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Abstract

Composite systems are ones comprised of a number of agents interacting to achieve some system-
wide goals. Such systems abound in the real world. In particular, it is hard to find a complex soft-
ware system that cannot be viewed as an agent in a larger composite system. When using the
composite system viewpoint during requirements and specification, several benefits accrue:

» Traceability to system-wide goals. The system agents and communications among those agents
that result from this design process can be traced to the initial system-wide goals, and the
design choices made. This provides a formal rationale for the design of 1) each agent, and 2)
the inter-agent communication protocol.

» Thorough exploration of the space of design alternatives. By beginning with the system-wide
goals as the objective of the design process, we do not inadvertently pre-commit to any partic-
ular decomposition of those goals among the agents.

 Basis for redesign. In the event of the need to make or respond to some change (either to the
system-wide goals, to the capabilities of, or communication between, agents of the system, or
to the relative cost of design alternatives), the record of the design process will serve as the
basis on which to do such redesign.

We have defined a search-based model of composite system design to support the above argu-
ments. The model views design (and redesign) as a search in a space of possible alternative com-
posite system specifications. The model requires both a component to generate design
alternatives, and a component to evaluate those alternatives.

We have tested our model by rationally reconstructing a number of real-world composite systems.
The good news is that the generative component appears to be implementable with interactive,
domain-independent, transformation technology. The bad news is that there is a wealth of
domain-specific knowledge that can and should be applied to evaluate composite system designs.
Perhaps most ignored, evaluating the impact a new design will have on the environment and the
existing agents of the system seems crucial to success. There has been little work done on incor-
porating the necessary evaluation knowledge into a specification or requirements tool.

Qur conclusion is twofold: 1) the composite system design model brings to light important issues
that must be addressed in complex software systems, issues that are missed by non-composite or
stand-alone models, and 2) while the generation problem seems under control, the evaluation
problem remains open. We project that even informal representations and tools can have some
immediate impact on answering the latter problem
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1.0 Introduction

We are attempting 1o develop knowledge-based assis-
tance for requirements engineering. In particular, we
wish to support the production of formal, operational
specifications of multi-agent architectures from formal
statements of requirements. We would like automated
tools to help the analyst to analyze a set of requirements
and identify what agents arc necessary, what capabilities
each agent must have Lo fulfill its role in the overall sys-
tem, the inter-agent protocol that allows agents to coop-
erate, and finally, the interface each agent must have to
be an active participant in the sysiem,

Example problems we have studied from a multi-agent
perspective include elevalor systems, trains systems, air
traffic control, libraries, power plant control, e-mail sys-
tems, and meeting management systems. In the remain-
der of this section, we describe an approach, called
Composite System Design (CSD), that helps build spec-
ifications for such systems. We argue that CSD offers
several advantages over existing approaches to require-
ments engineering. In sections 3 and 4 we discuss two
major research questions which must be addressed
before we could incorporate CSD into a knowledge-
based tool for specifying and rationalizing composite
systems:

1. 1s CSD sufficient 1o generate designs for realistic
problems?

2. Can CSD be made tractable for realistic problems?

‘We have investigated these in some detail. In particular,
we have a) attempled to apply CSD 10 a problems in a
broad variety of domains, in order (o test its sufficiency,
and b) looked at the type of practical knowledge neces-
sary to evaluate and guide the process of responsibility
assignment that lies al the heart of CSD. Both of these
are actually preliminary steps to answering both ques-
tions 1 and 2. In particular, while we have formalized
some pieces of CSD, and automated still smaller pieces,
we view our work to date as a feasibility study. This
paper reports on this study, and concludes with a future
work section in which we briefly summarize the princi-
pal research problems we see remaining,

1.1 Composite system design

Composite systems are multi-agent systems. They com-
prise several agents interacting so as to achieve some
system-wide goals or functional requirements. In our
experience, composite systems are numerous - it is more
difficult to think of systems that are not composite than

those that are. The composite system design approach
has been proposed by Feather as a means to capture and
deal with very early stages of the design of such sysiems
(Feather, 1987a]. The essence of his composite system
design approach is to do the design (or redesign) of
composile systems by beginning from a description of
the properties desired of the system as a whole, and then
deriving the behaviors of, and interactions between, the
agents so that their combination will achieve the desired
system properties. The final sysiem may include pre-
existing agents whose properties cannot be changed, and
newly created agents defined just for the task at hand.

