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Abstract

The problems of visualizing small-grain parallel programs are stud-
ied in this thesis. A visualization tool, called VISTA, was implemented
using X-Windows. The goal of VISTA is to give effective visual feed-
back to the user analyzing a program. To achieve this goal, the tool
summarizes a whole reduction tree in one window space using color.
The user is able to see the reduction tree from different perspectives,
such as PE, time, PE-time, and procedure views. VISTA also provides
the user with several functions such as zoom-up, subtree display, and
node inquiry to help analyze programs in more detail. The features
and algorithms of VISTA are described in this thesis. Examples are
given of how the tool can be used to improve one’s understanding of
both small-grain parallel program characteristics.
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CHAPTER I

INTRODUCTION

A transition from uniprocessors to multiprocessors has been taking place,
mainly due to the inherent performance limitations of uniprocessors. The tran-
sition to multiprocessors has also been driven by the economic reality that high
performance is cheaper to attain with a collection of relatively slow processors than
it is to attain using a single processor. Many kinds of parallel computers have
been developed such as pipelined machines (e.g., CDC6600), vector machines e.g.,
CRAY-1), MIMD (multiple-instruction multiple-data stream) shared machines (e.g.,
Sequent, Encore, Firefly), and MIMD private memory computers (e.g., Hypercube
and Transputer). With the availability of the hardware, one pressing question in
parallel computing today is how to program parallel computers to solve problems
efficiently, in a practical and economical way.

There is a consensus in the computer science community that making a parallel
program more efficient is much harder than optimizing a sequential problem. One
of the main factors contributing to this situation is the lack of robust symbolic
debuggers, program profilers, trace generators, and similar tools which would help
programmers analyze their programs and determine their execution bottlenecks.

The common method of evaluating the efficiency of parallel programs is by
measuring the execution time and computing simple speedup. Collecting timing
statistics and measuring speedups is often insufficient for understanding why the

results are what they are. This is because in a sequential program, we know the
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sequence of events, whereas in a parallel program, not only is the precise sequence
of events unknown to us, but the sequence changes from one run to the next. Vi-
sualization can be used more effectively as an aid in understanding the behavior of
parallel programs. Visualization tools for sequential programs have been available
for a number of years. Similar aids for parallel programming have been developed
[7, 6, 13], but, for the most part, they have been extensions of sequential tools that
do not address the fundamental problems of complexity in parallel computations
[9)-

A goal reduction, which is equivalent to the procedure call and execution in
imperative languages, is called reduction. A reduction tree consists of nodes and
edges which represent the goals reduced during computation. The nodes of the tree
are the goals which are reduced during the computation. Therefore, the reduction
tree represents an execution graph. Granularity refers to the size of the tasks that
are done in parallel. It ranges from a complete user program, which is called coarse-
grain parallelism, to one instruction, which is called fine-grain parallelism.

In this project VISTA, which stands for VISualization Tool for Analysis of
parallel programs, the problems of visualizing small-grain parallel programs are
studied. I have focused on small-grain parallel programs, because such programs
are inherently hard to analyze and as such seem well suited for visualization. Also,
there is a greater need for tools to help deal with the added complexities of small
granularity.

In this thesis, I survey the recent work that has been done in the context of
visualizing parallel programs, and introduce a new visualization mechanism that
facilitates performance tuning. In order for the visualization to be effectjve for

programmers, multiple views must be displayed :
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o reduction tree : without the reduction tree, it is difficult to know what the

program execution looks like.

o processor activity : knowing which processor executed the reduction is impor-

tant to understand parallel characteristics.

o timing : time dependency between reductions is another important factor for

understanding parallel characteristics.

Since the reduction tree is usually large in small-grain parallel programs, and the
shape of the tree can’t be predicted, it is very difficult to represent all the above
features in a reasonable window space (window space is defined as a rectangular
area on the screen in which one views graphical output). Therefore, I approached
this problem by a somewhat unusual method.

VISTA displays the execution graph in one window space, from four different
perspectives (PE (Processing Element) Graph, Time Graph, PE-Time Graph, and
Procedure Graph). Since the whole execution state is reduced to one window space,
it is very important to utilize the window space efficiently. Therefore, instead of
propagating the reduction tree from the top of the window space, a mechanism was
adopted in which the reduction tree is propagated from the center of the window in
a radial direction, since the reduction tree usually grows non-linearly towards the
bottom of the tree. The window efficiency of this mechanism is better than that
of conventjonal method (see Chapter III and V). If a reduction tree is too large
to display in one window space, the tree is displayed with some condensations (see
Chapter IV).

VISTA is an effective visualization tool, in that it:

o Summarizes the whole reduction tree in a single window space.
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o Propagates the tree radially from the center of the window space, for high

space utilization.

o Enables a user to view the tree from the various perspectives (PE graph, Time

graph, PE-Time graph, and Procedure graph).

© Enables a user to get a close-up view of any portion of the reduction tree.

o

Enables a user to view any subtree without condensation.

o]

Enables a user to make an inquiry (with the mouse) for information attributed

to a node,

[=]

Uses color to represent both PEs and procedures, and the RGB color spectrum

to represent time.

o Uses efficient internal data structures and algorithms, enabling fast display

and recomputations.

Thus VISTA provides a parallel programmer with a tool which can be used effec-
tively to understand the program and evaluate its performance.

This project was originally designed for parallel logic programs, but other fam-
ilies of parallel or concurrent languages such as Pascal Plus, Ada, and Parallel-Lisp,
can also use the tool effectively, provided a trace of the same format is generated
(see Chapter IV).

This thesis is organized as follows: Chapter II surveys graphics tools described
in the literature, used for visualizing parallel programs. Chapter III describes VISTA
from users’ viewpoint. The first section of Chapter III introduces the problems for
visualizing small-grain parallel programs and then gives the solutions for the prob-

lems. The rest of Chapter III describes VISTA from the viewpoint of an operational
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perspective. In Chapter IV, the algorithms for VISTA are explained. In Chapter
V, I discuss how VISTA can be used effectively for analyzing parallel programs,
giving two examples of Pascal’s Triangle and Semigroup problems. In Chapter VI,
conclusions are drawn about VISTA and the future work is presented. Appendix A

gives the glossary used throughout this paper.



CHAPTER II

LITERATURE REVIEW

This chapter surveys various graphics tools, described in the literature, used
for visualizing parallel programs. These tools are picked as examples because the
goals of the tools are different. WAMTRACE and Atrace are tools for observing the
behavior of parallel programs, and can be used for performance analysis. Gauge is
an execution profiler for parallel logic programs. PPUTT is a tool for debugging a
parallel program and analyzing program performance. Voyeur is a prototype tool

that provides user-specific, visual views of parallel programs.

WAMTRACE

There are two types of parallelism that arise most naturally in logic program-
ming computation models: AND-parallelism and OR-parallelism. AND-parallelism
is the ability to execute the conjunctive tasks in parallel, and OR-parallelism is the
ability to execute the disjunctive tasks in parallel. That is, in AND-parallelism, pro-
cesses co-operate in generating one particular solution to a query or a clause body.
On the other hand, OR-parallelism refers to the case when independent processes
are assigned to the various clauses of a procedure.

WAMTRACE [2] is a visualization tool developed at Argonne National Lab-
oratory. The tool is loosely coupled to Aurora [3], a parallel version of the Warren
Abstract Machine (WAM) [16] that runs on a variety of shared-memory multipro-

cessors. The WAM is a stack-based machine for traversing the search tree repre-
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sented by a Prolog program. The nodes of this tree consist of AND-nodes, repre-
senting multiple subgoals in a single clause, and OR-nodes, representing multiple
clauses for a single predicate. Because Aurora is OR-parallel logic language system,
WAMTRACE focuses on the display of the OR-tree. During execution, the OR-
nodes of the search tree appear as branch points that provide alternatives that are
to be explored in parallel. WAMTRACE displays the OR-tree by a conventional
method (i.e., propagates the OR-tree from the top of window).

Figure 1 shows an example of the WAMTRACE execution graph. The nodes
of the tree represent branch points. The level of parallelism has temporarily dropped
off to 11, as can be seen both by counting the branches and by reading the display
in control panel. The solid black circle indicates that a new branch is just about
to be created out of that node. In each circle is a number, indicating alternatives
at each branch point that have been explored. The panel in the upper third of the
display is used for controlling the run.

