Negotiation in Composite
System Design

William Robinson

CIS-TR-91-11
May 1, 1991

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

Negotiation in Composite System Design*
William N. Robinson

Department of Computer and Information Science,
University of Oregon, Eugene, OR, 97403, U.S.A.

1. Introduction

In this position paper, we argue for a multiple perspective design methodology in exploratory
domains, First, we present the library domain; a domain where a significant number of system tasks,
agents, and responsibilities are derived during system specification. Such exploratory domains differ from
more routine domains (e.g., elevator design) in that (1) interactions between system goals are not well
understood and (2) system policies and agent responsibilities are not established a priori; composite
design addresses these problems. Next, (§ 3) we describe how requirements negotiation is part of com-
posite system design. Section 4 presents Multiple Perspective Specification Design, a type of composite
system design for deriving specifications. Finally, (§ 5) we conclude that MPSD (1) captures part of the
natural negotiation in design, (2) addresses agent motivation, a key composite design issue, and (3) pro-
duces good designs in exploratory domains.

2. The Library Domain

For most readers, the library domain should be familiar; it has provided other researchers with simple
examples[12, 32], Here, we would like to illustrate some of the domain’s complexity.

Libraries come in many forms (e.g., public, private) and serve a variety of needs. Their charters are
typically broad and demanding; a university library may be responsible for{17]:

= providing a collection of information resources which meet most of the needs of the university com-
munity;

. organizing, maintaining, and controlling collections; and

. providing bibliographic aids in identifying, locating, and using resources.

From such broad charters, more specific policy guidelines are developed (e.g., collection develop-
ment[15], circulation policies[1, 16}, interlibrary loan policies[13]). Finally, from such policies, specific
library procedures are designed[20].

*Presented at the Stanford Spring Symposium on Composite Systems Design, March 1991.

CIS-TR-91-11 2

Deriving specific library policies and procedures is a process of negotiation. Librarians (desk, circu-
lation, collections), administrators, and patrons all have a stake in library operation. Fees, fines, loan peri-
ods, check-out, and renewal policies all result from placating various stakeholders. Two examples are:

» loan periods

From a patron’s perspective, loan periods should be as long as possible; this insures their ability to
enjoy borrowed resources. On the other hand, a circulation librarian desires to insure equal access of
resources 1o all patrons; hence, shorter loan periods provide higher tumover which enables greater
access to a large population of patrons. A variety of loan periods result {e.g., 2 hours to indefinite);
they can vary according to patron type (e.g., child, student, administrator, librarian); they can be
extended (e.g., desk renewal, phone renewal); they can be terminated (e.g., recall, revoked privi-
leges).

» information access
Patrons want information without restriction. Librarians wish to assist patron information retrieval.
However, the administration must protect the privacy of others. A library that allows a patron to
view her own borrowing record, but not that of others is a compromise; it protects privacy, but
leaves the possibility for illicit access through misrepresentation (e.g., stolen passwords).

Libraries try to satisfy the conflicting concemns of patrons, staff, and administrators; they employ many
mechanisms to deal with both errorful and irresponsible behavior; they involve complex responsibility
assignments among agents. Libraries are complex systems which require sophisticated analysis 1o derive
adequate specifications of their embedded software,

Real libraries are not simple. They involve more than just people, books, and a database. They have
policies according to who the borrower is, what kind of book it is, what time of year it is, and, of
course, exceptions to all of these policies[32].

In contrast, others view library specification as refinement of a generic database/tracking
schema[21,22]. This paradigm is based on: (1) capture and storage of library forms and (2) retrieval and
modification of such forms for specification. This paradigm appears to be productive for routine situa-
tions; for example, primitive programming tasks such as sorting and searchingf23]. However, this
paradigm must be extended for exploratory tasks such as requirements engineering, especially for
exploratory domains such as library science. Even where significant forms can be captured, the bulk of
the requirements work lies in selection and modification. For tasks such as library specification, this
means understanding policies, their derivation via negotiation, and their effects on alternative specifica-
tions. This negotiation-oriented paradigm has been combined with the capture-and-modify paradigm for
1abor negotiations[30]; it illustrates the need for knowledge beyond data schemas for assistance in com-
plex domains.