Typical systems will be a mixture of human, software,
and hardware agents. Taking the standard elevator prob-
lem as an example, we might identify elevator controller
agenls, passenger agents, maintenance agents, etc. In
cssence, CSD allows us to explore the entire space of
designs that might satisfy the system requirements.
Choosing among alternative implementations of these
designs will lead us to fully automated elevators, fully
manual elevators, and many specifications in between,

The starting point for this approach is an initial specifi-
cation describing system-wide goals (constraints), e.g.,
“move passengers to their destinations”, and capabilities
of the pre-existing agents of the system, e.g., “an eleva-
tor can move 10 an adjacent floor; a passenger at a floor
can enter an open-doored elevator at that same floor™,
These amount to the functional requirements of the sys-
tem. The design process proceeds by incrementally
assigning goals as the responsibility of subsets of
agents: only those agents responsible for a goal are
expecied to limit their own behavior 1o ensure satisfac-
tion of that goal (e.g., if the elevator system alone is
responsible for keeping passengers from falling down
elevator shafts, then the elevator must keep doors closed
when necessary rather than rely upon passengers to limit
their choice of when to walk through an open doorway.,
This design process ends when all goals have been sub-
divided and assigned as the responsibility of individual
agents, at which point those agents can be independently
implemented, assured that their combination will
achieve the system-wide goals of the composite system
to which they belong. It is possible that they in turn
could be smaller composite systems, and that this design
process be recursively applied. For instance, an entire
elevator composite system may be a single agent of a
larger transportation composite sysiem, e.g., within a
train station or airport.
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During the course of design, the interaction between
agents - communication and control - is established.
Such interactions may necessitate the introduction of,
say, communication media, protocols for communica-
tion, and even further agents to facilitate communica-
tion.The introduction of these is motivated and
rationalized in terms of the overall design process.

Figure 1 Portion of an elevator design history.
Move to
destination
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sgpm destination || destination
assign
Elevgor

indiract

access
omlpun!cale' Move toward
destination | |communical

assign
Elevator

assign
Elevator

ommunicatel | Move toward Stop at
destination | | communicated|f communicated

Passenger

(flocir button)

Figure 1 {adapted from [Fickas&Helm, 1990]) shows
part of the end preduct of CSD applied to the elevator
problem. Starting from a system goal (“move passen-
gers to their destinations™), we derive the responsibility
of each passenger agent to notify the elevator of its des-
tination, while the elevator receives the responsibility to
move 10 that destination when it is known. Along the
way, we derive the need for an interface component
{implemented by a button} which allows the passenger
to communicate a destination floor to the elevator.

Different responsibility assignments lead to radically
different sysiems. For instance, express elevators,
scheduled elevators, reserved elevators, prison eleva-
tors, freight elevators, etc., all can be generated by
exploring alternative responsibility assignments.

We see the following advantages of CSD:

» Traceability to system-wide goals. The system agents
and communications among those agents that result
from this design process can be traced to the initial
system-wide goals, and the design choices made.
This provides a formal rationale for the design. In
contrast, a description of only the end product of
composite system design, namely the behaviors of
the individual agents, would be much less perspicu-
ous from the point of view of understanding.

= Thorough exploration of the space of design alterna-
tives. By beginning with the system-wide goals as
the cbjective of the design process, we do not inad-
vertently pre-commit to any particular decomposi-
tion of those goals among the agents. This
maximizes the likelihood that we do not overlook
alicrnative, perhaps superior, solutions.

s Basis for redesign. In the event of the need to make
or respond to some change (either to the system-
wide goals, to the capabilities of, or communication
between, agents of the system, or to the relative cost
of design alternatives), the record of the design pro-
cess will serve as the basis on which to do such rede-
sign. Without such a record, it would be hard to
ascertain how to do this in a principled manner.

We believe this last point is particularly crucial. As an
example, consider developing the requirements for the
elevator controller of [TWSSD, 1987]. If we treat the
controller in isolation from its environment, we cannot
formally explain the need for any feature of the elevator,
such as the presence of doors or the use of a demand-
driven service protocol. Without such rationale, it is dif-
ficult to formally prove we can eliminate a given button
as an economy measure, or that we should use it in a
new clevator installation in another building. Finally,
ignoring the high-level goals of passengers and other
agents in the elevator system makes it difficult to
describe or evaluale innovative designs which new
information lechnology may make feasible, such as an
clevator which predicted the arrival floor of passengers,
or one which took voice reservations over a cellular
phone. Because of these limitations, we argue that spec-
ification approaches which currently take a singe-agent,
stand-alone view to what are, in reality, composite sys-
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tems, can benefit from the broader perspective of CSD.,

2.0 Searching the CSD space

We formalize the composite system design process by
ireating it as a search through the space of possible
designs [Fickas&Helm, 1990]. The “states” of this space
are designs or specifications; the “operators™ are trans-
formations or “methods” [Fickas, 1985] which map
from one design state to the next. Figure 1 shows part of
the state space for the elevator example discussed
above. A key question is: can the CSD approach gener-

ate the design space for realistic problems?