WAMTRACE is different from VISTA, in that WAMTRACE :
o focuses on OR-parallelism, whereas VISTA puts emphasis on AND-parallelism.

o displays an execution graph dynamically (i.e., by animation), whereas VISTA

does so statically.

o displays the graph step by step in detail, whereas VISTA summarizes a whole

tree in one window.

o shows the OR-tree without reference to time, PE (the information displayed
in control panel is the information for one node}, whereas VISTA shows the

AND-tree with reference to time, PE, and procedure.
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Figure 1: Example of WAMTRACE Execution Graph

Gauge

Gauge [8] was developed by Aerospace Corporation, originally to aid in pro-
filing programs written in Prolog. The tool has also been incorporated into the
Strand System [5]. Gauge uses internals built into Strand to analyze the runtime
performance of a program. A static graphical display is generated, using color to
show the amount of time and processing spent in specified Strand functions. Gauge
displays the execution profile of a parallel program while the program is executed.
Because the run-time overhead for gathering the data must be as small as possi-
ble to reflect the execution precisely, Gauge employs the combination of static and
dynamic analysis. Run-time overhead is restricted to updating counters. Figure 2
shows an example of the Gauge execution profile. The goal names are sorted by the

descending value of execution time (represented by horizontal bars). The panel in
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Figure 2: Example of Gauge Execution Profile

Atrace

Atrace [4] comprises a set of tools currently under development at Argonne
National Laboratory. The tool is based around a general event logging scheme, in
which programs of any type can log significant events in a specified format. These
events are then displayed with any of several tools. Upshot, one of the Atrace tools,
displays the events on a time line, showing their exact sequence. Unravel, another
tool of Atrace, animates the event log, animating communication patterns, using
color to display busy and idle states. Once Unravel has started to run, the action
screen and the control panel appear on the screen, and thereafter, the user interacts

with Unravel using a mouse. On the action screen, each task is represented by a
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circle. The borders of the circles can be different colors, indicating a certain type of
task. Tasks can be in one of various states: busy, idle, or in any user-defined state
that is specific to an application. To indicate that a task is in a certain state, the
circle is filled with a color. Messages are indicated by colored arrows between tasks,
The arrows can also be different colors, indicating different types of messages.
Although these tools work with any programming system, their usefulness is
limited to problems with a small number of processes because a circle represents
a process and one Paction screen can contain only a very limited number of circles.
Figure 2 shows an example of the action screen in Unravel. The number inside the
circle represents the task number. Tasks 2, 7, and 8 are filled with the same color,
indicating the same state. An arrow pointed from task 0 to task 10, indicating that

task 10 just received a message from task 0.
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Figure 3: Example of Atrace Action Screen
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Qther Systems

PPUTT (Parallel Program Understand Tools and Techniques)} [6], developed
at University of Rochester, ia a visualization tool for the analysis and debugging of
parallel programs. The goals of the tool are to help users understand the behavior
of incorrect programs so that these programs can be debugged, understand a pro-
gram’s performance so that the program can be tuned, and improve both intuitive
and formal understanding of parallel computations. The approach to the tools is
based on a fine-grained characterization of parallel program executions, and a toolkit
used to analyze executions graphically and interactively. The core of the toolkit con-
sists of facilities for recording execution histories, a common user interface for the
interactive, graphical manipulation of those histories, and tools for examining and
manipulating program state during replay of a previously recorded execution.

Moviola, one ‘ool of PPUTT, is the execution history browser and runs un-
der the X-Windows system. Moviola implements a graphical view of an execution
based on a DAG (Direct Acyclic Graph) representation of processes and commu-
nication. Moviola gathers process-local histories and combines them into a single,
global execution history in which each edge represents a temporal relation between
two events.

Voyeur [13], developed at University of Washington, is a prototype system that
facilitates the construction of user-specific, visual views of parallel programs. These
views range from textual views showing the contents of variables to graphical maps
of the state of the computational domain of the program. The original motivation
for Voyeur was to improve the trace facility of Poker [12]. Because there is often
an increased gap between a programmer’s mental conception of a problem and the

realization of a parallel program that solves that problem, Voyeur allowed the par-
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allel programmer to easily to construct application-specific, visual views of paralle]
programs. To achieve this goal, Voyeur prototype simplifies the task of learning how
to build views.

Although both tools show great flexibility because of user specific view in
Voyeur, and a high level view of an execution in PPUTT, the tools are limited in

the number of processes the tools can show.

Summary

As discussed, some tools (e.g.,, WAMTRACE, Atrace) visualize the program
execution dynamically (i.e., by animation), whereas others (e.g., Gauge, VISTA)
show the graph statically. The animation mechanism has pros and cons: it gives the
user a more “live” execution graph, but if a program is executed by a large number
of processors or has a large number of processes, it is not easy to understand the
animation graph.

Some tools (e.g., Gauge, PPUTT) display the execution graph while executing
a program. With this mechanism, it is impossible to display a reduction tree in a
fixed-size of window statically, because the size of the tree cannot be known before
completing the execution of the program. The entire reduction tree is important for
understanding a program (discussed in the next chapter), especially for the small-

grain parallel programs.
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CHAPTER III

VISTA

Parallel computations, with hundreds or perhaps thousands of asynchronous
processes, are extremely complex. To be effective, visualization tools must assist the
user in managing this complexity. That is, a visualization tool for parallel programs
must first address all of the basic problems of sequential programs, such as display of
the reduction tree. Furthermore, the tool must also address the fundamental char-
acteristics of parallel computations, attributes such as processor activity, timing,
and synchronization, which are not problems in sequential programs. However, it is
difficult to visualize so many different attributes simultaneously and effectively, es-
pecially for fine-grain parallel programs. This chapter describes how VISTA resolves

these problems, and explains VISTA from the user’s viewpoint.

Problems and Solutions

In order for a visualization tool to help the user understand and analyze a
small-grain parallel program, several things must be displayed. I believe that the
most important view is the reduction tree (actually, this is not a problem of parallel
computations). Without viewing the reduction tree, it is difficult to understand a
program.

Since the reduction tree is large in small-grain parallel programs, a single
window space is not adequate to represent it. Tools such as WAMTRACE [2]

display the whole tree by conventional window mechanisms (i.e., by vertical and
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horizontal slide bars). However, with WAMTRACE it is difficult to know how the
entire execution appears. For example, it is difficult to know whether the reduction
tree is symmetrical or not, and if the graph grows exponentially, linearly, etc. In
VISTA, a reduction tree is displayed in a single window, regardless of the size of
the tree. In order to achieve this goal, window space must be utilized efficiently. i
the tree is represented by the conventional methods (from top of window), window
space will be wasted since a tree usually grows non-linearly towards the bottom
of the tree. For the window space efficiency, VISTA propagates the tree from the
center of the window, in the radial direction. If a reduction tree is represented by the
conventional method (i.e., a level is represented by a horizontal line), the maximum
nodes n one level can represent is calculated as n = |£], where d is the distance
between two adjacent nodes and w is the window width, and n is the same for all
levels. In the VISTA’s method, n ranges from 1 (level 0) to the maximum n = I.Gd; .
If the tree grows non-linearly towards the bottom of the tree (this is true for most
reduction trees), in the conventional method, the window space is wasted in the
lower levels (i.e., the levels closer to the root) and the window space is overcrowded
(i.e., some nodes can not be displayed) in the higher levels. In VISTA, the higher
the level, the larger space VISTA allocates to the level. Hence, the above problems
of wasting window space at some levels and overcrowding at others are finessed to
some extent. Therefore, the window space efficiency of VISTA is better than that
of the conventional method.

Although window space utilization is improved to some extent by the above
mechanism, the window space is still limited. Therefore, the problem of mapping
an arbitrary large tree to limited window space must be resolved. VISTA solves

this problem with two kinds of condensations: level condensing and node condens-
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ing. They are defined and explained in Chapter IV, That is, VISTA summarizes a
reduction tree in one window space with some condensations regardless of the size
of the tree, and thus enables the user to view the entire reduction tree abstractly.
After viewing the summarized tree (if the tree is within the window space limit,
the whole tree is displayed without any condensation), the user can select any sub-
tree in order to view without condensation. In order to represent the level of the
reduction tree clearly, VISTA draws concentric circles of gray color with the same
distance between any two adjacent circles. That is, each circle represents a level of
the tree. The level distance is defined as the shortest distance between two adjacent
circles and is the same throughout the tree. To represent parent-child and sibling
relationships clearly, a node and its children form a colored polygon if the number
of children is greater than one, or a line if it is one. If the node has no children,
only the node is displayed.

The actual complexity of parallel programs arises from the fact that programs
are executed by multiprocessors and the processors communicate with each other,
To help understand the execution of parallel programs, a visualization tool must
represent processor activity (which processor executed the reduction and how the
processors communicate). This is not an issue in a sequential visualization tool.
VISTA represents only the execution locality (which processor executed the reduc-
tion). Interprocess communication is not represented in VISTA, but can be inferred
to some extent from the various execution graphs of VISTA (see Chapter V: Anal-
ysis of Parallel Programs using VISTA). Some visualization tools [4, 6] display the
processor activity with a separate graph. However, with a separate graph, it is diffi-
cult to understand a program because the processor graph represents only processor

activity without reference to the logical reduction tree. Colors play an important
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role in VISTA, in solving this problem. Colors in the reduction tree (PE graph)
represent a PE on which the node is executed. That is, VISTA displays the reduc-
tion tree and processor status simultaneously (in the PE graph). Figure 4 shows
an example of the PE Graph. This graph is the reduction tree executed by four
PEs from the PE perspective, for N-Queens problem. The N-Queens problem is to
place N queens on N x N chessboard so that no queen can attack another queen.