3. Composite Design

The library domain illustrates how an artifact's complexity can result from its environmental inter-
face rather than its internal processing. The actual algorithms used in an automated circulation and inven-
tory system may be simple, but the policies they implement may be the result of complex negotiations
between system stakeholders. Hence, system complexity may be due to system specification, rather than
algorithmic derivation; algorithmic enhancements are simple, but system changes must be negotiated with

Stanford Symposium Composite Sysiems Design Spring 1991

CIS-TR-91-11 3

stakeholders.

Composite system design atternpts to address the complexity of the design process. Sprung from
closed-specification research, composite design models the environment{2,33]; however, composite
design researchers are explicitly focused on human-computer interactions[6]. In particular, they focus on
how an artifact can be designed to combine with an existing environment to effectively achieve goals[10).

Composite design coordinates an artifact and its environment to achieve goals. Coordination is
achieved through agents. Composite design consists of designing motivated agents to responsibility and
reliably execute assigned tasks which achieve system goals. Some agents will be animate and others will
be artifacts. Based on these agents and their environment, composite design must address five basic
issues:

(1) What tasks can achieve the desired system goals?

(2) What abilities do agents have in the existing environment and which must be added?
(3) Who will be responsible for executing which tasks?

(4) How can task execution be reliably achieved (assuming this is an implicit system goal)?
(5) How can agents be motivated to execute their tasks?

Given these basic issues, a composite design model must describe how these interrelated issues are settied
during the design process. For example, one could use system goals and current agent abilities to derive
an initial task structure; next, agents could be assigned tasks by ability, reliability, and motivation.

Multiple Perspective Specification Design is a type of composite design; it addresses the interaction
of agents with their environment. Models of agent goal beliefs are combined with environmental models
of goal interaction and costs. Such modeling enables an automated MPSD system to assist in composite
design; specifically, it is aimed at understanding agent motives and their ability to satisfy goals.

Agent motivation is our main composite design focus; it is addressed through agent negotiated
requirements. By involving system stakeholders in the requirements process, we can tailor systems to
their work structures and gain their commitment when such structures are changed.

4, Multiple Perspective Specification Design

Initially, our research on Multiple Perspective Specification Design was purely technical; we wanted
to automate the merging of independent specification design statesf24]. Our resulting tool would assist
analysts in their construction of composite specifications[8,9]. While this initial work did produce a
design tool and some simple merge assistance, it also illustrated the difficulty of merging specifica-
tions[25]. We found that merge models based exclusively on program development records or language
semantics are inadequate; such models can only merge noninterfering programs[5, 11]. This lead us 1o
consider agent modeling as a basis for deciding how interfering specifications could be integrated[7, 26].
Now, we are developing a model which explicitly addresses the conflicts derived from integrating specifi-
cations; these conflicts arise from the multiple participants of a software system[10,27,28). Through our
automation attempts, we have also developed a requirements methodology.

Our methodology captures aspects of negotiation between system stakeholders. Commonly,
requirements are developed through client interviews; sometimes the interviewees are potential operators

Stanford Symposium Composile Systems Design Spring 1991

CIS-TR-91-11 4

of software system, but often they are presumptuous managers who impose their own requirements with-
out any user consultation. In any case, mulitiple agent goals are typically unrepresented in requirements
engineering models. We prefer a more direct approach; we model system participants, called stakeholders,
who might affect or be affected by the proposed system. Mumford calis such an approach participative
systems design[18].

Muliiple Perspective Specification Design is consistent with soci-technical participative design[19].
Both advocate independent consideration of sysiems aspects from stakeholder perspectives. However,
Mumford’s approach restricts independent consideration along two issues: social and technical; whereas,
MPSD has no issue restrictions. Multiple requirements and multiple specifications are also unique to
MPSD; we advocate the production of specifications for each stakeholder. Finally, MPSD advocates the
integration of “‘incompatible™ specifications; the process of their integration reveals the negotiation
between stakeholders and can be assisted.