We begin by presenting the componenis of the CSD
search space. Each design state in the space has two
components: a generative part that produces all alierna-
tive behaviors considered possible; a constraining part
that states which of these possible behaviors are valid.
As an example, figure 2 shows a portion of the behavior
tree (an OR-tree) produced by the generative portion of
a naive clevalor design.

Figure 2 Behavior of an elevator passenger.

Assuming a stopped elevator with open doors, at any
point a passenger outside that elevator can choose (non-
deterministically) between waiting outside or entering;
likewise, a passenger inside that elevator can choose
between remaining inside or exiting. If we add a con-
straint that passengers eventually enter the elevator, then
the shaded behavior must be pruned during design.

The formal representation of the generative and con-
straining portions of our model is as follows:

» The generative part, denoting the possible behavior
produced by agents in the system, takes the form of a
discrete event language that can be viewed, alterna-
tively, as a subsct of Gist [London&Feather, 1986]

or a high level Petri Net [Wilbur-Ham, 1985],
[Huber et. al., 1986).

* The goal/constraint language is a form of lemporal
logic, roughly similar to that of that of the ERAE
language [Dubois&Hagelstein, 1988] and of the dis-
tributed-action logic of [Castro, 1990].

During the CSD process, we periodically examine the
current design state to detcrmine whether the generative
part could produce behaviors which violate the con-
straining part; in other words, whether all possible inter-
actions of agents in the system meet that sysiem's
functional requirements, This is necessary o a) recog-
nize potential “’solution states” i, e. acceplable designs
and b) select design moves to make if the current state is
not acceptable. To verify that a goal or constraint is met
by the generative part, we have built two analysis tools!:

1. A planner or scenario generator called OPIE [Ander-
son&Fickas, 1989]). OPIE can be used in two ways:
1) to disprove a constraint by preducing a disallowed
behavior (i.e., counter-planning), and 2} to prove an
existence goal, e.g., there exists at least one behavior
that satisfies some predicate.

2. Areachability-graph (RG) tool. The tool first pro-
duces a reachability graph from a static analysis of
the generative part, and then allows queries about
reachable states. As with OPIE, these queries can be
used to disprove a constraint or prove existence
goals. However, unlike OPIE, the graph can be used,
in conjunction with omega values, to disprove tem-
poral goals such as “trains will eventually reach their
destination”.

As an example of a disproof that either tool could pro-
duce, but which we present in OPIE style for readabil-
ity, consider the specification of figure 3, with behavior
shown in petri-net form, and the ProteciTrains goal
shown immediately below. Note that figure 3 is a start-
ing model. It specifies the environment in which we will
design a train system, but does not yet specify any of the
agents we will need 10 meet the goals. In [Fick-
as&Helm, 1990], we follow the elaboration of this naive
model into its final, complex, composite form.

1. We see a continuing need for both tools: OPIE provides effi-
ciency through goal-directed search and abstract planning; the
RG tool can be costly to run, but provides more powerful
forms of analysis.
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OPIE is called to disprove the specification, given cer-
tain initial conditions:
V). Disprove ProtectTrains in SYS0
given Block(b1) & Block(b2)
& Adjacent(b1, b2)

OPIE generates a scenario (plan) in which two trains

end up at the same location,
(O):  The goal ProtectTrains in SYS0 is
violated by scenario S1:
1, given Block (bl)

2. given Block (b2)

3. given Adjaceni(bl, b2)

4. enter => Train(t1)

5. start(t1, bl) => Location{t1, b1)

6. move(Location(t1, b1), b2) &
Adjacent(bl, b2) => Location(t}, b2)

7. enter => Train(12)

8. start(12, bl) => Location{12, bl)

9. move(Location(t2, bl), b2) &
Adjacent(bl, b2) => Location(12, b2)

Violation: ProtectTrains in SYS0

Figure 3 Specification (SYS0) for train protection
example.
Behavior generator
enter
Train(t) Block(b)
start{t, b)
move(t, bl, b2)
Location(t, b)
System goals
ProtectTrains: never Train(tl) & Train(12) & Located(t1, 11)
& located(12, 11)
(other goals)
System agents