Another important factor for understanding parallel programs is timing of
reductions. Timing would be easy to understand if it were represented by the
distance from the root. If the reduction tree and timing graph (represented by
the distance) could be combined without critical loss, this would be the ideal way
to understand parallel programs. Unfortunately, however, this combination of the
reduction tree and timing graph seems almost impossible since the representation
of the reduction tree and a timing graph with the above features would result in
losing the shape of the reduction tree. To solve this problem (the loss of the shape
of the reduction tree), VISTA uses colors again. Time is represented by the RGB
color spectrum (Time Graph). That is, time is represented not by distance, but by
the color spectrum in keeping with the reduction tree.

In summary, VISTA displays the reduction tree along with the PE, time, or
procedure (explained in the Chapter III), which are represented by color. Although
this scheme works well in most cases, these graphs still don’t show PE and time
simultaneously. That is, it is difficult to know when a node is executed (in the PE
Graph), and by which PE the node is executed (in the Time Graph). In order to
solve this problem, another graph (PE-Time graph) is introduced. In this graph,
the reduction tree, PE, and timing are displayed simultaneously. The PE and time

are represented by the colors of vertices and arcs (or polygon), respectively, in the
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reduction tree. The color of a polygon (or a line if the node has one child) represents
the time the node is executed and the color of a vertex represents PE on which the

node was executed. The shortcomings of VISTA are discussed in Chapter VL.

Toolkit Organization

Figure 5 is an overview of the organization of the toolkit of VISTA. VISTA
is written in C, interfacing the X-Window system. VISTA runs on SUN SPARC
stations. To use VISTA, a program is executed with a trace generator on a mul-
tiprocessor. The trace file and the source program are the input to VISTA. With
these inputs, VISTA displays the execution graph in a window. The window system
is composed of one main window and three sub-windows, as shown in Figure 6.
The main window is used to display an execution graph. The time window is used
to draw the time spectrum, and is displayed only in a Time Graph and PE-Time
Graph. The color of the left side represents earlier time. A menu window is used
to select a menu item. There are eight menu items, which are explained in the
following section. The node window is used to display the information of the node
when the user wants to know about the node in detail. The goal name (procedure
name), PE number, time (represented graphically by a horizontal bar), the number
of the nodes condensed to the node, level condensing information, and the current

tree type, are displayed in the node window.

What You See in VISTA

In addition to the graphs described above, VISTA provides the user with
several functions to help understand a program. Figure 7 shows an example of
the execution graph from the time perspective for Pascal’s Triangle problem (this

problem is analyzed in Chapter V). The following are the functions VISTA provides,



progra

N
/

trace
/ file
execution
multiprocessor source
pgm
file

VISTA

sequential

processing

exec. graph

X~Window
system

Figure 5: Overview of the Organization of the Toolkit of VISTA

time window

main window

node window

Figure 6: Window System in VISTA

19



20

5 PEs © BY Tire

T 56

Figure 7: Example of Execution Graph from Time View



21

e Reduction tree from different perspectives

VISTA provides four different kinds of execution graphs: PE Graph, Time
Graph, Procedure Graph, and PE-Time Graph. Except for the Procedure
graph, all of them are explained in the previous section (Problems and Solu-
tions). Procedure Graph is the reduction tree from the procedure perspective,
This graph is the exactly the same as the other graphs (PE Graph and Time
Graph) except that the color represents the procedure. This graph can be

useful also in a sequential tool.
e Changing the size or position of the tree

o Zooming-up or Zooming-down
If the user is not satisfied with the density of the displayed tree, a zooming

function can be used. This function enlarges the tree while sacrificing the

outer nodes (i.e., later reductions).

o Changing the position of the tree

The default position of the root node is the center of the window. This
position can be changed to any place of the window. This function can

be used effectively when the user wants to see some part of the tree in

detail.

¢ Node Inquiry

When the user wants to know about the node in detail, this function is used.
If the user requests this function, VISTA displays in the node window, the
procedure name, PE number, and the number of the nodes condensed to that

node and time.
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e Subtree Request

If the user wants to view a subtree in more detail, VISTA displays the descen-
dants of the node without condensation. In this subtree, the user can request
zooming-up or node inquiry, and view the reduction tree from different per-
spectives. However, recursive subtree request is not allowed. That is, the user

can request a subtree only in the main tree.

How to operate VISTA
In order to use VISTA from a unix shell, do the following:

o type vista -tracefile -sourcepgm, where sourcepgm is the file name of the source

program.
© wait until the execution graph (PE graph) is displayed on the screen.
o then the user can select the function he or she wants.

Three mouse buttons are used to operate VISTA:
e right button: display menu
o center button: change the position of the tree

e left button: make an inquiry for a node, or to request a subtree after selecting

the display-subtree menu item.

If the user presses the right button, eight menu items are displayed, as shown
in Figure 4. The menu disappears after selection (except zoom-up and zoom-down
menu items), and the appropriate graph is displayed. To make a node inquiry, the
user puts the cursor on the node, and presses the right button. VISTA displays the

information of the node nearest to the cursor position.
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In order to request a subtree, the user first selects the display-subtree menu
item. Then the user points to the node, and presses the left mouse button. VISTA
displays the subtree with the node nearest to the cursor position as the new root

node. It may take some time to view the subtree, if the trace is large.

mmar

In the first section of this chapter, the problems for visualizing parallel pro-
grams are discussed and the solutions for these problems are then given. In the rest
of this chapter, the functions VISTA provides are explained. VISTA provides four
different execution graphs, zoom-up or zoom-down, node-inquiry, and subtree dis-
play. Next chapter explains how these functions are implemented with an example

for each step.
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CHAPTER IV

IMPLEMENTATION OF VISTA

This chapter describes the implementation of VISTA. I discuss how the main
goals of VISTA were accomplished, and why the algorithms used are efficient. For
example, the trace-processing time and the redisplay time of 15,419 trace records
(524,248 bytes) for the Semigroup problem are 45 seconds and 4 seconds, respec-
tively, on a SUN SPARC station. This short time allows users to frequently redisplay

data in different views.
Overview

The main goal of VISTA is to give eflective visual feedback to the user ana-
lyzing a program. In order to achieve this goal, VISTA displays a whole reduction
tree in one window, with some condensations if needed. Also, VISTA enables a
user to see the tree from different perspectives, such as PE, time, or procedure, and
zoom-up different portions of the tree.

Since the tree is usually large for small-grain parallel programs (even after
condensation), and the tree must be redisplayed if the user wants to see it from a
different view (different perspectives, zooming, or position change), the tree man-
agement algorithm must be carefully implemented. Also, window space must be
utilized effectively because for large graphs, space is valuable property. That is,
effective tree handling and window space utilization are the key factors in imple-

menting VISTA. There are two kinds of condensations in VISTA: level condensing
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and node condensing.

Definition: level condensing is a mapping from a tree T'to a tree T" with
the same ancestor and descendant relationships, such that a node n at
level lin T'is mapped into a node n' at level ' in 7", where I’ = [{/c] and

¢ is level-condensing ratio (a constant, defined in later sections). m

Definition: node condensing is the removal of all the descendants of the
node n from the tree, if the allocated sector for n in the window space

is less than one pixel. m]

Since the reduction tree can be arbitrarily large, the problem of mapping the
large tree to the limited window space must be resolved. There are several ways
to resolve this problem. One method is to make a whole tree from the trace and
reduce the tree whenever the tree is displayed. At first glance, this method appears
reasonable because it needs only one pass over the trace file. However, this method
causes two big problems in space and time. Since the tree can be arbitrarily large,
it may be impossible to implement the tree in main memory. If the tree were
implemented in secondary storage (i.e., disk), access would be too inefficient. Since
the frequent redisplay of the tree is encouraged, as the user experiments with various
views, it is not efficient to reduce the tree each time it is redisplayed.

Another method is to reduce the tree, by the ratio of the maximum dimension
of the window, to the total number of trace records. With this method, the resulting
tree will not correspond to user intuitions, because the trace is sequenced by time.
This method is just a contraction of a tree, nothing else.

VISTA employs a more accurate abstraction, although it requires more I/Os.

That is, two passes are required over the trace in VISTA: one pass to find the
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height of the tree, and a second pass to create a tree with level condensing, if
needed. Since the tree is condensed by level, the tree after condensation still keeps
the original shape of the whole tree (even though the resulting tree is not scaled
precisely from the original tree). This original shape allows user intuitions to carry
over from analyzing tool view to tuning performance of actual programs.

The overall control for VISTA is shown in Figure 8. The trace management
algorithm has five steps. Each of step is discussed in detail in the next sections.
There are two inputs to the algorithm: a trace file and a source program. The
first trace record is PEq., the number of PEs allocated for the program. Figure 9
shows the format of the remaining trace records. After reading a trace record, the
children count (the number of subgoals) is obtained from the source program using
clause#. The children count is denoted as cent in the following algorithms. The
basic management unit in the window space is assumed to be one pixel throughout
this thesis.

