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Abstract

It follows from a theorem of Markov that the minimum number of negation
gates in a circuit sufficient to compute any Boolean function on n variables is
1= |logn| +1. It can be shown that, for functions computed by families of poly-
nomial size, O(log n) depth and bounded fan-in circuits (NC'), the same result
holds: on such circuits I negations are necessary and sufficient. In this paper we
prove that this situation changes when polynomial size circuit families of constant
depth are considered: ! negations are no longer sufficient. For threshold circuits we
prove that there are Boolean functions computable in constant depth (TC®) such
that no such threshold circuit containing o{n¢), for all ¢ > 0, negations can compute
them. We have a matching upper bound: for any € > 0, everything computed by
constant depth threshold circuits can be so computed using n negations asymp-
totically. We also have tight bounds for constant depth, unbounded fan-in circuits
(AC®): n/log" n, for any r, negations are sufficient, and Q(n/log” n), for some r,
are necessary.
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1 Introduction

Although extensively studied, not very much is known about the circuit complexity of
Boolean functions. The results are especially few concerning lower bounds. While it
is conjectured that N P-complete problems can not be computed with circuits of less
than exponential size, the best known lower bounds are linear with small constants.
In striking opposition to this situation, important progress has been made recently on
monotone circuits. In his famous result Razborov [14) has proved a superpolynomial
lower bound on the monotone circuit complexity of an appropriate clique function.
Later this lower bound was strenghtened to exponential size by Alon and Boppana [5)-
In another development, Tardos [15] pointed out that there are even problems in P
whose monotone circuit complexity is exponential, thus proving that negation may be
exponentially powerful.

Of course, one would like to extend Razborov’s lower bound result to the general
model. As this seems to be at the moment quite elusive, a natural intermediate step is
the study of circuits with a limited number of negations, If negations are also permitted
in the circuit, then we should not restrict the study just to monotone functions. But if
we consider also non-monotone functions in our investigations, then before the study of
lower bounds there is an even more basic question: can a given function be computed
at all with a limited number of negations?

This question was answered by Markov [12] without any complexity theoretical con-
siderations. He defined for any Boolean function f: {0,1}"* — {0,1}™, the inversion
complexity inv(f) of f as the minimum number of negation gates contained in a circuit
which computes f. Let f = (f1,..., fm), and let z and y be two Boolean vectors in
{0,1}". The ordered pair (z,y) is a gap for f if 2 < y and for some 5Hh1<ji<m,
fi(z) > fi(y). Let 7y < ... < =z, be an increasing sequence of Boolean vectors in
{0,1}". The decrease of f on the sequence z;,.. .,y is the number of indices ¢ such
that (i, Zi41) is a gap for f. Finally the decrease dec(f) of f is the maximum decrease
over all increasing sequence of Boolean vectors. The result of Markov establishes a pre-
cise relationship between the inversion complexity of f and its decrease.

Theorem (Markov) For every Boolean function f we have

inv(f) = |log(dec(f))] + 1.

As the length of any increasing sequence of n-dimensional Boolean vectors is at most
n+ 1, by Markov’s Theorem |log n| + 1 negations are sufficient to compute any Boolean
function on n variables. On the other hand, it is easy to find a very simple function f
for which there exists an increasing sequence of vectors with n gaps. Thus, for some
functions |logn| + 1 negations are also necessary.



In this paper we will study what remains true of this necessary and sufficient con-
dition when restrictions are imposed on the size and depth of the circuits computing
f. The restriction we will impose on the size of the circuits is polynomial size. Thus,
the question we would like to answer is the following: Let f : {0,1}* — {0, 1}* bea
Boolean function which can be computed by a family of polynomial size circuits. Is it
true that f can also be computed with a family of polynomial size circuits which contain
at most [logn] + 1 negations?

It turns out that the answer strongly depends on whether ‘any restriction is put on
the depth of the circuits. If f can be computed in depth d(n), where d(n) = N(logn),
then the answer is yes (Theorem 1): f can be computed in the same order of depth
with [log n| + 1 negations, even if the underlying model has bounded fan-in. This result
is implicitly contained in an early survey paper of Fischer [7], where he also considers
circuits with limited negation.