We might apply several design operalors or methods to
address this negative scenario. We could, for example,
introduce an agent (an engineer, for instance) with
responsibility for the ProteciTrains goal. However, we
could also modify the environment (such as the adja-

cency relation on blocks), or even the ProtectTrains goal
itself. This highlights an important difference between
our CSD approach and that of Feather's original CSD
[Feather, 1987a]. In particular, Feather was concerned
with specification implementation - given the correct set
of goals and the correct set of agents, find a division of
responsibility between them which maintains correct-
ness. Thus, Feather would support only one type of
design action here: the restriction of one or more exist-
ing agenis’ behavior o prune the crash scenario. Qur
use of CSD, on the other hand, is concerned with speci-
fication design: given an initial set of goals and an exist-
ing environment, atiempl to assign responsibility. If this
fails (because the initial model was incomplete, because
the system is unimplementable, because it is (0o costly),
modify the goals, the environment {(including agenis), or
both. The major ramification of this is that we allow
goal modifications (e.g., weakening a goal), environ-
ment modifications (e.g., change the existing infrastruc-
ture, create new agents) as well as responsibility
assignment. Feather takes up some of these broader con-
cems in [Feather, 1987b).

3.0 Generating designs

We next discuss the methods which move among design
states. We argue that a relatively small number of
domain-independent methods can account for an inter-
esting class of composite system design problems.

3.1 Planes, trains and automoblles

We have attempted to build a design generator based on
the CSD model, The approach we have taken is to use
transformations as design operators, i.e., as the actions
that produce new states/specifications in our state-based
search model. Our goal was to define a tractable set of
transformations that take goals and agents as input, and
produce resiricted agent actions as output (the essence
of responsibility assignment). We expected these trans-
formations 1o be inleractive, relying on the human spec-
ifier 10 do the complex reasoning sometimes necessary
lo determine agent action and control, Qur success crite-
ria involves a comparison with other interactive, assis-
1ant-based design systems (e.g., [Fickas, 1985],
[Reubenstein& Waters, 1989]): if we could obtain the
same mixture of human/machine interaction as these
systems, we would judge our results as a success.

To test our ideas, we looked at several domains. First,
we attempted to redesign Feather's elevator system (as
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reported in [Feather, 1987a]) using a transformational
approach. The result, as discussed in (Fickas&Helm,

1990], was that we were able to rederive the elevator
with a relatively small number of ransformations.

Our other major effort has been to work our way
towards a CSD model of Air Traffic Control (ATC). Pre-
liminary (o this, we have studied several simpler prob-
lems: traffic intersections as a CSD problem; rail-
highway crossings as a CSD problem; train/subway
control as a CSD problem. Our general approach has
been to rationally reconstruct problems from the real
world, i.e., we attempted reconstruct systems that exist
now or existed in the past.

We have chosen these example problems for several rea-
sons: 1} each has some of the same multi-agent protocol
problems as the more complex ATC composite system,
but without the attendant jargon and plethora of details,
2) train failures (like ATC failures) are well documented
[Shaw, 1961], 3) evaluation functions have the same
complex nature, and 4) transportation sysiems, in gen-
eral, share a property that is endemic to many other real
world composile sysiems - any new system design must
work ils way into the existing infrastructure (i.e., a revo-
lutionary approach? is not a practical specification
development philosophy in most composite system
domains). The last two points, evaluation functions and
the need to fit a new design inio an elaborate existing
infrastructure, is taken up in section 4.

3.2 Transformation examples

We could best illustrate our results from these design
studies by following several designs through in detail,
pointing out how a small number of transformations
were used over and over., However, the limited space in
this paper will not allow us 10 do that. Instead, we will
briefly describe several of the key transformations used
repeatedly in the designs we bave produced.

Brinkmanship. This is a standard constraint satisfaction
technique. It maiches on a conjunctive system con-
straint, and identifies the brink, i.e., the actions that, if
allowed to happen, will push the constraint over the

2. Revolutionary = design from scratch (also known as green-
field). Evolutionary = work a design in 10 an existing infra-
structure, ¢.g., existing physical structures, existing laws,
existing standards, existing work practices, etc. (also known as
brownfield).