In order to describe the algorithms more easily, consider a simple Quick Sort
program in FGHC [15], an AND-paralle! logic program. The sample program is
shown in Figure 10. Figure 11 shows a trace executed by four PEs for this program,

consisting of 23 records, plus the initial PE, ... record.

First Pass: Calculating Tree Height

Definition: The level of a node is the path length from the root to the

node. The leve! of the root is 0. An example is shown in F igure 12. O

Definition: The height of a tree is the longest path from the root to a
leaf, plus one. The height of a node is the height of the tree minus the

level of the node. In Figure 12, node 4 has height 3, node B height 2,
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vista(trace file, source program) {
1. First pass(trace file, source program);
Calculate height of reduction tree, without actually creating tree.
Trace file is read once.

2. Second pass(trace file, source program);
Level condensing is done if needed, and a tree is created.
If this step is called by a subtree request, no level condensing is done.

3. Weight calculation(tree);
Transform tree into DAG, and calculate a weight for each node.

4. Node allocation(DAG);
Calculate the location of each node in polar coordinate system
centered at root node, using weights.

5. Display graph(DAG);
Set up graphic environment;
Display default graph;
repeat {
wait until user initiates some action;
display the graph the user wants
if (user wants a subtree at selected root)
second-pass() through node-allocation();
until (user wants exit)

} }
Figure 8: Overall Control Algorithm for VISTA

item type range ezplanation
time integer | 0 ~ oo the time the reduction is executed, in msec
clause# | integer [ 1 ~ max clJause # | sequence # in source program by clause
pe integer | 0 ~ (max-PE — 1) | PE on which the reduction is executed
index integer | 1 ~ oo sequence number PE executed
ppe integer | 0 ~ (max-PE — 1) [ parent PE (ppe of the root node is 0)
pindex | integer | 1 ~ co parent index (pindez of the root node is 0)

Figure 9: Trace Record Format



go(In, Out) :- gsort(In, Out-[]).

gsort([J, R-A) :- R=A.

qsort([X|L], RO-R) :- split(L,X,L1,L2),
gsort(L1,RO-[XIR1]),
gsort(L2,R1-R).

split([],_,s,L) s=0, L=[].

split([X(Xe],A,S,L) :- A>X | L=[XIL1], split(Xs,A,S,L1).
split([X|Xs],A,S,L) :- A=<X | S=[X)S1], split(Xs,4,S1,L).

Figure 10: Sample Program : Quick Sort in FGHC

4

1992789729 i 0 1 0 0
1992807968 3 0 2 0 i
1982810675 5 0 3 0 2
1992812185 6 0 4 0 3
1992813240 3 3 1 0 2
1992815552 6 0 5 0 4
1992816664 3 2 i 0 2
1992818430 6 o] 6 0 5
1992819512 6 2 2 2 i
1992820367 4 0 7 0 6
1992821448 3 1 1 2 1
1992823316 4 3 2 3 1
1992824409 5 2 3 2 2
1992825264 2 3 3 3 i
1992826331 2 1 2 3 1
1992827191 4 2 4 2 3
1992828039 3 3 4 2 1
1992829087 4 1 3 1 1
1992829939 4 3 5 3 4
1992831078 2 o 8 1 1
1992832208 2 2 5 3 4
1992833068 2 0 9 3 4
1992834202 2 i 4 1 1

| time | clause# | pe | index | ppe | pindez |

Figure 11: Trace for Quick Sort Query “7- £0([2,1,5,4,3],X).”
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and node H height 1. The height of a tree is the height of the root. DO

A ——— Level0
B /C\ D — — Level1
E F G H ——  — Level 2

Figure 12: Tree Definition (Height of Tree = 3)

In the first pass, the tree height is computed from the trace, without creating
a tree data structure. To calculate the height of the tree, VISTA uses a closed hash
table [1}, whose data structure is shown in Figure 14. The hash index (hindez),
node pointer (nodeptr), and flag (flag) are not used in the first pass. The hash

function 4 is defined as follows:

X pe + (P—];i— mod indez),

h(pe,indez) = PEB

where B is the total bucket count. Recall that inder is trace index number. If
a collision occurs, that is, the returned bucket already holds another element, a
rehash strategy is used. VISTA uses the simplest rehash strategy, called linear
hashing, where

hi(pe,index) = (h(pe,indez) + ¢) mod B.

The algorithm for the first pass is shown in Figure 13. If the reduction has
children, hash-producer produces the slots of ccnt (i.e., puts ccnt in the hash ta-

ble). When its child is processed, hash-consumer consumes one of parent slots (i.e.,



30

subtracts one from ccnt) and returns the parent level plus one. In this way, VISTA
calculates the tree height without actually creating a tree. Figure 14 shows the hash
table after processing the 15 record of the Quick Sort program, assuming that the
total bucket count is 40. In this table, i represent the index of the hash table. The
nodes (0,7), (3,3), and (1,2) are not in the hash table, because these reductions have
no children. The pair represents (pe, indez). Field cent = 0 in the hash table means

that all of the nodes’ children are processed, and that the bucket can be reused.

Second Pass: Level Condensing

Because there is a limitation to how much can be displayed in one window
space, if the tree height is greater than the maximum window dimension, then some
condensation must be done. In VISTA, this is called level condensing.

In order to calculate the level-condensing ratio, the maximum tree height to
be displayed (i.e., limitation of the window space) is needed. The maximum tree
height is calculated as k., = l;”—dJ , where w is the maximum window width, and d
is the distance between two adjacent levels. With tree height &, level condensing is
performed. If & < k..., then no level condensing is needed. That is, the whole tree
is displayed (unless node condensing is done in display-graph — see later sections),
If A > hyqz, level condensing is performed with the level condensing-ratio. The level

condensing ratio ¢ is calculated as follows :

_ h
co B hma:

t = (hmn:: X CO) - ((h— hma:: X CO) x CO)

Co 1<t

co+1 I>t
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first-pass(trace file, source program) {
read first and second trace record; ; PEmaz and 1* node record
hash-producer(current record);
tree-height := 0;
while (read next record # end of file) {
level := hash-consumer(current record);
if (level > tree-height)
tree-height := level;
cent := child-count(clause#);
if (cent > 0) ; if the node has children
hash-producer(current record);

1

return (tree-height);

hash-producer(trace record) {
i :== h{pe, index); ; rehash if collision occurs
hash-table[i] := pe, index, ccnt, level;

hash-consumer(trace record) {

i := h(ppe, pindex); ; find parent hash index
hash-table[i].ccnt := hash-table[i).cent — 1; ; consume one child
return (hash-table[i].level + 1); ; return parent level 4 1

Figure 13: Algorithm for Calculating Tree Height
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i | pe | index | level | cent | hindex | nodeptr flag
110 1 0 0
2|0 2 1 0
3|1 0 3 2 0
41 0 4 3 0
5| 0 5 4 0
6| 0 6 5 0
11| 1 1 3 3
21 2 1 2 1
221 2 2 3 0
23| 2 3 4 1
311 3 1 2 0
32| 3 2 3 0

Figure 14: Hash Table after Processing 15" Record in First Pass

where ¢ is the threshold and [ is the level of the node.

For example, let Apqr = ‘%2% = 100, where 800 is the maximum window width,
and 4 is the level distance. The level distance four was obtained experimentally.
With a level distance less than four, it is difficult for the user to visually distin-
guish between two levels, A level distance greater than four resulted in decreasing
Amaz, which is unacceptable because we wish to display as many nodes as possible.
Consider a trace with a tree height h = 300,

300
= [IaﬁJ =

t = (100 x 3)— ((300 — 100 x 3) x 3) = 300

c = 3

So every node is condensed by the ratio of three. However, if the tree height is 310,
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then

340
[MJ e

t = (100 x 3) — ({340 — 100 x 3) x 3) = 180
3 1< 180
4 1>180

So the first 180 levels are condensed by a ratio of three and the remaining 160
levels are condensed by a ratio of four. This condensation scheme results in putting
more emphasis (space) on the levels closer to the root because earlier reductions are
generally more “important” than later reductions. At this stage of the algorithm,
the levels to be displayed are decided.

The remaining problem is how the tree should be represented physically in
memory. Since the nodes do not all have the same number of children, the maximum
out-degree is highly variable among programs. Since it is inefficient to allocate the
maximum out-degree for the children pointers, a binary tree is used to emulate the

logical tree, as illustrated in Figure 15. That is, this binary tree :

o retains branches from parents to leftmost sons, but deletes branches to other

children.
o introduces branches from children to their next right sibling.

The algorithm for the second pass is shown in Figure 16. The closed hash
table used in the first pass is used in the second pass again. In the second pass,
fields hinder and nodeptr are used to make a tree and do level-condensing. Field
hindez is the parent hash table index. Field nodeptr is the pointer to the node of

the trace record if the trace record is not condensed, or the pointer to the parent
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F G H E F—G—H

Figure 15: Transformation from Tree to Binary Tree

node if the trace record is condensed.