Our results on the other hand show that the answer is no for constant depth circuits.
In the case of threshold circuits we show that there exists a function computable in
constant depth which can not be computed in constant depth on threshold circuits
using o(n®), for all € > 0, negations (Corollary 2). We also establish a matching
upper bound on the number of negations sufficient for constant depth (Theorem 4):
For any € > 0, every function which can be computed in constant depth on a family
of threshold circuits can be computed in constant depth by threshold circuits with
n® negations asymptotically. This will give us a sublinear bound on the number of
negations needed for AC? circuits (Theorem 5): For any r, every Boolean function
computable in constant depth can also be computed in constant depth with at most
n/log” n negations. This is the best bound one can obtain (Corollary 4): There is a
function computable in constant depth which cannot be computed in constant depth
with o(n/log™ ), for all + > 0, negations.

The tight lower bounds of Corollary 2 and Corollary 4 are obtained from trade-off
results between depth and number of negations in constant depth. Theorem 2 says that
depth d threshold circuits for N EG (see the definition in Section 2) require d(n+ 1)Vd_d
negations, and Theorem 8 claims that any circuit family computing NEG in depth
d has Q(n/log?*?n) negations. We can also prove that depth d threshold circuits for
PARITY have d([n/2])"/¢ — d negations. However, we are not able to obtain a tight
lower bound on the number of negations reguired by a constant depth AND/OR circuit
for a single-valued function (N EG has n outputs). See Section 5 for more comments on
this problem.

Let us mention at this point a result of Okolnishnikova [13] and Ajtai and Gurevich
[2] related to our Theorem 2: There exists a monotone function which can be computed
with polynomial size, constant depth circuits, but can not be computed with monotone,
polynomial size, constant depth circuits.
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The paper is organized as follows: After some preliminaries, Section 2 contains
a short outline of the proof of the already known result about circuits with Q(logn)
depth. Section 3 deals with upper and lower bounds for constant depth threshold
circuits. Section 4 derives upper and lower bounds for unbounded fan-in AND/OR
circuits. Finally, in Section 5 we conclude and mention some open problems.

2 Preliminaries

We will use standard notions from circuit complexity theory, for which the reader is
referred e.g. to Wegener’s book [16]. We will also use some conventions throughout the
paper. When it is not otherwise specified, we will deal with circuits on » variables. Let 2
denote the Boolean vector (zy,...,2,), and z—z; the vector (zy,...,%i-1,Tit1,... yEp )
We often identify the vector  with the word z1...z,. For w € {0,1}*, the weight of w
is the number of ones in w, denoted by |w|. If f is a one-output Boolean function, then
f is the negation of f.

Two circuits are equivalent if they compute the same function. A circuit is monotone
if it does not contain any negation gates. Ignoring uniformity considerations, for i > 0,
the classes V C* and AC" are defined to be the set of functions computable by polynomlal
size, O(log’ n) depth circuit families with bounded and unbounded fan-i -in, respectively.

Another important class of circuits we examine is that of threshold circuits. By
definition, for k£ = 0,...,n, the k*® threshold function T(z) = 1 if and only if |z| > k.
The class TC‘ is deﬁned to be the class of functions computed by a family of polynomial
size, O(log’ n) depth circuits consisting of negations and gates which compute threshold
functions. It is known that NC* C AC* C TC' C NC'!, An especially interesting
problem recently has been that of separating these classes when { = 0. It is known
that AC® C T'CY ([9]), but TC® C NC! s still open. In [8] it is shown that depth 2
threshold circuits are weaker than depth 3 threshold circuits. In [17] it is shown that
depth k monotone threshold circuits are weaker than depth k + 1 monotone threshold
circuits, for any k.

The sorting function S(z), and the ezact function E(z) are closely related to thresh-
old functions. By definition S(z) = (Ti(2),...,Tu(2)), and E(z) = (Eo(z),.. ., Es(z)),
where Ey(z) = 1iff [z| = k. Indeed, S(z) is the simultaneous computation of all
the non trivial threshold functions, En(z) = Tu(z), and Ex(z) = Ti(z) A Trya(z) for
0 < k £ n— 1. These functions will be extensively used as well as the function N EG,
defined by NEG(zy,...,z,) = (Z1,...,%n).