3. This is exactly the style used in [Fickas&Helm, 1990] - a
lengthy composite system specification design is presented
along with the transformations employed.

edge, As an example, suppose we have the following
constraint taken from figure 3:

never: train(Tl) & train(T2) & locat-
ed({Tl, Ll) & located(T2, L1l)

The effect of the brinkmanship transformation here
would be 1) to identify actions that change a train’s
location {e.g., a move action), 2) 1o add a controt com-
ponent (e.g., make train movement a controlled action),
and 3) to set up a sub-task to assign an agent 10 be the
controller®. Thus, brinkmanship acts as a “jittering”
transformation, one that sets up a goal for subsequent
responsibility assignment, Locking at Feather's original
development of the elevator, cne can see that much of
the work is involved in exactly this type of goal-jittering
process. For example, Feather introduces a goal/con-
straint that a passenger must not be in an elevator mov-
ing the ‘wrong way’. Application of brinkmanship
transforms this (o a control problem: prevent the passen-
ger's eniry inte the elevator. Once this goal-jittering step
is carried out, control (responsibility) can be assigned to
an agent.

Spatial-split. This introduces a standard, multi-agent
problem solving protocol. It breaks goal responsibility
into two spatially-disjoint pieces®. A scparate agent is
assigned to each piece, with responsibility shifting from
one agent to the next. Looking back at the brinkmanship
problem in the train example, there are actually two
actions that we must worry about: trains already under
control of the rail line system moving into the same
location, and trains entering control of the rail line sys-
tem (say, from a helding yard). This eventually leads to
two actions (o control. The spatial-split transformation
would suggest that responsibility be split with one agent
(i.e., a dispatcher) assigned to entry or “train-in-yard”
and a second agent (i.e., an engineer) assigned to move-
ment or “train on line”S, As a side-note, there is a draw-
back that goes along with most of the split-
responsibility transformations - a clear handoff protocol
must be agreed upon among agents, and inter-agent

4, Clearly there are other strategiesfiransformations that are
possible, e.g., disallow two trains in the system at the same
time, make the set of locations of two trains mutually exclu-
sive (e.g., provide two sets of disjoint tracks). These, along
with the brinkmanship strategy, are encoded in domain-inde-
pendent letms.

5. Non-spatial splits are also possible, e.g., split by property,
split by time, etc.

6. We also have a single-assignment ransformation that would
make a single agent responsible for the entire constraint, i.e.,
control of both actions.
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communication must be reliable. Looking at documen-
tation of train crashes, one finds an alarming rate of train
accidents caused by handoff failures [Shaw,1961].

Indirect access. This introduces a standard, multi-agent
problem solving protocol, which calls on an agent A 1o
signal another agent B as to the state S of the system.
Typically, S is something that B must know to act
responsibly, but B does not have direct access te S. In
these case, A is asked (given the responsibility) 1o sense
$7 and pass the information along to B. Such inter-agent
communication is ubiquitous in transportation systems,
€.g., elevators letting passengers know what direction
they are heading, station operators signalling trains
when the track ahead is clear, air traffic controllers
warning a plane that its landing gear has not properly
deployed.

Responsibility accumulation, We may assign multiple
responsibilities to the same agent. The transformation
action is to merge in new responsibilities (o those
already existing in an agent. The motivation for this
transformation is obvicus when looking at more com-
plex systems: agents typically play multiple-roles. For
instance, train engineers share responsibility for both
train progress and train safety goals. Of course, that
there is the potential for conflict here is well docu-
mented in case studies of train crashes [Shaw, 1961]. In
general, responsibility overloading achieves cost sav-
ings at the expense of decreased reliability.

The results of our experiments were positive - we were
able to identify a set of domain-independent transforma-
tions that sufficed 10 generate a number of real-world
designs in each of several transporiation domains. At the
heart of this set lay a small core of transformations that
account for the vast majority of design steps - this core
comprises the transformations that we described above.
Beyond this core set, we identified wansformations that
are needed to add components to the design that address
agent reliability and motivation issues. We briefly dis-
cuss these issues further in section 4.3; the interested
reader is referred to [Fickas&Helm, 1990] for a more
thorough discussion.

7. Variations exist where A simply “knows" S - there is no
need for a separate sensing operation. For example, a passen-
ger A knows its destination; most elevator systems give A the
responsibility of providing that information to the elevator B
5o it can carry out its responsibility of getting the passenger o
their destinations.

