When Things Go Wrong:
Predicting Failure in Multi-Agent
Systems

Stephen Fickas, Rob Helm and Martin Feather

CIS-TR-91-15

Department of Computer and Information Science
University of Oregon

When Things Go Wrong:
Predicting Failure in Multi-Agent Systems

Stephen Fickas and Rob Helm!
Martin Feather?

1. Our expertise

Our expertise is in the area of AI&SE. Our early research focus was on mapping from formal
specifications to efficient implementations using a transformational approach. One system that re-
sulted from this work was called Glitter. Glitter can be viewed as an interactive problem solver for
exploring transformational implementations [Fickas, 1985].

More recently, we have become interested in the mapping from requirements to specification, i.e.,
the process that precedes that addressed by Glitter. In particular, in using Glitter we found that
coming up with the initial formal spec that Glitter expects as input was just as hard as mapping the
spec to an implementation. Both Fickas, through the Kate group, and Feather, within the ARIES
project [Johnson&Harris, 1990], have now focused their research on the process of building for-
mal specifications.

A note for those outside of the software engineering area: one can view our use of a formal speci-
fication as equivalent to the use of a behavioral model in other domains. The same concerns with
model synthesis, analysis, simulation and explanation crop up in our work. Expanding slightly,
one can overlay notions of function-structure-behavior onto our representation of formal require-
ments (function), specification (structure), and operationality (behavior).

2. Our current interests

A current interest of the Kate and Aries groups is the specification of multi-agent systems. Related

to this workshop, we have been studying multi-agent systems that have an intelligent, real time

control aspect, e.g., air traffic control, ground transportation systems, nuclear reactors. From these
studies we have devised a theory of multi-agent design [Feather, 1987],[Fickas&Helm, 1991]. We
will not describe our theory in detail here, but we will lay out its major pieces:

The specification/model that we analyze and manipulate consists of two components3:

1. agenerative part denoting, for each agent, the capabilities of that agent (e.g., pilot - enter
or exit air space; controller - assign runway). In our model, this takes the form of a discrete
event language that can be viewed, alternatively, as a subset of Gist [London&Feather,
1982] or a superset of Petri Nets.

1. The first two authors are with the Computer Science Department at the University of Oregon. Questions
about the paper can be directed 1o fickas@cs.voregon.edu.

2. The third author is with the USC Information Sciences Institute.

3. Our motivation for adopting this style of specification derives from [Balzer&Goldman, 1979].

Position Paper for Niagra Workshop on Intelligent Information Systems

2. aconstraining part consisting of a set of ‘goals’, i.e., constraints on behavior. For the pur-
pose of describing composite systems, it is often convenient to express goals in terms of
system-wide properties, regardless of how that system is decomposed into agents (e.g.,
two planes shall never share the same runway). In our model, goals are represented in a
style of temporal logic roughly similar to that of the ERAE language [Dubois&Hagel-
stein, 1989] and the distributed-system logic of [Castro, 1990].

Our design theory identifies a set of processes performed on a specification:

Identification of problematic behaviors. We rely on a scenario/plan generator [Anderson&Fic-
kas, 1989] to find counterexamples, i.e., behaviors that demonstrate a goal is not being met by
the current model of agent cooperation. These counterexamples have two roles: 1) they let us
know if a goal is achieved in the current model, and if not, 2) they act as a guide on how the
goal or model can be changed to bring achievement [Fickas&Helm, 1991], [Downing&Fickas,
1991].

Requirement modification. In our theory, requirements are represented by goals. These goals
may be modified in light of problematic behavior. There are two open research problems here.
First, can we characterize a finite and useful set of goal modifications (e.g., goal weakening, di-
vide-and-conquer)? Second, given two competing goal transformations, we must define the
evaluation criteria that selects among them - without such criteria we would always be free
simply to weaken an offending goal inte non-existence. As noted in [Herlihy&Wing, 1991}, a
theory of the cost of strengthening and weakening constraints is an open problem.

Assignment of responsibility. This is the altemnative “design move™ to goal modification. Infor-
mally, only those agents responsible for a goal are expected to limit their own behavior to en-
sure satisfaction of that goal. As with goal modification, there are two questions of interest: 1)
can we usefully characterize the process of responsibility assignment, and 2) what criteria is
available for choosing among alternative assignments, e.g., systems using all human agents,
systems using a mixture of human and software agents, systems using strictly software and
hardware agents. Both {Feather, 1987] and [Dubois&Hagelstein, 1989] have taken up the first
question. The second question has become a major focus of our current research. In particular,
it is one of the questions that we bring to the workshop.