Figure 17 shows the hash table after processing the 15* record in the second
pass, assuming that the total bucket count is 40 and that the level condensing ratio
is two. Values A, C, M, E, N, and D in field nodeptr of the hash table represent
pointers to the nodes of Figure 19.

Figure 18 shows the whole tree for the trace of Quick Sort program. In (s, p, §)
of Figure 18, s,k,p, and j denote the goal name, the trace index number, pe, and
index, respectively. For example, (gs,3,1) of node D denotes that g is gsort, 5 is the
5% trace record, pe = 3, and indez = 1. Figure 19 shows the resulting tree after
level condensing for Figure 18, assuming level-condensing ratio ¢ = 2. As Figure 19
shows, the nodes in the odd levels are all condensed because if (I mod ¢) # 0, all
nodes in the level / are condensed.

If the second pass is called by a subtree request, the trace index, which is the
root of the subtree, is passed to this procedure. Therefore it would be possible to
create a subtree by reading the trace record directly from the trace index. Reading
from the beginning of the trace and just skipping to the trace index would have the

same effect as the direct reading, However, neither method is employed in VISTA,
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second-pass(trace record, source program) {
co := tree-height / 003
calculate threshold;
read first and second record; ; PEmar and first node record
hash-producer(current record);
while (read next record # end of file) {
level := hash-consumer(current record);
if ((tree-height < Apmaz) or (subtree-request))
level-condense-no(current record);
else {
if (level < threshold)
rem := level mod c¢p;
else rem := level mod (¢ + 1);
if (rem = 0)
level-condense-no(current record);
else level-condense-yes(current record);

Py o

level-condense-no(trace record) {

node := make-node(trace record);

hindex := find a parent hash table index;

connect to the parent or siblings using parent node ptr;

cent := child-count(clause# );

if (cent > 0) {
i := hash-producer(); ; pe,index,level,ccnt,hindex
hash-table[i].nodeptr := node; ;i : index of the node in hash-table

}

level-condense-yes(trace record) {
hindex := find a parent hash table index;
cent = child-count(clause#);
if (cent > 0) {
i := hash-producer(); ; pe,index,level,cent,hindex
hash-table[i].nodeptr := hash-table[hindex].nodeptr;
; copy parent nodeptr
;1 ¢ index of the node in hash-table

Figure 16: Algorithm for Second Pass: Level Condensing
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i | pe | indez | level | ccnt | hindezx | nodeptr | flag
1[0 1 0 0 0 A
210 2 1 0 1 A
3| 0 3 2 0 2 C
41 0 4 3 0 3 C
5| 0 5 4 0 4 M
6| 0 6 5 0 5 M

1] 1 1 3] 3 21 E
21| 2 1 2 1 2 E
22| 2 2 3 0 21 E
23] 2 3 4 1 22 N
31| 3 1 2 0 2 D
32| 3 2 3 0 31 D

[I;j (34 90a4)
[ng (36,0,5)

(7] (s8,0.6)

(510,0,7)

E (417,2,1)

K (QII 7151) (Q17,3,4)

(518,1,3)(920,0,8) (g23,1,4) (g21,2,5)
(51913:5) (922 50$9)

(316,2,4)

Figure 18: Whole Reduction Tree for Sample Program
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Figure 19: Reduction Tree After Level Condensing for Sample Program by 2:1

because the whole hash table must be searched for the nodes not in the subtree.
Instead, VISTA reads the trace from the beginning, and sets the flag in the hash

table invalid for the nodes not in the subtree.

Weight Calculation

As discussed in Chapter III, each node is displayed in the concentric circle
with radius r = d * {, with a polygon or line, where d is the distance between two
adjacent levels and [ is the leve! of the node. The distance between any two adjacent
levels is the same throughout the whole tree.

After level condensing has completed, the main problem is how the nodes in
each level are allocated to the corresponding concentric circle. The simplest way
would be to allocate the nodes evenly around the circle. However, this scheme is
not good because some polygons might overlap and the shape might be difficult to
understand. In order to avoid this from happening and to utilize the window space

efficiently, a sector is allocated to each node depending on the weight of the node.
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The node and its children are then put within the range of the sector only.

Before calculating the weight, a level-connection transformation is made in
order to traverse the tree effectively. Given a graph G(V,E) with |[V| = n and |E| =
e, a conventional recursive DFS (depth-first-search) or BFS (breadth-first-search)
takes O(e) time [1]. However, the constant is so high that it is too inefficient to
implement with recursive DFS or BFS for a large graph. Even though the recursion
can be avoided with a stack for DFS and a queue for BFS, the overhead is still
high, especially in space complexity. Thus I chose to transform the tree into a more
efficient data structure, as shown in Figure 20. Figure 20 represents the reduction
tree after level-connection for Figure 18 of Quick Sort, assuming no level condensing
is done. The tree is implemented with a binary tree, as discussed in the second
pass. In order to traverse a tree by the level, a cousin pointer (represented as “. ..”
in Figure 20) is introduced.

This level-connection transformation can not be done in the second pass be-
cause at that time, the nodes on the same level are not necessarily processed in order,
After the transformation, the array level-start-node[i] points to the first node in each
level ¢ and all the nodes in the same level are connected. After level-connection, the
tree (actually, a DAG, or Direct Acyclic Graph) can be processed from any level.
When the subtree is requested or a node inquiry is made, the tree is searched from
the nearest level to the cursor position.

"The weight w for each node is defined as the sum of its child weights plus the
height of the node. In this definition, more weight is put on nodes closer to the root,
because the closer the node is to the root, the fewer nodes the corresponding circle
can contain. Figure 21 shows an example of the weight calculation for the Quick

Sort program. For example, the weight of the node in level 2 in Figure 21 is 78,



level start node

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Figure 20: Reduction Tree After Level Connection for Sample Program
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which is calculated from 72 (the sum of its child weights) plus 6 (the height of the

node).

18+7=285

15+174+404+6=178

4019+4+13+13+5=40

13

6] 1 [ B EE] B [E

Figure 21: Weight Calculation for Sample Program

The algorithm for the weight calculation is given in Figure 22. As discussed
above, before calculating a weight for each node, the level-connection transformation
(connect-level) is made. In procedure connect-level, level is connected from level 0
by the level. In each level, the first node in the next level is found and then put in
level-start-nodefi]. To connect all the nodes in the same level, the rightmost child
points to the leftmost child of the next node with children by a cousin pointer. In
procedure weight-calculation, the weight for each node is calculated from the bottom

level by the level, because each node needs its children weight to compute its weight.
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weight-calculation() {
connect-level();
for (i = tree-height; i > 0;i:=i— 1) {
node := level-start-nodeli];
while (node # NULL) { ; reach end of level

node—weight := height of the node + sum of child weights;
node := node—next;

connect-level() {
level-start-node[0] = root-node;
for (i = 0;i < tree-height; i := i + 1) {
node := level-start-nodeli];
while (node 3 NULL) { ; reach end of level
if (node has children) {
if (the child is the first node in the level)
level-start-nodefi+1) := node—child;
connect right-most child to left-most child of the next node
with children by cousin pointer

}

node = node—next;

Figure 22: Algorithm for Weight Calculation
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Node Allocation

After weight calculations, a sector is allocated to each node depending on its
weight. The sector is defined as the subset of the circle within which a node can
be put. The sector is represented by a pair (s,a), where s and a are the starting
degree and the allocation degree of the node, respectively. The sector of the root is

defined as (0, 360). The starting degree s for each node is calculated as follows:
s=1t,+ It

where It, and It are the starting degree and the allocation degree of the left twin
(if the node is the leftmost child, {t, and It, are the starting degree of its parent and

zero), respectively. The allocation degree a for each node is calculated as follows:
w
a= E_': X Pay

where w, T, and p, are the weight of the node, the total weight of all its twins, the
allocation degree of its parent. Figure 23 shows the sectors of the nodes for Figure 21.
For example, the sector of node D is calculated as follows: s = it,+lt, =04+75="75
and a = T“:.,' X Pg = % X 360 = 85. The sector of node J is calculated as follows:
s=1lt,+1lt, =160+ 0= 160 and a = 7‘-.": X Pg = :—5 x 200 = 51.