4.0 Evaluating composite designs

We argued in the last section that a relatively small num-
ber of domain-independent transformations can account
for an interesting class of compasite system design
problems. Thus, if a problem from any domain can be
viewed in a composite system light, our domain-inde-
pendent transformations could produce the space of
designs which covers that problem. It does not follow,
however, that we have no need of domain knowledge in
designing real systems, Viewing CSD as a search pro-
cess, we need a form of “heuristic function” which can
evaluate the designs in the search space and select those
which will lead to implementable, reliable, safe, cost-
effective systems.

As an example of the kind of evaluation problem which
arises in CSD, reconsider the ProtectTrains constraint in
figure 3. We could (and did) use our transformations to
produce the following two alternative responsibility
assignmenis®:

1. Assign ProtectTrains Lo dispatchers and engineers.

2. Assign ProtectTrains to dispatchers, engineers, and
station operators (who controlled track-clear sig-
nals).

Both of these showed up in actual train management
systems. The first describes pre-1850 train management.
It relied on ciever scheduling and line-of-sight by engi-
neers to avoid crashes. The second describes most post-
1850 train management systems, which employ the
notion of protected blocks of track. This is the same
basic design that is used today, with computers replac-
ing or augmenting the human agents of the pre-com-
puter era.

Given these two choices 140 years ago, which would we
have made? The first leads 1o a large number of acci-
dents. When the second was introduced, a dramatic drop
in accidents ensued. Hence, the second seems the best
choice, However, the first remained in place long after
1850 on some lines - it appears that the expense of erect-
ing stations, signals and telegraph lines along with pay-
ing the station operators outweighed the cost of
accidents. In summary, domain-dependent measures of
cost and safety are used 1o choose among the alterna-
tives generated by domain-independent transformations

8. Of course, we could also generate all other combinations
possible.
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In this section we look at the form evaluation knowl-
edge takes in the transportation problems that we have
studied. In reviewing the literature on our example
domains, we have identified metrics or criteria to evalu-
ate specification alternatives, and models 10 compulte
values for those metrics for a given specification. While
many meltrics and models we have identified are
domain-specific and even problem-specific, we also
believe we have also located a set which address issues
across multiple domains.

4.1 Revolutionary {greenfield) models

Each domain has a collection of specific metrics and
models to evaluate a specified component in isolation,
i.e., as a greenfield system. Figure 4 gives a collection
of these for the evaluation of passenger rail system pro-
tocols and layouts from [McGean, 1976] [Anderson,
1978]. They include;

= Analytic models for estimating capacity.

» Statistical models to predict delays due to compo-
nent failures.

= Guidelines for selecting station arrangements.

Figure 4  Evaluating rail and crossing designs.
Eapacity of two-block permissive signalling protocol

capacity = 1/h
h = Kv0/d + pL/v0

Accident pred-iction factors (excerpt)

Category Constant. Exposure
Walkway  0.002268 ((c*t*0.2)/0.2)%33%
Flashing  0.003646 ((c* t* 0.2)/0.2)0.2953
Gates 0.001088 ((c *t*0.2)/0.2)03116
Pedastrian conveyor parformance
System Cap. Width Speed
Walkway 600 (per fL) 250
1500 (perft) crush flow
Escalator 3750 2 90
5025 2 120
Moving walk 3600 2 120
Stairs  1000-1200  (per fi) crush flow

Similar metrics and models can be found in textbooks
on a given domain, such as for rail-highway crossing
signals [Taggart et, al., 1987]. {Tong, 1989] and [Kant,
1985] discuss integration of similar “nonfunctional
requirements” into the design of VLSI and algorithms,
respectively. We could apply some of the more formal
models to the specification directly. For the less formal
models, or those which have highly specialized inputs, it
will be necessary {0 rely on a domain expert to map
from the artifact’s abstract specification into the terms
required by a given model. In addition, many domain-
specific evaluation models make assumptions which
constrain the implementation of specification con-
structs, A model for the operating cost of a train signal,
for instance, would necessarily identify the technology
used to implement that signal. Thus, it remains an open
guestion how and when (o apply a given evaluation
model in the CSD process.

4.2 Evolutionary (brownfield) models

In the domains we have studied, brownfield constraints
prune out many otherwise plausible designs. A principle
brownfield constraint is the operating impact the artifact
may have on its environment, Suppose that in specifying
an elevator system we apply a “split” transformation
which divides responsibility among passengers and ele-
valors according to the distance they wish to travel, Pas-
sengers will be solely responsible for reaching their
destination (via stairs) when they want to go up or down
only one floor, while elevators and passengers will be
jointly responsible when the distance to travel is greater.
Greenfield metrics for the elevator controller specifica-
tion, such as cost, performance, and maintainability,
might make this a superior design in most contexts. This
protocol, however, is ruled out for new elevators by
local, state, and federal requirements for handicapped
access [ANSI, 1987].