The outcome of design is a specification of the agents that will be involved in the system, and the
problem solving protocol that will be used to coordinate their actions to meet system goals.
Agents, themselves, will include specifications of the following components: 1) what goals they
are responsible for, 2) what abilities they must have to carry out those responsibilities, 2) how
they must limit their behavior to meet their goals, and 4) what interface they must have to coordi-
nate with other agents. For the latter, we stop well short of specifying the level of interface detail
typically found in the HCI and engineering fields. Thus, while we may specify that two agents
must agree on a signal between themselves, we do not worry about the type of signal (e.g., voice,
graphical, mechanical, electronic, etc.).

3. Classes of failure in multi-agent architectures

Our theory of multi-agent design has the need for an explicit evaluation component (refer to as-
signment of responsibility in the previous section). Our efforts to date have centered on general
notions of overall goal achievement (i.e., have all the system goals been covered by the agents in-

Position Paper for Niagra Workshop on Intelligent Information Systems

volved), the reliability of agents carrying out their assigned responsibilities and avoiding acts that
are detrimental to the system (e.g., agents acting as “loose cannons”), and the soundness of the in-
ter-agent problem-solving protocol (i.e., matching problem-solving interaction with the problem
at hand). To illustrate the source of these criteria, we list a case sampler of what we term evalua-
tion failures taken from two of the mulii-agent domains we have studied, train systems [Shaw,
1961]4 and the Three Mile Island (TMI) plant [Kemeny, et al 1979]. We have broken these cases
into three classes: those involving problems with goal coverage, those involving single agent fail-
ure (the proverbial weak link), and those involving the broader problems of inter-agent coopera-
tion.

3.1 Role assignment failures

Referring to our design theory introduced in section 2, the responsibility of achieving system-
wide goals is assigned to agents. This assignment process can go awry in two basic ways:

Under-assigned roles (who's watching the store). It is difficult to analyze the myriad behavior of
complex systems, and how they relate to the goals of the system. Actions necessary in meeting a
goal may be left unassigned, i.e., no agents are made responsible for the goal (and hence, the goal
achievement act). In early train systems, the conductor of a stalled train was made responsible for
warning trains approaching from the rear to slow down, but no one was assigned the responsibili-
ty of warning front approaching irains - trains were scheduled so that head-on collisions were im-
possible. Later scheduling policy allowed interleaved, bi-directional travel, but still no one was
assigned to warn front approaching trains. A spate of head-on collisions lead to the introduction of
a new agent assigned to warn from the front. At TMI, while there were county agents assigned to
carry out evacuation, there was no TMI agent assigned the responsibility of notifying the county
of a disaster requiring evacuation. An unexpected agent, the press, eventually carried the mes-
sage.

Over-assigned roles (too many cooks). A goal can be over-assigned in the sense of having too
many agents redundantly rtesponsible for it’. For example, at TMI there were judged to be too
many agents responsible for reporting the same information. The resulting cacophony of reports,
sometimes in conflict, led to chaosS. Taking the converse, in some train systems over-assigned
roles led to no reaction. For instance, both the conductor and the engineer were assigned the re-
sponsibility of looking for special orders (typically, orders to wait at a siding). Cases arose where
neither looked because each thought the other would check.

3.2 Single agent failures

Given the notion of responsibility from our design theory, we are led to the notion of irresponsible
behavior’: agents that fail to follow certain roles they have been assigned to achieve some goal.
This comes in at least four flavors:

4, We have also looked at multi-agent failures in the relaled domain of air traffic control [Nance, 1986], and
have just as readily found ATC cases 1o fill our evaluation categories. However, train failures are slightly
casier 1o describe and have a longer history, i.¢., more chances to go wrong and in more ways.,

5. There is a related problem of having too many agents fractionally responsible for a goal - see section 3.3.
6. Of course, some forms of hardware safety systems rely on multiple, redundant components, and a voting
or averaging scheme to integrate the output of each.

7. There is not necessarily a pejorative sense here - we mean literally the behavior of agents that does not
match their assigned responsibilities.

Position Paper for Niagra Workshop on Intelligent Information Systems

Responsibility overload (underpowered agents). An agent may be assigned 1) a single responsi-
bility that it cannot fulfill, or 2) a set of responsibilities, each of which it can handle in isolation,
but not in accumulation, As an example of the former, conductors on a stalled train were responsi-
ble for warning approaching trains of the break down. Conductors were expected to walk outto a
safe stopping distance and set their flags. Unfortunately, trains were sometimes scheduled too
close together to give the conductor time to run, let alone walk, the required distance. This was the
cause of a number of train collisions. As an example of the second overloading problem, some-
times station operators on a busy line were assigned multiple responsibilities: set the stop signal,
clear the stop signal, communicate with adjacent operators on track status. The agents got caught
up in other duties and did not set the clear signal in time - trains backed up. The samc station op-
erators let other duties interfere with setting the stop signal in time - trains collided®. While one
would expect that priorities could be specified among responsibilities when an agent becomes
overloaded, for instance trading off disaster for inconvenience, it appears to have been impossible
to provide such an ordering for every conceivable problem in the train management domain.
Without an explicit priority system, overloaded agents are left to infer their own (see “outguess-
ing” below).