Muliiple Perspective Specification Design calls for: (1) representing stakeholder beliefs, (2) con-
structing separate specifications for each stakeholder, and (3) integrating specifications using negotiation
techniques. Figure 1 illustrates the MPSD integration paradigm.

System support consists of: (1) agent modeling, (2) development “‘bookkeeping™, and (3) negotia-
tion assistance. A domain model is provided to model agent and environmental interactions: values and
preferences represent what an agent wants to achieve; goal relationships and constraints represent how the
environment obstructs or supports agent goals. The domain model is our requirements language.

Requirements acquisition consists of using the domain model to construct stakeholder perspectives.
Perspectives represent the interests of a stakeholder in the proposed system; they are individual require-
ments. Acquisition is supported by providing a model of the domain and tools to assist the analyst in tai-
loring it to individuals.

Analysts use perspectives 10 guide their construction of specifications; each requirement is mapped
to specification components. Specification construction is supported by language-oriented editing com-
mands, assisted linkage of requirements and specification components, and managing of multiple perspec-
tives and specifications.

Integrating specifications is the focus of this research; hence, this is where our automation efforts
lie. We support a single arbitrator in the integration of specifications. Unlike binding arbitration, our arbi-
trator does not choose an alternative; instead, he combines the specifications. The arbitrator is assisted in
negotiated arbitration through an interactive problem-solving model of confiict resclution. Such a model
is more comprehensive than a multiple view model; those models merge the same information repre-
sented in different forms[14].

5. Conclusions

The process of requirements acquisition and specification design can be characterized as an interde-
pendent negotiation process[28]. This may be particularly valid for expleoratory domains; when a decision
maker cannot recognize when requirements interact, she must explore interactions by exploring alterna-
tives and identifying how well those aliernatives meet her goals. We believe that many requirements engi-
neering tasks are in exploratory domains. Swartout and Balzer's theory of the interwining between speci-
fication and implementation supports this; incomplete modeling suppresses the discovery of undesirable

Stanford Symposium Composite Systems Design Spring 1991

CIS-TR-91-11 3

Requirements Acquisidon

* * *
¥ ¥ ¥

Individual Specification Design

* ¥ *
¥] L}

Muld-agent Negotiation (Integration)

Muldagent
Specification

Figure 1, The MPSD Integration Paradigm.

interactions until implementation[29]. The proliferation of rapid prototyping techniques is further evi-
dence of this[3,4, 31].

Multiple Perspective Specification Design captures (and supports) the exploratory negotiations
found in requirements engineering. It does so by modeling agents and assisting the derivation of negoti-
ated specifications. Specifically, it considers individual agent requirements (motivation and constraints)
and assists the cooperative exploration of group requirements. By explicitly supporting multiple agent
requirements, we can document what has been an implicit process; moreover, we can improve the negoti-
ation process, thereby producing better designs.

Stanford Symposium Composite Systems Design Spring 1991

CIS-TR-91-11 6

REFERENCES

1. American Library Association, Circulation policies of academic libraries in the United States, 1968, American
Library Association(1970).

2. R. Balzer and N. Goldman, “Principles of good software specification and their implications for Specification
Languages,” Proceedings of IEEE Conference of Specifications of Reliable Software, (1979) 58-61.

3. R. Balzer, N. Goldman, and D. Wile, “Operaticnal specification as the basis for rapid prototyping,” Sigsoft
Software Engineering Notes 7 (December 1982) 3-16.

4, L. Beck and T. Perkins, “A survey of sofiware engineering practice: tools, methods, and resulis,” Transactions
on Software Engineering SE-9 (September 1983) 541-561.

V. Berzins, *On merging software extensions,” Acta Information 23 (1986) 607-619.

E. Doerry, S. Fickas, R. Helm, and M. Feather, **Deriving interface requirements through composite system de-
sign,” Submitted 1o Human Computer Interfaces, (July 1990)

7. M. Feather, S. Fickas, and W. Robinson, “Design as claboration and compromise,” in: Proceedings of the
AAAI-88 Workshop on Automating Software Design, Kestrel Institute , AAAI-88, St. Paul, MN (August 25,
1988) 21-22.