Let C be the class of functions computed by a class of families of polynomial size
circuits, and let g(n) be a function from the natural numbers to the natural numbers.
Then Cy(n) is the set of functions which can be computed by a circuit family in the class



which contains at most g(n) negation gates. The class Cp will be denoted mon-C, this
is the set of functions computable by a monotone circuit family in the class. By the

type of a circuit we mean bounded fan-in, unbounded fan-in or threshold. The following
facts are well known.

Fact 1 (Ajtai, Komlés and Szemerédi [3]) The sorting function S(z) is in mon-NC?.

Fact 2 (Ajtai and Ben-Or [1])) For every t > 0, the threshold function Tiogt n(z) is in
mon-AC?.

The importance of the function NEG lies in the fact that it incorporates all the
“non-monotone” information one needs to compute any function by a circuit. This is
expressed in the following Completeness Lemma.

Lemma 1 (Completeness Lemma) Lei C be a class of functions computed by fami-
lies of polynomial size circuits of the types described above, such that the allowable depth
of the circuit families is closed under multiplication by a constant. Let g(n) be a function
on the natural numbers, Then we have

C_q(n) =C ifandonlyif NEGEe Cg(n).

Proof The implication is straightforward from left to right. The other direction is
implied by the following well known result (see e.g. Wegener [16]): For every circuit C
of size s and depth d, there exists a monotone circuit C’ of the same type, of size at
most 2s and depth & which is equivalent to C, when the output of N EG(x) is also given
as input to C'. O

The function NEG can easily be computed by a monotone AC? circuit from the

outputs of the sorting function and the exact functions. This is stated in the following
lemma.

Lemma 2 For1l <i<n, we have
n
I; = V(Tk(:r = .'L',') A Ek(:n))
k=0

Proof First we claim that forany 1 < i < n, %; = Tz|(z = z:). H %; = 1 then the
number of ores in z — = is |z| and Tj;)(z — 2;) = 1. On the other hand, if Z; = 0 then
the number of ones in = — z; is |z| = 1 and Tj;)(z — 2;) = 0. The result follows since
Er(z)=1iff k = |z]. (]

Fischer [7) constructed a circuit which contains only |logn| + 1 negations, and
computes the exact function, when the inputs are already sorted. The size of the circuit
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is polynomial, and its depth is O(log n). This enabled him to compute the exact functions
by a polynomial size circuit family containing {logn] + 1 negations. The depth of his
circuit family depended on the circuit depth of the sorting function, which was at that
time still an open problem. Today, it is known (Fact 1) that threshold functions can in
fact be computed in mon-NC!. This means that Fischer’s result implicitly implies the
following theorem.

Theorem 1 For every circuit family of polynomial size and depth d(n), there erists
an equivalent circuit family of the same type, also of polynomial size and depth d(n) +
O(logn) which contains only |logn| + 1 negations.

Corollary 1 For all k > 1, we have

i) NCfiognyyr = NCF,
i) ACliognj1 = ACY,
iii)  TCliognysr = TC*.

This method of computing NEG in N C'Elog nj+1 €31 be viewed as a constructive (and
efficient) implementation of Markov’s result. This, to some extent, was foreshadowed
by Akers [4]. An analysis of his method reveals that N EG can be computed using few
negations in O(log n) depth using threshold circuits; that is, TCEIOS nj41°

3 Bounds for Threshold Circuits

3.1 Lower Bounds

Here we shall prove that it is impossible to compute NEG on a depth d threshold circuit
which uses fewer than d(n+ 1)!/¢ —d negations. In the proof of this lower bound we will
concentrate on inputs which are integers in unary notation. These inputs are sequences
of n bits with the ones preceeding the zeroes. When we say that j is the input value,
we mean that 170™~7 is the input string.

With each gate g in a circuit we associate a satisfying set I; C {0,...,n} such that
gate g outputs 1 if and only if input j € I,. For example, the satisfying set of z; is [, n),
that of %5 V z10 is [0,5) U [10,11], and that of 25 A T10 15 [5, 10).

