
straint:
V elevator: elevator.state="moving’ = elevator.doorState='closed’ .

The satisfaction of this constraint requires inserting (i) the assertion <elevator.doorState='closed'>
in the pre-condition for the goToFloor action, (i) that same assertion in the pre-condition for the
take ToFloor action, (iii) the introduction of the closeDoors action that allows states satisfying the
right hand side of the implication to be reached, and (iv) the assertion <elevator.state='still’> in the
pre-condition for the openDoors action.
The goal “immediate entry” can be operationalized with the constraint:

if performs(x,openDoors) then triggers(ev,getOnElevator).
The satisfaction of this constraint requires (i) the introduction of the openingDoors event, (ii) the
definition of the openingDoors event as triggering the getOnElevator action, and (jii) the definition
of the openDoors action as yielding an instance of the openingDoors event. As a result, the end of
the execution of the openDoors action creates a new instance of the openingDoors event. The open-
ingDoors event triggers the getOnElevator action. As soon as the doors of the elevator open, the
passenger must immediately get on the elevator, resulting in the “immediate entry” goal being met.

More operationalization links between leaf goals and constraints for the elevator system are pre-
sented in Figure 3.
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“safety during transportation” Velevator: elevator.state='moving' = elevator.doorState =‘closed’
“immediate entry” ——— if performs(x,openDoors) then triggers(ev,getOnElevator)
“stop only to allow entry/exit” —— if performs(x,stop)
then position(elevator,f1) and
destination(elevator,f2) and
f1=12
“gpen doors to exilor” ———— if performs(x,stop) then triggers(ev,openDoors)

“immediate exit” ——————if performs(x,openDoors) then triggers(ev,getOffElevator)

“go 10 requested floor” if performs(x,makeRequest) and
applies-to{makeRequest,floor:f)
then triggers(ev,goToFloor) and

applies-to(goToFloor,f)

“get on clevator when at location floor” ————if position(elevator.f1) and
location{passenger.f2) and
request(passenger,f3) and
f1=f2=f3

then performs(x,getOnElevator)

“get1 off elevator when at destination floor” ~————— if location(passengerclevator) and
position(elevator,f1) and
rft;,qlgsl(passenger,ﬂ) and

m-perfonns(x,gelOffElevawr)

“close doors” ———if performs(x,getOffElevator)
then triggers(ev,closeDoors)

Key: “leaf goal” operationalization constraint

Figure 3: Elevator’s Goals and Constraints

3.2.3 Step 3: Acquire Concept Characterizations

WHAT: Complete concept characterizations are acquired for all the concepts of the specification
considered. All the characteristics of the concepts (i.e. attributes and relations) must be fully de-
scribed. At this stage of the acquisition process, instances of the event, entity, relation, and action
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meta-concepts are defined, and constraints are related to these concepts (i.e. instances of the insur-
ance meta-relation are defined).

Agents are not considered here because their characterizations at this stage of the acquisition pro-
cess should already be almost complete. The only missing information should be which actions
they perform. This will be defined in the next acquisition step.

WHY:: Complete characterizations must be acquired so as to ensure the constraints resulting from
step 3.

HOW: Complete concept characterizations are acquired in two substeps:
- (i) acquisition from constraints;
- (ii) acquisition from background knowledge.

(i) Constraints are operational assertions on characteristics of objects and actions; the referenced
characteristics must be explicitly defined. As constraints are described in a structured constraint
language, they can be used to drive the acquisition of concepts and characteristics they are refering
to. E.g., the constraint

V elevator: elevator.state="moving’ = elevator.doorState='closed’
implies the existence of the concept “elevator” and the characteristics “state” and “doorState™ for
this concept.
Thus, goals and constraints are essential because they provide partial concept characterizations to
begin with; the concept acquisition process thus has not to start from scratch.

(ii) The partial characterizations acquired from constraints are then refined and completed interac-
tively by learning operators working on domain background knowledge (e.g., describing typical
concepts in the domain of resource management systems), and domain-independent background
knowledge (viz. knowledge about the meta-model and acquisition heuristics). Currently, our do-
main background knowledge includes characterizations of various concepts related to resource
management systems: these concepts identify some basic characteristics of resource management
systems together with multiple specializations of them [Dar%0b]. Hierarchies of predefined con-
cepts (from previously acquired specifications) already exist and are stored in the background
knowledge. They are used during the acquisition of new concepts.

The concept acquisition operators presented in [Dar%(c] can be applied to acquire missing knowl-
edge about concept characterizations. The main concept acquisition operators we have identified
so far include:

- instance-to-class acquisition: acquisition from instances of the considered concept. The resulting
concept characterization includes the characteristics of the instances, usually generalized accord-
ing to inductive or explanation-based learning techniques [Lam91].