8. M.S. Feather, “Language support for the specification and development of composite systems,” Transactions
on Programming Languages and Systems 9 (April 1987) 198-234,

9. M. 8. Feather, “Constructing specifications by combining parallel elaborations,” Transactions on Software
Engineering 15 (February 1989) To appear (Also available as RS-88-216 from ISI).

10. S. Fickas, J. Anderson, and W.N. Robinson, “Formalizing and aulomating requirements engineering,”
CIS-TR-90-03, University of Oregon (April 6, 1990).

11. S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of programs,” #690, University of
Wisconsin-Madison (March 1987).

12. R. Kemmerer, “Testing formal specifications to detect design crrors,” Transactions on Software Engineering
SE-11 (January 1985) 32-43.

13. D.E Kohl, Circulation, interlibrary loan, patron use, and collection maintenance: A handbook for library man-
agement, ABC-Clio Inc.(1986).

14. J.C.S. do Prado Leite, Viewpoint resoluiton in requirements elicitation, Univerisity of California Irvine(1988).
15. Association of Research Libraries, “Collection development policies 1977,” Systems and Procedures Ex-

change Cenier, (November 1977)

16. Association of Research Libraries, ** Automated circulation,” Systems and Procedures Exchange Center, (April
1978)

17. Association of Research Libraries, “SPEC kit on goals and objectives 1979," Systems and Procedures Ex-
change Center, (October 1979)

18. E. Mumford and D. Henshall, Aparticipative approach to computer systems design, Halsted Press, New
York(1979).

19. E. Mumford and M. Weir, Computer systems in work design—the ETHICS method, Associated Business Press,
London{1979).

20. JW. Petkins and PN. Clingen, Inglewood public library circulation procedures, Inglewood public
library(1972).

21. C. Rich, R.C. Waters, and H.B. Reubenstein, “Toward a requirements apprentice,” 4th International workshop
on saftware specification and design, (April 3-4, 1987) 79-86.

Stanford Symposium Composite Systems Design Spring 1991

CIS-TR-91-11 7

22. C. Rich and R.C. Waters, “The programmer’s apprentice: a research overview,” Computer, (November
1988) 10-25.

C. Rich and R.C. Waters, The programmer's apprentice, ACM press, New York(1990).

W.N. Robinson, Towards formalization of specification design, Masters thesis, University of Oregon{June

1987).

W.N. Robinson, *Automating the parallel elaboration of specifications: preliminary findings,” Technical Re-

port CIS-TR-89-02, University of Oregon (February 1989).

26. W.N. Robinson, “Integrating multiple specifications using domain goals,” 5th International workshop on soft-
ware specification and design, (1989) 219-226 (Also available as CIS-TR-89-03 from the University of Ore-
gon).

27. W.N. Robinson, “Negotiation behavior during requirement specification,” in: Proceedings of the 12th Interna-
tional Conference on Software Engineering, IEEE Computer Society Press , Nice, France (March 26-30 1990)
268-276 (Also available as CIS-TR-89-13 from the University of Oregon).

28. W.N. Robinson and S. Fickas, “Negotiation freedoms for requirements engineering,” CIS-TR-90-04, Univer-
sity of Oregon (April 6, 1950).

29. W. Swartout and R. Balzer, “On the inevitable intertwining of specification and implementation,” CACM 25

(1982) 438-440.

30. K.P. Sycara, “Resolving adversarial conflicts: an approach integrating case-based and analytic methods,"
GIT-ICS-87/26, Georgia Institute of Technology (1987).

31. A, Wasserman, “Software tools in the user software engineering environment,” in: Eds. D. Barstow, H.
Shrobe, E. Sandewall, Interactive programming environments, McGraw-Hill (1984) 370-386.

32. IM. Wing, “A swudy of 12 specifications of the library problem,” Software, (July, 1988) 66-76.

33. P. Zave, “The operational versus the conventional approach to software development,” CACM 27 (February,
1984) 104-118.

R B

Stanford Symposium Composite Systems Design Spring 1991