Let I C {0,...,n}. We define j as a right boundaryof Tif j€ T and j+1¢ I. The
value j is a right boundary of a gate of a circuit if it is a right boundary of the satisfying
set of the gate, and j is a right boundary of a circuit if it is the right boundary of some
of its gates. For example, the unique right boundary of Z; is i — 1. In what follows, it is
important to count the number of right boundaries of a circuit since these are the inputs
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where it behaves non-monotonically. First we will note that the only way to create new
right boundaries is by the use of negations.

Lemma 3 Let C be a circuit of any type whose gates are either negations or monotone
Junctions. Suppose that gate g is @ monotone function of its input gates. Then any
right boundary of g is a right boundary of at least one of its input gates.

Proof Let us suppose that g = f(g1,...,9,), where f is a monotone function and
91,...,gr are the input gates to g. We claim that if j is not a right boundary of g;, for
1 < i < r, then j is not a right boundary for g either. This is true since 9i(7) < gi(7 +1),
for 1 < ¢ < r, implies g(5) < ¢(j + 1) by the monotonicity of f. O

Theorem 2 Let C be a circuit computing NEG on inputs of size n. Suppose that C
has depth d, uses v negations, and has gates which are either negations or arbitrary
monotone functions. Then v > d(n + 1)1/4 — d.

Proof Tor 0 < ¢ < d, let level 7 of the circuit consist of all gates whose longest path
to an input is of length . Level 0 consists of inputs and constants, and thus only
presents the single right boundary n. The circuit must eventually create n other right
boundaries. Qur bound will follow by showing that added depth can create only few
right boundaries if insufficient negations are available.

Observe what happens when a node is negated. If gate g has k right boundaries and
satisfying set [iy,42) U [fa,44)U---U[iog_1,42¢), then § has satisfying set [0,4;)U[is,i3)U
“++U [igx,n]. This creates up to k new right boundaries. By the previous lemma, no
other type of gate can create new right boundaries. Thus, if up to some level the gates
present altogether ¢ right boundaries and at the next level 4 gates are negated, this next
level creates at most t4 new right boundaries. This gives a total of t(1 + p) possible
right boundaries up to the next level.

For i = 1,...d let »; be the number of negations at level i, where YL, vi=v. By
the above, the circuit can create at most []%, (1 + v;) right boundaries, This product
is maximized when »; = »/d. Since we must have (1 + v/d)? > n + 1, it follows that
v>dn+1)/4-d o

Similarly we can prove that if C is a circuit computing PARITY which satisfies the
conditions of Theorem 2, then v > d([n/2])V? — d. As threshold gates are monotone,
the following corollary is immediate.

Corollary 2 Let g(n) = o(n) for all € > 0. Then

1. NEG, PARITY ¢ TCS,

0 0
2. TC® % TCY,,

i ———————




Notice that these results did not put any restrictions on the size of the circuit. Even
exponentially many monotone gates are of little use without enough negations., We
can state something strong about depth as well. For example, no family of threshold
circuits of depth (logn)!~¢, € > 0, with (log )" negations can compute NEG or PAR-
ITY. Furthermore, Corollary 2 immediately implies that ¥ C;o,y,,ag properly contains
Tcgoly-log'

Corollary 8 Let g(n) > logn and for all € > 0, g(n) = o(n®). Then TCJ,,y # NCyny-

It is interesting to compare Corollary 3 to the result in [17] showing that mon-
TCP is properly contained in mon-NC!. Corollary 3 can also be generalized to show a
separation of NC! and T'C® restricted to, say, loglogn negations. This generalization
does not subsume the result in [17].

Theorem 3 Let 0 < f(n) < |logn] +1. IfVe> 0 g(n) = o(2¢/(™)), then
1 0
NCim) = TCytm) # -
Proof Let k = n/2/(")~1 and consider the function
e(z) = (To AZp) V (T AFak) Voo V(Tn—i A Er)

(zo by default is 1). This can be viewed as a function on = 2/(")=1 inputs, so
by Thecrem 1 is in N C}(ﬂ). Following the proof of Theorem 2, e(z) has 3 right
boundaries. Thus, any depth d threshold circuit with v negations computing e(z) must
have (1 + v/d)? > 3 = 2/(n)-2 or y > d2(/(n)=2)/d _ ¢, This is not possible under the

assumption on ¥ = g(n) in the statement of the theorem. 0O

3.2 Upper Bounds

We have seen that everything computable in TC? cannot be computed using o(n¢), for
all € > 0, negations. The question arises naturally: how many negations are sufficient to
give full power to TC®? We can show that the lower bounds derived above for threshold
circuits are essentially optimal.