- class-to-class acquisition: acquisition from more specific already defined concepts, or from ap-
proximations of concept characterizations. The resulting concept characterization includes the
common characteristics of the considered specific concepts, usually generalized;

- instance classification: search in the background knowledge for a possible parent concept of an
instance given by the analyst (instance-of link between the instance and the concept). As the in-
stance is intended to define a new concept, it should not be possible to find among the already de-
fined concepts a concept that could be its parent. In fact, it is interesting to find concepts that are
similar to the one being acquired (that are almost parents) because these similar concepts can be
used to suggest lacking characteristics for the new concept.
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- concept classification: search in the background knowledge for a possible parent concept of the
concept being acquired (Is-a link between the new concept and the parent concept). If a real parent
concept cannot be found, but some concepts are almost parent concepts, the characteristics of these
concepts can be suggested to complete the characterization of the new concept.

- analogical acquisition: a similar source concept is recognized in the background knowledge, and
its characteristics are transferred to the new concept under acquisition, possibly with some adapta-
tion.

A complete description of these acquisition operators together with examples can be found in
[Dar90c], [Dub90].

The acquired concepts are described with the help of our requirements language. The model of our
requirements Janguage is the meta-model concisely described in Section 2.

EXAMPLE:

For our elevator system, at this stage of the acquisition process, we must still acquire complete
characterizations for instances of the following meta-concepts: event, action, entity, relation. We
will consider each type of concept in tum, indicating for each type what information from goal op-
erationalization can be usefully used to simplify the acquisition task.

Event Characterization Acquisition

The characterizations of five events can be automatically inferred from constraints operationaliz-
ing goals: stopping, openingDoors, requesting, gettingOff and gettingOn. The characterizations of
events are complete with the information contained in the constraints; we know when they occur
and which actions they trigger.

Action Characterization Acquisition

Each action may be characterized by the following attributes: pre- and postconditions, trigger and
stop conditions, duration.

All the constraints identified in step 3 describe pre- and postconditions of actions. Some actions
can thus be already partially characterized. Nevertheless, all actions do not have their pre- and post-
conditions already described. The missing pre- and postconditions must thus be acquired by inter-
action with the analyst. The trigger and stop conditions could be derived from the events associated
to the actions. The duration must be explicitly given by the analyst.

Actions can fulfill roles in several meta-relations. These roles must be defined for each action in
order to have complete action characterizations.

The instances of the trigger meta-relation between actions and events have already been described
during event characterization acquisition. Instances of the performance meta-relation are acquired
during the next acquisition step.

Actions and events are the concepts that benefit the most from the information of the operational-
ization of goals: they are almost completely characterized by the information contained in the op-
erationalizing constraints.

Entity Characterization Acquisition

Partial characterizations of entities can be acquired from the operationalizing constraints. The two
attributes of elevator (doorState and state) are already given by the constraints, but must still be
completely described. Their informal description and domain must be defined. The informal de-
scriptions are given by the analyst. The domains can be inferred from the values appearing in the
constraints: ‘closed’ and ‘open’ for doorState, and ‘still” and ‘moving’ for state. The client is asked
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if additional values should be included in the domains. To complete the elevator characterization,
the Acquisition Assistant tries to classify this concept. As we believe that most of the systems can
be described as resource management systems, there should always be at least one entity that is a
resource. The Acquisition Assistant suggests to classify elevator as a specialization of resource.
This reminds the client of defining an attribute similar to the state attribute of a resource describing
its availability. This lacking attribute is defined as the load attribute taking the value ‘empty’ or
‘loaded’.

Relation Characterization Acquisition

Partial characterizations of relations can be acquired from the operationalizing constraints. If we
consider the request relation, it is defined between passenger and another unidentified concept. In
order for the characterization to be complete, the (i) unidentified related concept, (ii) cardinalities
and (iii) other possible attribute have to be determined.

(i) To discover the unidentified related concept, the Acquisition Assistant suggests first each of the
application-specific entitics and agents. Entities and agents are considered before relations and
events (the two other types of concepts that might also be related) because usually the application-
specific relations are defined between entities and agents. In our case, the unidentified related con-
cept is the floor entity.

(ii) The cardinalities are acquired by depicting to the client various situations where different car-
dinality values are considered. He decides on which are relevant, and the Acquisition Assistant in-
fers the corresponding cardinalities.

For the request relation, one role is fulfilled by passenger, and the other role is fulfilled by floor. A
passenger may not have more than one request at a time (cardinality 0-1 for the role fulfilled by
passenger). When the passenger arrives at his requested floor, his associated request relation is de-
leted (postcondition of getOffElevator). There may be zero, one or several requests for the same
floor (cardinality O-N for the role fulfilled by floor).