Figure 5 shows a selection of models for evaluating the
impact of rail-highway crossing altemnatives on their
environment. These include graphical models for com-
puting carbon monoxide emissions, guidelines for eval-
uating aesthetic impacts, and checklists of special
concemns such as emergency vehicle and school bus
movements. In general, to genuinely evaluate specifica-
tion alternatives, we have to consider the written codes
and guidelines which have developed in the domain 10
limit the disruption a system creales in its environment.

In addition, the specification process of large-scale com-
posite systems must consider the transition impact from
standards which may exist in the given domain. Agenis,
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whether software, hardware, or human, must be pro-
grammed, designed, or trained to carry out a given set of
responsibilities. In a system where a large group of
agenlts have similar responsibilities, il is typically costly
1o alter these responsibilities. In the rail-highway cross-
ing, for instance, we cannot easily change the protocol
by which cars cross railroad tracks “at-grade” (on the
same level as the track). It is clearly not feasible to train
all drivers to carry out their part of a radically different
protocol, (such as not using the crossing when trains are
scheduled), even if the protocol were a major improve-
ment. Even altering the format or behavior of the lights,
gates, and gongs at crossings would probably entail
unreasonable expense in the short term, since it would
require selecting cusiom hardware and software over the
cheaper, mass-produced equipment available to support
the standard design.

Figure 5 Operating impact modals.
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7.
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4.3 Irresponsible behavior: a recurring issue

One key issue that recurs across domains is that of reli-
ability. In many cases, an agent in a system can be
assigned a responsibility and engineered or trained to
carry it out. In the systems we have examined, however,
this is no guarantee that the agent will act “‘responsibly™
in all cases. In essence, irresponsible behavior by an
agent A is simply behavior that does not meet the
responsibility assigned to A. This can be failing to act
when necessary, acting when unnecessary, or acting
when necessary but in an incorrect fashion. Each of
these can lead to problems in achicving system-wide
goals,

Typically, designs incorporale features which can only
be explained as “fault-lolerant” design componenis (o
account for trresponsible agents, For instance, one
somelimes sees lowerable barriers along with flashing
lights and gongs at highway-rail crossings. These barri-
ers are superfluous if driver agents act responsibly, i.e.,
stop when signalled to do so. However, drivers do not
always carry out their responsibility, and barriers act as
a back-up mechanism (although clearly not a fool-proof
one). Similarly, modern train systems have retained
flagmen who are required to walk back behind a train
which makes an unscheduled stop. This is required even
though current “block signalling” protocols, when prop-
erly executed, ensure that no more than a single train can
be on the blocked track. It is not possible to explain the
existence of either flagmen or barriers if agents are
cither totally capable or totally incapable of carrying out
a given responsibility. Clearly, some mechanisms are
needed in our model to predict the failure modes of
agents, Lo evaluale the reliability of a specification given
those modes, and possibly to mitigate failures by
designing in redundancy or recovery mechanisms.

Similarly, a performance issue we term interference
seems o explain many features we observe in real com-
posite system designs. An agent may well be responsible
for a given goal, but other commitmenits, either within
the system (sce responsibility accumulation from sec-
tion 3.2), or outside of it, can interfere with execution,
In manuatl train swilching systems, for instance, opera-
tors of warning signals have caused collisions when
their other assigned duties -- reporting 1o neighboring
stations, transferring train orders, recording train pas-
sages -- left them with insufficient time to perform sig-
nalling. In general, agents in a realistic system may have
1o play maltiple roles®, some which may conflict with
one another. Evaluation of composite system specifica-
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tions requires that such conflicts be detected and mini-
mized, by methods such as prioritization, further
splitting of responsibility, or degraded service modes.

44 Compromised designs

Composite sysiem designs are lypically compromises
among muitiple, conflicting criteria, Rail scheduling
protocols, for example, are typically not maximally safe,
nor do they provide maximal capacity at given cost.
Rather, they typically aim for an adequate compromise
among these concems. Further, the judgement of what is
“adequate™ may shift over time. The rail scheduling pro-
tocols of this century stress safety over capacity to a far
greater degree than was commeon in the 1800s, resulting
in a significantly beuter safety record [Shaw, 1961].