Information overload. The TMI accident was blamcd on both too much information being pre-
sented to operators, and at too low a level to be useful®. Operators could not determine what was
important and what was of secondary interest. One of our colleagues, David Novick, is studying
air traffic control protocols between controller and pilot from a similar view [Novick, 1990].

Outguessing the system (overpowered agents). Intelligent agents may come to believe that they
know the structure and function of a system, and its current state. This may lead them to infer
many strange and wonderful things. On the positive side, correct inferences can sometimes avert
disaster, e.g., a station operator manually flagging down a train given a broken stop signal, a TMI
operator inferring that a warning gauge is non-functional, and shutting down the reactor. On the
negative side, cases abound where the agent’s view of 1} the system structure is incorrect, 2) the
system function is incorrect, or 3) the current system state is incorrect. Each incorrect view can
lead to its own kind of disaster, e.g., not carrying out an assigned role because it does not appear
to be necessary (or of low priority), carrying out an unassigned role because it does seem neces-
sary.

Conflicting interests. In early train systems, an engineer was given the dual (and interfering) re-
sponsibilities of maintaining safety and making speedy progress. Further, the railroad big wigs de-
cided to fire engineers who had a weak progress record. Engineers began to disobey speed limits,
warning signals and even direct orders to stop, leading to trains colliding, derailing, and running
off open draw bndges . At TMI, the operators seemed to have a more noble conflict: rying to
avoid both over-filling and under-filling the reactor chamber with water. They compromised, di-
sastrously, on the under-filling side.

8. Another twist with the same result is an agent playing roles in more than one system, €.g., a train station
operator also acting as the Western Union telegraph representative for an area.

9. There was also a critique of the actual control room interface, i.¢., the gauges, lights, buzzers, but as noted
earlier, this is beyond our scope.

10. There is a social/organizational compenent to this case that may imply that we are addressing more than
we aclually are. We have not tackled the psychology of organizations, inter-personal relationships, cognitive
engineering, ctc. Critiques of multi-agent failures directly tied to such fields are beyond our current evalua-
tion model,

Position Paper for Niagra Workshop on Intelligent Information Systems

3.3 Multiple-agent (or protocol) failures

A problem solving protocol, in our model, is the dialog (nee communication) and actions carried
out among agents to solve some common problem. We are not the first to study such problem-
solving protocols from a formal sense: [Davis&Smith, 1983] discuss a bid-and-award protocol for
(dynamically) choosing an agent to work on a problem; [Bond, 1990] describes a multi-agent, ne-
gotiation-based protocol. However, we are less interested in devising new protocols, and more in-
terested in the general question of which protocol architectures are best suited to which multi-
agent problems. Taking the negative side, when will a given protocol lead to failure for a given
problem.

Fragmentation of responsibilities. In contrast to overloading a single agent with too much respon-
sibility, it is possible to divide a responsibility among too many agents, so that overly much coor-
dination among a number of agents is needed to achieve that responsibility. The volume of
communication that this necessitates may offer many opportunities for error. For instance, early
communication protocol for signalling a train T to stop at a distant station S went through the fol-
lowing steps: 1) the dispatcher contacted an operator at a station before S, and verbally give the
order to the operator, 2) the operator would stop T, and read the order to the conductor, 3) the con-
ductor would pass the order along to the engineer, and 4) the engineer would stop (?) at S. Unfor-
tunately, there are documented cases of failure of each and every step in this sequence, many
leading to a train collision.

Poor risk analysis. There may be mismatches between 1) the reliability of a protocol, and 2) the
outcome of miscommunication. In particular, some types of inter-agent dialogs are not well
matched to the larger control acts that they service. For example, many of the early multi-agent
train-signaling protocols were of a rather risky nature, using the wrong defaults, easily confused
control signals, non-failsafe mechanisms, ungraceful-degradation, etc. It seems clear that they
were wholly lax or inappropriate for the act they were based on: control of hard-to-stop trains on
potential collision courses. Later changes added more elaborate dialogs (e.g., formal confirmation
procedures) and safeguards (e.g., automatic derailers).