(iii) According to the constraints and action characterizations; the request relation has an attribute
describing its state. This attribute can take the values ‘active’ or ‘pending’. A request is pending
when the passenger has made his request and the request has not yet been considered. A request is
active when it is being served by the elevator.

The agents, entities and relations of the elevator system are presented in Figure 4.
3.2.4 Step 4: Assign Agents to Actions

WHAT: The instances of the performance meta-relation must be defined to produce assignments
of agents to actions.

WHY: Agents must perform actions so that constraints that operationalize those goals which they
are responsible for are ensured.

HOW: A heuristic is used to define which agent should best perform which action. As a result of
applying this heuristic, a “performing” agent is suggested to the analyst. The analyst can accept or
reject the suggestion. The heuristic is based on the indirect link existing between actions and agents
through the insurance meta-relation (between actions and constraints), the operationalization meta-
relation (between constraints and leafGoals), and the responsibility meta-relation (between goals
and agents)-see Fig. 1. The heuristic used to assign performance is described hereafter.

We don’t take into account for the assignment of performance constraints that describe synchroni-
zation between several actions, because those constraints do not only refer to a single action: they
refer to at least two actions. Therefore, it is not possible to deduce specific information about one
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Figure 4: Elevator’s Age

particular action from such constraints. As we need specific information to assign performance, we

reject synchronization constraints.
When the heuristic is not applicable for an action (n=0), the Acquisition Assistant suggests to
choose between the agents responsible for actions similar to the action considered.

Let us illustrate the use of this heuristic with the help of our elevator example (see Fig. 5).

The action stop is associated with two operationalizing constraints:
- cl: if performs(x,stop) _

then position(elevator,f1) and
destination(elevator,f2) and

f1=£2.
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Assignment of Performance Heuristic
(for the assignment of performance of action Ac)

Given:

- ¢l, ..., cn the constraints ensured by the action Ac, which do not
describe synchronization between several actions;

- g1, ..., gm the goals operationalized by cl, ..., cn.

Then:
The action Ac should be performed by one of the agent(s)
responsible for g1, ..., gm.

- ¢2: if performs(x,stop)

then triggers(ev,openDoors).
If we apply the Assignment of Performance Heuristic, we only consider the first constraint because
c2 describes a synchronization between the stop and the openDoors actions (see Fig. 5). The cl
constraint operationalizes the goal “stop only to allow entry/exit”. This goal is under the responsi-
bility of the elevatorController agent. This agent should thus perform the stop action.

The interest of such a heuristic is not only to automatically suggest performing agents so that the
analyst simply has to acknowledge, but it is also a way to check the consistency of the decisions
taken by analysts. When an analyst spontaneously assigns a performing agent to an action, the Ac-
quisition Assistant applies the heuristic. If the agent suggested by the heuristic is different form the
one chosen by the analyst, the analyst is notified of the difference.

action stop
applies_to elevator with arge
yields stopping with res st,
elevator with res new_el
performed_ by clevatorController
pre_condition: <position(e,f1) and destination(e,f2) and f1=f2>
post_condition: <e.state="still">

n
end stop synchronization
action openDoors

applies_to elevator with arge

yields openingDaors with res st,

elevator with res new_el

performed_by elevaotrController

triggered by stopping

pre_condition: <e.state='still">

post_condition: <e.doorSTate='open'>

end openDoors

Fig. 5: Synchronization between two actions of the elevator system
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The performance meta-relation has three atiributes: ability, reliability and motivation. We current-
ly consider that the analyst must give values for the ability and reliability attributes. The value of
the motivation attribute should always be high. High motivation is ensured by the combination of
the Assignment of Responsibility Heuristic (no agent will be responsible for a goal in conflict with
its local goals) and the Assignment of Performance Heuristic (no agent will perform an action en-
suring a constraint operationalizing a goal for which the agent is not responsible),

4. Conclusion

We have presented in this paper an approach for concept acquisition which is driven by the objec-
tives that have to be met in the composite system. Goals, and their operationalization through spec-
ification components are handled explicitly. A meta-model for representing preliminary require-
ments models has been presented. Our acquisition strategy can be viewed as a directed way to
traverse the meta-model for concept acquisition backwards from the goals. The acquisition strategy
and the use of the meta-model have been illustrated with the specification of a simple elevator sys-
tem.

The acquisition strategy presented in this paper should be refined further; we plan to formalize it
through a body of rules to be evaluated by the Acquisition Assistant. The most critical part of the
acquisition strategy is the acquisition of goals and their operationalization through constraints; this
should receive special attention and be further investigated to evaluate the opportunities for auto-
mated support. For example, the entire trackin g of specification components to goals should be vi-
sualized; appropriate checks during acquisition should be defined and mechanized as well. Last
but not least, goal conflict resolution strategies should be carefully investigated.
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