Our main tool will be the computation of the exact function in constant depth on
a threshold circuit. Since this is just two levels away from NEG, it is evident that we
cannot compute it in depth d — 2 using less than d(n+ 1)1/4 — d negations. We will show
how to compute it in depth 3d + O(1) using no more dnl/? — d 4 1 negations. Hence,
the upper and lower bounds are nearly tight.



Lemma 4 Let d > 1 be an integer. There ezists a depth 3d + O(1) family of threshold
circuits with dn'/? — d 41 negations computing the ezact function E.

Proof Set zp = 1 for the sake of convenience. We will assume that the input has been
sorted as zy > x5 > +-- > z,. This can be done in depth 1 on a threshold circuit, and
this is the only place that we need threshold gates. The rest of the circuit will consist
of negations and unbounded fan-in AND/OR gates.

The circuit we describe will have d layers, each layer will consist of several levels.
Let us define the functions Fl-” for0<k <dand 0< i< nk/M,

F{k =1 & inld-k)/d < |z < (i + l)ﬂ(d-k)/d_

One layer of the circuit will use n!/9 — 1 negations in transforming the {I""-"},'-‘L’)d‘1 into

the {FF1325 -1 Clearly. the F¢ are the desired outputs F;, so long as we add
E, = z,. The base case is simple as there is only one possible #: i = 0. We let F) =z,.

Given the F¥ for 0 < i < n*/4, the following describes how to construct the Fit
for 0 < i < al*+1)/d jn constant depth.

(k,1) For 0 < i < n*/d and 0 < j < n'/d compute Gf{j = FFA Tin(d=k)/d 4 jnld—k=1)/d-
(k,2) For 0 < j < nl/d compute HJ'-‘ = V?:kclad_l Gfd-.
(k,3) For 1< j < nl/4 compute Ik,
(k,4) For 0 < j < n'/? — 2 compute If = HYAHY,,. Let Ir’fl,c,_1 = 1’:,,,,_1.
(k,5) For 0< i< n* and 0 < j < n'/? compute F‘.’:"{'}dﬂ = IF A GE,.

We can describe when the functions above are satisfied.

1. GF; = 1if and only if in@~*)/4 ¢ jpld-k-1/d < |z] < (i + 1)nld=k}d_

2. Hf = 1if and only if 3 (1 < i < nk/d) inld-k)/d gnld=F-0/d < |z < (i +
l)n(d-k)/d_.

3. Hf = 1if and only if 3i (1 < i < n*/) inld=R/d < || < inl-RMd | jpld=k-1)/d

4. If = 1if and only if 3i (1 < i < nM/4) inl=R/d 4 jpld=k=1/d < |g| < in-R)/d
(G + nld-Fk-1)/d

5. FH, 5 = Vil and only if (in'/¢ 4 f)nl=k-D/ < 3| < (inV/d 4 j 4 1)nl=k-1/d

as desired.




The steps (k,4), (k,5), and (k + 1,1) are all computed by A gates, so they can be
combined into one level. This yields a circuit for the E; = F¥ of depth 3d + O(1). The
number of negations needed is 1 + d(nl/4 —1). O

Theorem 4 For every € > 0, we have asymptolically
TC = TCO.

Proof Choose d so that 1/d < ¢. For this d we have that dnl/? < n¢ asymptotically.
From Lemma 4 we can compute F in constant depth using asymptotically less than n®
negations. From Lemma 2, we see that Z; = \/}_o(Ti(z—2;)AE(z)). The Completeness
Lemma then implies the result. O

4 Constant Depth AND/OR. Circuits

In this section we show that AC? remains invariant under a restriction to some sublinear
number of negations: n/log” n negations, for any r, are sufficient. Furthermore, this
bound is tight.

The upper bound follows from a construction used in the previous section.
Theorem 5 Let r > 0 and g(n) = n/log" n. Then we have
0 _ 40
ACy,y = AC".