The exact position for each node in the window space isn’t calculated until
the tree is displayed, since the size and the center of the tree may be changed. The
exact position (z,y) of a node in the window is calculated in the next step by the

following equation :

r = dxl*cos(s+af2)
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D] (75,85) (160,200)

(211,74)

(0,75) H] [1] Frl(160,51) | L |(285,74)

(75,28) (103,28) (131,28)

M] (0,75) ] [o] [*] QI[R] (5]

(160,51) |  (211,25)(236,25)(261,25) (310,25)
(285,25)  (331,25)

[v] (@75) [v]

(160,51)

(0,75)

Figure 23: Node Allocation for Sample Program
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y = dxl*sin(s+a/2)

where, d is the level distance, ! is the level of the node, s is the start degree and a
is allocation degree. The algorithm for the node allocation is shown in Figure 24.
As Figure 24 shows, the sector for each node is calculated from level 0 (root) by
the level because each node needs the allocation degree and starting degree of its

parent.

node-allocation() {
root-node—alloc-degree = 360;
root-node—sstart-degree = 0;
for (i = 0;i < tree-height; i:=1i 4+ 1) {
node := level-start-nodefi];
while (node # NULL) { ; reach end of level
ad := node—alloc-degree;
sd := node—start-degree;
tw := node—weight — height of the node;
i tw = sum of child weights
child := node—schild;
while (child # NULL) {
child—alloc-degree := child—sweight / tw x ad;
child— start-degree := sd;
sd := sd + child—alloc-degree;
child := next-child();

Figure 24: Algorithm for Node Allocation

Display Graph : X-Window Interface

After the previous steps, the execution graph is ready for display. The graphic
is drawn in the X-Window system [11). X-Window provides windows on a bjt-
mapped terminal by the server-client model, with the facility of easy portability.

The subsystem that controls the display and input devices is named the server.



45

At the other end are clients— programs written using X-lib to interface with the
X-protocol. Therefore, VISTA is a client of the X-Window System.

After setting up the window environment (i.e., connecting to the server, load-
ing a font, creating windows, etc.), the execution graph from the PE view is dis-
played. The tool then waits until the user initiates some action. Whatever the user
does is controlled in this step: for example, window size change, window position
change, cursor move, or button press.

IT the user action concerns window attributes (size or position) or tree at-
tributes (zooming or center change), VISTA displays the current tree type (PE,
time, procedure) in proportion to the window size. If the action is about the tree
type, the requested tree is displayed. If the action is an inquiry for a node, VISTA
first finds the node which is the nearest to the cursor position. The information
about the node is then displayed. If the action is about a subtree request, the fol-
lowing steps are executed: First, the current main tree status is saved. Second, the
nearest node to the cursor position is found. Then the node becomes the root of
the subtree. Third, the second-pass through node allocation are performed. Last,
the PE Graph is displayed.

When drawing the graphic, if the sector calculated is less than one pixel, node
condensing is done. That is, the node and all its children are not displayed.

The algorithms for the display-graph (main routine) and the draw-graphics

(sub-routine)} are shown in Figures 25 and 26, respectively.

Summary

VISTA is implemented with a five step algorithm. In the first step (first pass),

the height of the reduction tree is calculated without creating a tree. In the second
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display-graph() {

set up graphic environment; ; X-Window

make color-map;

draw-graphics(); ; display default graph (PE)
repeat {

wait until user does some action;
if (input is from main window) {
if (left button is pressed)
if (subtree-request = YES) {
subtree-request := NO;
save current status;
node := find-node(); ; find the nearest node to cursor
perform second-pass through node-allocation;
draw-graphics();
} else {
node = find-node();
display node by the text format;
} else if (center-button is pressed) {
move center position;

draw-graphics();
} else ; right button is pressed
display menu window;
} else { ; input is from menu window
if (request is about view-kind) {
view := request-view; ; PE, time, proc., PE+time

draw-graphics();
} else if (zoom-request) {

zoom := zoom-request; ; zoom-up, zoom-down
draw-graphics();
} else { ; tree-kind-change request

if (subtree-request)
subtree-request := YES;

else { ; main-tree request
release subtree;

restore main-tree status;

draw-graphics();
Py o}

} until (user wants exit);

Figure 25: Algorithm for Display Graph (Main Routine)
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draw-graphics() {
calculate level-distance;
for (i:=0; i<tree-height; i:=i+1) {
node := level-start-node]i];
perimeter := 2 7 (level-distance) (i+1);
while (node # NULL) { ; not end of level
sector := perimeter * node—adegree / 360;
if (sector < 1)
node-condensing; ; make node and all its descendents invalid
else {
set color depending on kind (PE, time, procedure);
calculate positions (x,y) for the node and its children;
draw point for n=0, line for n=1 or polygon for n>1,
where n = the number of children

node := node—next;

Figure 26: Algorithm for Draw Graph (Sub Routine)

step (second pass), the reduction tree is made while doing level-condensing if needed.
In the third step (weight calculation), the tree is transformed into a more efficient
data structure (to traverse the tree efficiently), and the weight for each node is
calculated. In the fourth step (node allocation), the position for each node in the
concentric circles is calculated using the weight of the node. In the last step (display

graph), the execution graph is displayed in an X-Window.
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CHAPTER V

ANALYSIS OF PARALLEL PROGRAMS USING VISTA

In this chapter, I give several examples of how VISTA can be used to improve
one’s understanding both of parallel programs, and of the system that provides the
parallel execution environment.

The most difficult problem in evaluating parallel programs is knowing how
much parallelism the program has, and what portion of the parallelism is used in
execution. The easiest way to represent the parallelism of a program would be
by constructing a data-dependency graph. Figure 27 shows an example of a data-
dependency graph, where each node, indicated by its number, represents a reduction.
A path into the node means that the reduction at the other end of the path must be
executed before the current node can be executed. In Figure 27, there are several
possible execution orders ranging from purely sequential (e.g., 1, 2, 4, 3, 5, 6, 7)
to parallel (e.g., 1, [2,3], [4,5,6], 7) where the numbers in brackets indicate possible
parallel executions.

In VISTA, a data-dependency graph is not constructed because the data de-
pendency graph with a reduction tree might result in losing the shape of the reduc-
tion tree. Instead, VISTA provides two kinds of graphs to analyze parallelism: the
PE Graph and the Time Graph. With these graphs, characteristics of parallelism,
such as load balancing among processors, speedup, and processor scheduling, can

be analyzed to some extent.

In VISTA, the color spectrum from blue to magenta represents the complete
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Figure 27: Example of Data Dependency Graph

execution time. Because there are not many distinct colors in this range (though it
is possible to generate a huge number of colors even in this spectrum, human eyes
can’t tell the difference between many of the colors), the same color in the Time
Graph does not necessarily represent the same time. If some nodes are represented
with the same color within the Time Graph, and by the same PE color within the PE
Graph (i.e, all the nodes are executed by the same PE), it means that the reductions
were executed sequentially. This problem (i.e., the same color does not necessarily
represent the same time in Time Graph) can be overcome to some extent with a
subtree display (see Case Study 2: Semigroup Problem of this chapter).

In experimenting with parallel logic programs using VISTA, I have found a
number of approaches useful for understanding the results of the experiments. The
experiments consisted of a set of execution runs on a multiprocessor (here a 26
processor Sequent Symmetry [10]) and involved both modifying the benchmarks and

varying the numbers of processors. I kept examples (the number of PEs, program,
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and data size) small so that the explanation is clear. All the example programs

tested are written in FGHC [15].

Case Study 1: Pascal’s Triangle Problem

Pascal’s Triangle is composed of the coefficients of (z +y)" forn > 0. The
binomial coefficients of degree n are computed by adding successive pairs of coeffi-
cients of degree n — 1. A set of coefficients is defined as a row in Pascal’s Triangle.
The zero row is (1), the first row is (1, 1) and so on. In general, row n has n + 1
coefficients. In addition, the coefficients are symmetric around vertical axis of the
triangle. Any row can easily be calculated from the previous row by adding pairs of
successive coefficients. Figure 28 shows the program for Pascal’s Triangle.

This program computes left-half rows of Pascal’s Triangle in makeRows/{
and then expands the final half row into a full row in fillout/3. Infinite precision
(“bignum”) addition must be used because the coefficient of row 100 has 30 decimal
digits. The bignum definition used here is based on a radix R = 10°. A bignum is
a list [X,Xy,...,X;j-1,X;], with the initial value Xo+Xi+. .. +X;01RF-14XRI. Al
illustrations in this section represent the execution graph of Pascal’s Triangle for
the query - go(395, Row).