Clearly there is a techrical problem in combining met-
rics which measure very different atiributes. For exam-
ple, metrics which influenced train signalling protocols
include the cost of instantancous communication and
automated sensing (presumably in dollars), potential for
collisions (in dollars and lives per vehicle-mile), and the
on-time performance of trains (in minutes). Analytic
methods for decision-making on multiple criteria, such
as the multi-criteria simplex method [Zeleny, 1982] typ-
ically require that such “incommensurate criteria” be
normalized to a compatible scale, a task which at
present requires the expertise of a domain analyst.

Specifications of composite systems complicate selec-
tion further by introducing negotiation issues. The peo-
ple involved in a large-scale composite system, whether
as designers or as participants, will rarely agree on a
common weighting of the metrics involved in selecting
among alternative specifications. Representatives of rail
passengers, for example, placed pressure on the rail-
ways of the time to incorporate signals and telegraph
into operating procedures, despite company resistance
to untried technology and capital outlay [Shaw, 1961].
These passengers placed different weights on the profit
and safety metrics than the railroad operating compa-
nies. Similarly, the parties to rail-highway crossing
specification listed in [Taggart et. al., 1987] include the
designing agency itself (typically the state highway
authority}, railroad companies, local planning authori-
ties, neighboring property owners, emergency service
providers, and local school districts. The authors of the

9. As a further complication, composite systems are ofien
intertwined in complex ways, leading to the same agent play-
ing a role in two or more separale systems with differing
responsibilities in each.

rail-highway text apparently despair at arriving at a
compromise through analytic methods; instead, they
discuss strategies for presenting evaluation data to the
partics in such a way as (o promote agreement,

5.0 Summary and future work

‘We return to our state-based search perspective to dis-
cuss the results of our study of CSD. There are two
search components to consider: 1) the design operators
that generate new states, and 2), the evaluation heuris-
tics that guide the search to acceptable solutions {com-
posite system specifications). Qur design operators take
the form of transformations on goals and agents. We
have been able to produce a small number of powerful
transformations that apply across the transportation
problems that we have studied, and which could serve as
the basis of an interactive design assistant. These trans-
formations are interactive because we lack the formal
analytic models (e.g., theorem provers) (o guarantee the
responsibility-assignment operation of CSD. We have
partially plugged this analysis gap with tools like OPIE
and the RG tool. We also continue 10 work on automat-
ing our transformations, gradually making them less
dependent on human inlervention,

We believe we have had mixed results on evaluation
heuristics. On the positive side, the composile system
view has forced us to address difficult issues, ones that
we and others have missed or ignored by 1aking a stand-
alone view of specification. In particular, by studying
small but realistic composite system probiems, the
issues of revolutionary and evolutionary models is
raised. Further, the need for models of compromise and
negotiation during system design is made clear by CSD.

On the negative side, (here has been little work in the
requirements and specification ficld to address these
issues. One immediate gain would be to integrate exist-
ing evaluation models into a tool based on CSD. This is
a task we have taken on in a tool we call Criiter [Fick-
as&Helm, 1990]. Our initial goal is 10 informally cata-
log the type of models discussed in section 4, Of course,
the actual integration of these models into an automated
search-based design tool is a difficult task, indeed - it
requires mapping between multiple ontologies at vari-
ous levels of formalism, While Farley&Liu have shown
that this is possible in non-composite domains [Far-
ley&Liu, 1990], we believe much hard wosk lies ahead
to scale their results up.
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We are more encouraged by a small but growing field of
rescarchers interested in conflict and compromise as
part of the software engineering process. One can sec a
sample of this work, and a comprehensive survey, in
[Robinsen, 19901,

Finally, Al researchers have also been concerned with
reasoning in difficult domains, ones that lack any tracta-
ble first-order models. We have investigated two Al
techniques as possible formalisms for search heuristics
in CSD. The first uses a case-based approach to repre-
sent “experience” in a domain. As an example, we built
a case-based critic that incorporated a set of standard
library problems that crop up in a university library
[Fickas&Nagarajan, 1988]. In some sense, these cases
replace or compile a first order theory of the human
behavior of the patrons of a library. The transportation
field also seems to rely at least partially on a case-based
approach 1o system failure [Shaw, 1961].

The second technique we have studied is qualitative rea-
soning {QR). Here, we attempt to model a system at a
gross level of detail, either because we don’t know the
lower level details or they are not of interest. We have
constructed and tested a qualitative reasoning tool for
the library domain [Downing&Fickas, 1991]. The trans-
portation domain also seems well suited 1o a QR
approach [McGean, 1976].
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