Proof We will break the input up into n/N groups, each of size N = 4log®” n. Accord-
ing to Fact 2, Ty is in mon-ACP®. Thus, by fixing some of the inputs to the threshold
gate, we can sort any group yi, ..., ¥~ in monotone constant depth and polynomial (in
n) size.

As we have seen in the proof of Lemma 4, we can compute E from 3, > --- > yn
in constant depth using AND/OR gates and 2v/N negations. The thresholds can be
applied again to find §; = Vieo(Tk(y — ¥:) A Ex(y)), as per Lemma 2. The total number
of negations used will be 2\/% (n/N) = nflog"n. The result then follows from the
Completeness Lemma. D

Definition The sensitivity on a string w of the single valued function f, s(f,w), is the
number of neighbors w’ of w differing in exactly one bit such that f(w) # f(w'). The
sensitivity of f, s(f), is the average over w € {0,1}" of s(f, w).

There have been several works in recent years relating the sensitivity of a Boolean
function to its Fourier transform (10, 11}. To show a matching lower bound to Theo-
rem 5, we make use of the following application of these results to AC? functions.



Lemma 5 [11] If f is computed by a circuit family of depth d, then s(f) = O(log?*3 n).

Theorem 6 Let {Ca} be a depth d circuit family which computes NEG(z) with v(n)
negations. Then v(n) = Q(n/log?*3 n).

Proof Let us suppose on the contrary that there is depth d circuit family {C,.} which
computes N EG(z) with v(n) # Q(n/log?*3n) negations. By Lemma 5 there exists
a constant ¢ > 0 and ng such that for every n > ng, for every function f which is
computed at some gate of Cy,

s(f) < clog?*3 n.

Our hypothesis implies that there exists n > ng such that
v(n) < n/clogit n,

Let n be such an integer and let fi,..., fi, k < v(n), be the outputs of the negation
gates of Cj,.

Given a string w, we say a bit of w is sensitive to f if changing that bit changes
the output of f on w. Otherwise, that bit is insensitive to f. It follows that there is a
string w which has a bit insensitive to all fi,..., fr. This is because

Els(fi,w) + -+ s(fr,w)] = E[s(fr,w)]+ -+ E[s(fr, w)]
< kelogtt3n < n,

where FE indicates the expectation of an event over all strings w of length n uniformly
distributed.

Let w be a string whose jth bit is insensitive to all f,. .., J&. Obtain w' by changing
this bit. We can suppose that w; = 0 and w;’ = 1, which implies w < w'. Since the bit
is insensitive, we have Vi, fi(w) = fi(w'). Thus, between w and w' the outputs of all
negation gates of C, are constant. This implies that no gate of C, can take a greater
value on w than on »'. However, C,, computes Zj, so on input w it outputs @; = 1 and
on w' it outputs @} = 0. This is impossible if no negation gate changes. O

Corollary 4 If g(n) = o(nflog" n) for all r, then AC® # AC&H).

5 Conclusions and Open Problems

Let us say a few words about the uniformity of our circuits. In fact all of them are
uniform, except the sorting circuit of the first layer in Theorem 5: the constant depth
circuits of Fact 2 are probabilistic. This construction can be made uniform by using
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Theorem 4.1 of [6]. That indicates how to find any threshold on m variables in uniform
constant depth if m is bounded by a poly-log function of n, which is what is needed in
Theorem 5.

Although the upper bound of Theorem 5 and the lower bound of Theorem 6 were
matching, the lower bound held only for a multi-valued function. An intrigning problem
is to find out the exact number of negations necessary and sufficient to compute every
single-valued function in AC®. We can show a weaker lower bound for some single
valued function. Let the problem EXISTODD, defined on z,...,z,, be

(ZA AZ2) V(23 AZ4)V -+ V (Tne1 A Zy)

(if n is odd, then the formula will be --.v (Zn-2 A En—1) V z,). Since EXISTODD on
inputs of the form 1707 s equivalent to PARITY, the proof technique of Theorem 2
also works for this function. Clearly, EXISTODD is in AC® but it is not in AC;’(H) if,
for all € > 0, g(n) = o(n*).

Another direction is where we started our reasoning: can one find lower bounds
with limited negations, without any restriction on the depth? For example, can one
prove Razborov type results for circuits containing a few (say, a constant number of )
negations?
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