The easiest way to understand a program in VISTA is to view the reduction
tree from the Procedure Graph. Figure 29 shows the reductjon tree from the pro-
cedure perspective. This Procedure Graph is displayed without any condensation.
The total number of nodes is 2,235. The height of the tree is 56. This interest-
ing tree, with the shape of a snail or a spiral, is very unbalanced, but has some
regular patterns. In Figure 29, most of the nodes represent procedures makeRows

(cyan) and makeRow (green). Procedure makeRows calls itself recursively and calls
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Figure 29: Execution Graph of Pascal’s Triangle from Procedure View
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go(N,Row) := N>1 | makeRows(1,N,[],Row).

makeRows(N,N,HalfRow,Row) :-
0dd := N mod 2 |
fillout{0dd, [[1, 0] {HalfRow] ,Row).
makeRows (K ,N, HalfRowK Row) :- Ki t= K+1, 0dd := K mod 2 |
makeRow([[1,0] lHalfRowK] 0dd,HalfRaowK1),
makeRows (K1,N,HalfRowK1 Row)

makeRow([_],0,4) :- A=[].
makeRow([X],1,A) :- A=(S],bigPlus(S,X,X).
makeRow([Xi,X2|Xs] Odd,A) :- A—[S[Ss],

bigPlus(S,X1,X2),
makeRow([X2|Xs] ,0dd,Ss).

fillout(0,HalfRow,Row) :- rev(HalfRow, [_|Rev]),
append (HalfRow,Rev,Row).

fillout(1,HalfRow,Row) :- rev(HalfRow,Rev),
append(HalfRow,Rev,Row).

bigPlus(A,X,Y) :- bigp(X,Y,4,0).

bigp([XIXs],[YIYs],A,C) := T := X+Y+4C |
setc(T,A1,C1), A=[A1lAs],
b1gp(Xs Ys,As,C1).
bigp(O,[Y1Ys],A,C) := T := Y+C |
setc(T,A1,C1), A=[A1]as],
b1gp([] Ys,As,C1).
bigp([XIXs],[1,4,C) :- T := X+C |
setc(T,A1,C1), A=[A1]Aas],
blgp([] Xs,As,C1).
bigp([1,0.4,0) :- a=[].
bigp([],[1,4,C) :- C>0 | A=[C].

setc(T,A,C) :- T<100000 | C=0,A=T.
setc(T,A,C) :- T>=100000, R := T-100000 | C=1,A=R,

append([A(|X],Y,Z):- Z-[AIZI], append(X,Y,Z1).
append([1, Y,Z):- Z=Y

rev(X,Y) :- rav(X,[].Y).

rev([AIX] Y,Z) :- rev(x [AlY],Z).
rev([J, Y,2) :~ Y=Z.

Figure 28: FGHC Program for Pascal’s Triangle
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makeRow. Procedure makeRow calls itself recursively and calls bigPlus (sky blue).
One main branch (cyan) represents one row in Pascal's Triangle. The size of the
subtree (i.e., one row) is increased by one for every two rows. This means that N
and 3+ 1 rows have the same number of coefficients (because makeRow makes only
the first half of the row, taking advantage of the symmetry of a row). The two
lines at the east side represent the expansion of the final half row into a full row.
Thus, the user can roughly understand a program from the Procedure Graph, even
without looking into the source program. If the user is interested in the procedure
name, this information can be accessed from the node inquiry.

To analyze the parallelism of the execution graph, an analysis of the load bal-
ancing among processors can be used first. Good load balancing among processors
does not necessarily mean efficient exploitation of parallelism. However, without fair
load balancing, full exploitation of parallelism cannot be achieved. That is, good
load balancing is a necessary but not a sufficient condition for good speedups.

In VISTA, analyzing the load balancing is easy. A fair color distribution in
the PE Graph represents good load balancing. Figure 30 (PE Graph) and Figure
31 (Time Graph) are the reduction trees executed by five PEs for Pascal’s Triangle.

In Figure 30, all five colors are distributed almost evenly in the execution
graph, representing good load balancing. To further analyze parallelism, the PE
Graph and Time Graph are used. In Figure 31 (Time Graph), most clusters (one
cluster represents one row) have a similar color pattern: the first node of each row
is sky blue, the second, third, and fourth green, and so on. It means that some rows
were executed in parallel. The maximum rows executed in parallel is limited at five,
the number of PEs used. However, more than five rows appear as if they had been

executed in parallel. As discussed above, the same color in the Time Graph does
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not necessarily represent the same time. In other words, after the nodes in at most
five rows were executed in parallel, the nodes in the other rows were executed.
Figure 32 shows the reduction tree (Time Graph) executed by one PE for
Pascal’s Triangle. In this graph, the nodes were always executed by a depth-first
search. From this we can infer that depth-first search scheduling is used in the
system, if there is no suspension. However, the nodes in the five PE Time Graph
(Figure 31) appear to have been scheduled by a breadth-first search. Figure 30
also shows that some rows are not executed by the same PEs (i.e., there are some
processor switches within the same row). If there were no suspensions (i.e., data-
dependency in this example), there is no reason for executing by a breadth-first
search or switching the processor, as shown in the one PE Time Graph. This
means that there were some suspensions. Because each row needs the previous
rows’ coefficients to calculate the current coefficients, if the previous coeflicients are
not ready, the current node is suspended. The PE Graph shows this. As shown
by the PE and Time graphs, the parallelism in this execution arises in the TOWS.
Therefore, I hypothesize that more speedups can be gained, if PEs are added, upto

the number of rows.

Case Study 2: Semigroup Problem

The Semigroup problem computes a large group of vectors from a small initial
group of vectors, by repeated piecewise multiplication and comparison. Essentially,
the closure under multiplication is computed for the initial vectors. Figures 33, 34
show the source program for semigroup problem, which uses a unbalanced binary
hash tree containing the vectors. Here a vector is represented by K-T, wherc K is

the hash key and T'is a list of elements. The unbalanced binary hash tree code is
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given in Figure 34. A node, containing a bucket B of vectors, is implemented by
one of four types of processes: leaf (no children), right-child only, left-child only,
and with both right and left children. A node process responds to various messages,
instructing the node to insert and lookup vectors. For more details, see Tick [14].
Figure 35 (PE Graph) and Figure 36 (Time Graph) show the reduction tree
executed by five PEs for the query #- go{N). The total number of nodes in the
whole reduction tree is 15,419 and the height of the tree is 174. In this experiment,
the window size was 850 x 850 and the level distance was four. The maximum
tree height to be displayed is calculated as hn,, = [53—0 x 2] = 106. Because
the height of the whole reduction tree h is greater than the maximum tree height,
level condensing is done. As discussed in Chapter 4, the level-condensing ratio ¢ is

calculated as follows:

| ‘[174J_1
= 5" l1sl =

t = (hmaz X 0) = ((h = hmaz X o) X cq)

(106 x 1) — ((174 — 106 x 1) x 1) = 38
Co =1 1<t

o+l = 2 I>t

where ¢ is the threshold and ! is the level of the node. Therefore, the first 38 levels are
not condensed, and the remaining 136 levels are condensed by the ratio of 2:1 (these
numbers are displayed in the node window at the bottom Figure 35, for instance).

This example demonstrates some strong points of VISTA:

o the window space efficiency is very good in this example. If this reduction
tree were represented by a conventional method (propagating from the top of

the window), representation would be difficult. Even if possible, the window



go(Out) :- kernel(K), append(K,[end|R],T), initTree(T,R,Dut).

initTree(T,R,0ut) :- prefilter(T,T1,sawelement,R,Out),
t(T1,0,[1).

prefilter([end{T],T1,sawelement,RO,0ut) :- Ti=[end(RO,R1) |Te],

prefilter(T,Ts,sawend,R1,0ut),

prefilter([end|_],Ti,sawend,_,0ut) :- Ti=[out(Out,[])].
prefilter([X-Y|T],T1,_,R0,0ut) :- Ti=[m(X,Y,RO0-R1)|Ts],
prefilter(T,Ts,sawelement,R1,0ut).

gen(X,S0-S1) :~ kernel(K), g(K,X,50,S1).

g(0],_,80,51) :- S0=S1.
g([XIKs],E,S,T} :- s=[P|Ps], g(Ks,E,Ps,T), mult(K,E,P).

insertBucket([],B,C,B1,E,S) :- Bi=[C|B], gen(E,S).
insertBucket{[C|_],B,C,B1,_,50-S1) :- Bi=B, S0=51.

otherwisae.

insertBucket([_ICs],B,C,B1,E,S) :- insertBucket(Cs,B,C,B1,E,S).

send([],50,51) :- S0=S1.
send([T|Ts],S50,82) :- so=[TIs1], send(Ts,S51,52).

append([AlX],Y,2):- 2=[A|Z1], append(X,Y,Z1).
append([], Y,2):- z=Y.

mult{_-X,Y,0ut) :- Out=Key-R, mult(X,Y,R,0,Key,0).

mult([X|Xs], [Y!Ys],Out,InKey,OutKey,E) :~ NewKey := E+InKey*3 |
Out = [ZIZB]. m(xn Ya Z)l

mult(Xs,Ys,Zs,NewKey,OutKey,Z).

mult({], [0, Z, InKey, OutKey, _) :- z=[], OutKey=InKey.

m(2,1,2):- Z=1. m(3,1,Z2):- Z=1. m(4,1,2):- Z=1, m{5,1,2):- Z=1.
m(1,1,2):- Z=1. m(2,2,2):~ Z=2. m(3,2,Z):- Z=1. m(4,2,Z2):- Z=1.
m(5,2,2):- Z=5. m(1,2,Z):~ Z=1. m(2,3,Z):- Z=1. m(3,3,2):- Z=3.
m(4,3,2):~ Z=4. m(5,3,Z):- 2=1. m(1,3,Z):- Z=1. m(2,4,Z):- Z=4,
m(3,4,2):- Z=1. m(4,4,Z):- Z=1. m(5,4,Z):~ Z=3. m(1,4,Z):- Z=1.
m(2,5,2):- Z=1. m(3,5,Z):- Z=5. m(4,5,Z):- Z=2. m(5,5,Z):- Z=1.
m{1,5,2):- Z=1.
kernel (K) :-
K=[1833472791-[ 1,1.1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4.4,
5,5,5,5,5,3,3,3,3,3,5,5,5,5,5,4,4,4,4,4 B
-590019130~[ 1,2,3,4,5,1,2,3,4,5,1.2,3.4,5,1,2,3,4,5,
1.2,3,4,5,1,2,3,4,5,1,3.2,4,5,1,2,3,4.5 s
1154844798~ 1.2,3,5,4.1,2,3,5,4,1,2,3,5,4,1,2,3,5,4,
1,2,3,5,4,1.2,3,4,5,1,2,3,5,4,1,2,3,5,4 ].

Figure 33: Part A of Semigroup Program
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% leaf node (node with no child nodes)
4 X,Y are keys, C is tuple, B is list of tuples (bucket)

t(d,_,.) :- true.

t([m(ch’s) IT] JxlB) H » 1’C’S)lt(T’xJB1)’

- X=:=Y | insertBucket(B,B,C,B
t([m(¥,C,S) {T],X,B) :- X < Y | gen(C,S), tr(T,X,B,R), t(R,Y, [C]).
t{[m(y,C,8) IT],X,B) :- Y ¢ X | gen(C,S), t(L,v,ic ), t1(T,X,B,L).
t([out(S0,S)|T],X,B) :- send(B,S0,S), t(T,X,B).
t([end(s0,5)IT],X,B) :- SO=[end|S], t(T,X,B).

/ node with right child only
tr(D s-s-:R) t= R = D-
tr([m(y,c,s) IT],X,B,R) :- X =:

Y | insertBucket(B,B,C,B1,C,S),

tr(T,X,B1,R).
tr([m(Y.C.S) IT],X,B.R) =X <Y l tr(T:stnnl)’

R = [m(Y,C,S)|R1].
tr([m(y,c,s) IT],X,B,R) :- Y < X | gen(C,S), t(L,Y,[C]),
t1r(T.X,B,L,R).

send(B,50,51), tr(T,X,B,R1),
R = [out(S51,S)|R1].
S0=[endIS], tr(T,X,B,R).

tr([fout(s0,3)1T],X,B,R) :

tr({end(S80,S8)IT],X,B,R) :

% node with left child only
tl([] n-a-aL) := L= []o
tl([m(Y.C,S) IT],X,B.L) :- X =

Y | insertBucket(B,B,C,B1,C,S),

t1(T,X,B1,L).
t1([m(¥,C,8) IT],X,B,L) :- X < Y | gen(C,S), t1r(T,X,B,L,R),
t(R,Y,[C]).
t1([m(Y,C,S) IT],X,B,L) :- Y < X | L=[n(Y,C,S)|L1], t1(T,X,B,L1).

t1({out(s0,8)IT],X,B,L) :

L=[out(SO,Si)|L1], t1(T,X,B,L1),
send{B,51,8).

t1([end(s0,S)}1],X,B,L) : S0=[endISs], ¢1(T,X,B,L).

% node with both left and right children
tlr([]a-s-)L:R) = L = D: R = D-
tlr([m(Y,C,S) IT],X,B,L,R) :- X =:= Y | insertBucket(B,B,C,B1,C,S),
t1lr(T,X,B1,L,R).
tlr([m(Y,C,S) IT],X,B,L,R) :(~ X <Y | tlr(T,X,B,L,Ri),
R = [m(Y,C,S)[R1].
Y<X|L-= [m(Y,C,8)|L1],
t1r(T,X,B,L1,R).
L=[out(SO,Si)IL1], tlr(T,X.B,Ll,Ri),
send(B,51,52), R=[out(S2,5)|R1].
S0=[end|S], t1r(T,X,B,L,R).

tlr([m(y,c,s) IT),X,B,L,R) :

tlr{([out(s0,S)!T],X,B,L,R) :

tlr([end(s0,S)IT],X,B,L,R) :

Figure 34: Part B of Semigroup Program: Unbalanced Binary Hash Tree
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Figure 35: Execution Graph of Semigroup from PE View (5 PEs)
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Figure 36: Execution Graph of Semigroup from Time View (5 PEs)
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space efficiency would be poor.

o Even after level condensing, the tree keeps the shape of the original tree (the
original tree is not shown, but the original tree can easily be inferred from this

tree).

To understand the parallelism of the execution graph for the Semigroup, load
balancing among processors is analyzed first. In Figure 35 (PE Graph), five colors
are distributed evenly in the graph. Thus, load balancing is good in this execu-
tion. Figure 35 (PE Graph) shows that all reductions are scattered throughout
the window with the shape of many spokes. Each spoke (also called a line in this
example) represents a vector multiplication. As the graph shows, almost all lines
were executed without a processor switch. This means that there were only a few
suspensions in each line, if any. That is, the nodes in each line do not depend on
the data of the other nodes except for their parent node. Lack of data-dependency
between nodes can be confirmed from another execution graph: Figure 37 shows the
reduction tree executed by one PE.

The color distribution of the single-PE graph is similar to that of Figure 36.
This means that as soon as the first node of the new line s generated, both lines were
executed in paralle] until the end of the line without any suspension. The reason
that the lines are not executed clockwise or anti-clockwise (as in the single-PE Time
Graph of Pascal’s Triangle) in Figure 37 is that there were some data dependencies
in the initialization phase. That is, there were some suspensions in levels 2—5.

If the PE Graph (Figure 35) is viewed with the Time Graph (Figure 36),
parallelism can be analyzed in more detail. The lines with the same colors in the
Time Graph are represented by different colors in the PE Graph. This means that

some lines were executed in parallel. However, there are also some lines with the



64

Figure 37: Execution Graph of Semigroup from Time View (1 PE)
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same color in the PE Graph. This means that if more PEs are added in execution,
greater speedup can be achieved.

Because the color spectrum from blue to magenta represents the complete time
in VISTA, if the whole graph (i.e., without condensation) is large (i.e., the execution
time is long), analyzing parallelism by the Time Graph is difficult. In that case, a
subtree display can be useful. Figure 38 and Figure 39 show an example of subgraphs
of Figure 35 and Figure 36, respectively. In the subgraph displays, the reduction tree
is displayed without level condensing, and the time spectrum represents time relative
to the subtree (i.e., not the whole execution time) as Figure 39 shows. Therefore,
with the two subgraphs (PE Graph and Time Graph) by the way discussed above,

more detailed parallelism can be analyzed.

Summary

To analyze parallel programs with VISTA, the user is encouraged to view
several graphs. To understand a program itself without viewing parallelism, the
Procedure Graph is used with node inquiry. To analyze characteristics of paral-
lelism, the PE Graph and the Time Graph are used. If these graphs do not offer
enough detail to analyze parallelism, the single-PE Time Graph can give further
information. If the displayed graph is too densed to analyze a program, zoom-up
or subtree-display can be useful. As the two example programs illustrate, window-
space utilization in VISTA is very good. If conventional display methods were used,

parallel program execution characteristics would be far more difficult to analyze.
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Figure 38: Subgraph of Semigroup from PE Perspective (5 PEs)
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Figure 39: Subgraph of Semigroup from Time Perspective (5 PEs)
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

Visualizing the execution of parallel programs is difficult because low-level
events do not reflect the programmer’s view of the system. Program behavior is
better understood at a higher level in terms of user-defined, abstract events. Per-
spective views enhance visualization, because they summarize user-defined, abstract
events.

I have presented VISTA, a graphical tool for analyzing small-grain parallel
programs. VISTA displays execution graphs from various perspectives (PE, time,
PE-time, procedure). VISTA also provides some functions such as zoom-up, subtree
display, and node inquiry to help users analyze parallel programs in more detail. The
tool’s use has resulted in insights both into the parallelism issues confronting the
parallel programmer, and into the behavior of VISTA itself. My impression of using
VISTA has been that VISTA made the understanding of what was occurring in
paralle]l programs, both at the user and system levels, come much faster and with
greater certainty.

Although VISTA provides parallel programmers with useful functions for un-
derstanding parallel programs, this tool also has drawbacks. First, VISTA does not
show process communications. Therefore, it is difficult to understand a data de-
pendency. Second, since the RGB spectrum is used to represent execution time, if

the execution time is long, distinguishing is difficult, making analysis of parallelism

difficult.
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An interesting extension to VISTA is to incorporate an animation mechanism

to make up for these drawbacks. Animation can enhance the understanding of
parallelism, if a program is not executed by a large number of processors. Another
possible extension to VISTA is to represent a data-dependency graph. If this graph
is made during execution time, the run-time overhead might be very high. Therefore,

the information for the data-dependency graph must be gathered at compile time

as much as possible.
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Figure 29: Execution Graph of Pascal’s Triangle from Procedure View
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Figure 30: Execution Graph of Pascal’s Triangle from PE View (5 PEs)
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Figure 31: Execution Graph of Pascal’s Triangle from Time View (5 PEs)