Hand-qoff errors (shifting responsibilities). Responsibility can shift from one agent to another. For
example, some fragmentation or sharing of responsibility is typically necessary among agents. A
standard approach is for agent A to be responsible for goal G until event E, and agent B to be re-
sponsible for G from E onwards!L. For instance, when a train crosses from block A into block B,
a responsibility shift should occur. In numerous cases, this shift was not made cleanly, leaving a
train in an unmonitored state. In a more bizarre example, a scheduled maintenance of the signals
on a block of track called for the replacement of one of the signals. The new (but yet unworking)
signal was placed in front of the existing (working) signal in the clear position. Before the full
hand-off could take place, a train was caught in this ambiguous situation, read the wrong signal,
and a collision occurred shortly thereafter.

A given protocol may specify hand-offs for emergency situations as well as those occurring dur-
ing normal operation, e.g., a brakeman will act as back-up and take the conductor’s job of flagging
a stalled train if the conductor is unable to carry out the flagging responsibility. The prevalent
problem here seems to be determining if the conductor has relinquished (or should relinquish) this
responsibility. In the worst cases, the brakeman was left to infer this information, and sometimes

11. Instead of an event E, division may be on a time T, ¢.g. a shift-change,

Position Paper for Niagra Workshop on Intelligent Information Systems

did not, at least in a timely fashion.

3.4 Cross products

As one might expect, failures are often caused by combinations of the above problems. For exam-
ple, at TMI the inter-agent communication protocol was flawed, leading to lack of information for
the operators. Given the scarcity of information, operators made inferences to fill in what they
needed. These inferences were wrong, leading in part to the disaster. Using a train example, an
unnamed conductor C of a stalled train had the responsibility of waming approaching trains.
However, C reasoned 1) that no trains were scheduled for several hours, and besides, 2) the speed
limit on the block was 10 miles an hour. These two assumptions in accumulation, at least as later
reported by C, led C to infer that he did not need to fulfill his warning role. Both assumptions
were wrong: 1) a “special” was scheduled to arrive in minutes (and did), and 2) the speed limit
had just recently been increased. By the time the special saw the stalled train, it was unable to stop
before collision.

4, Status

Qur ultimate goal is an active design assistant that will help generate formal specifications of
multi-agent architectures that are correct by construction. From this perspective, we would like to
critique any proposed multi-agent architecture that was based on unfilled roles, or an unsuitable
problem solving protocol, or a high propensity for agents to try (or need) to outguess the system,
or too many agents involved (either relatively or absolutely), etc. We would like all this in a for-
mal package, one we could integrate with the design theory outlined in section 2. We have some
small pieces of this package built, e.g., [Fickas&Helm, 1991] discusses a scenario generator for
testing goal coverage, [Downing&Fickas, 1991] discusses a qualitative modeling tool for critiqu-
ing multi-agent resource-management systems, [Fickas&Nagarajan, 1988] discusses the use of a
case-based tool to use past cases of failure, much like those of the last section, to critique specifi-
cations in a resource-management domain. However, they are just a small step towards what we
see as needed!2, and further, their integration into a single evaluation tool remains an open prob-
lem.

5. References

[Balzer&Goldman, 1979] Balzer, R., Goldman, N., Principles of good software specification and
their implications for specification languages, Specification of Reliable Software, IEEE
Press, 1979

[Castro, 1990] Castro, J., Distributed System Specification using a temporal-causal framework
(Ph. D. thesis), Imperial College of Science and Technology and Medicine, University of
London, Department of Computing, 1990.

[Davis and Smith, 1983] Davis, R. and Smith, R, Negotiation as a metaphor for distributed problem
solving, Artificial Intelligence 20:63-109, 1983 (reprinted in Bond, A. and Gasser, L., An
analysis of problems and research in Al in Bond, A. and Gasser, L. (eds.) Readings in
Distributed Artificial Intelligence, San Mateo, CA: Morgan Kauffman, 1988).

12. See, for instance, the compendium of multi-agent failures in SIGSOFT, January 1991.

Position Paper for Niagra Workshop on Intelligent Information Systems

[Downing&Fickas, 1991] Downing, K., Fickas, S., A Qualitative Modeling Tool for Specification
Criticism, Conceptual Modelling, Databases, and CASE: An Integrated View of Informa-
tion Systems Development, Peri Loucopoulos (ed), Ablex, 1991

{Dubois&Hagelstein, 1989] Dubois, E., Hagelstein, J., A Logic of Action for Supporting Goal-Ori-
ented Elaborations of Requirements, In Proceedings of the Fifth International Workshop
on Software Specification and Design, Pittsburgh, Pennsylvania, May 1989

[Feather, 1987] Feather, M., Language support for the specification and development of composite
systems, ACM Transactions on Programming Languages and Systems, Volume 9, Number
2, April 1987

[Fickas, 1985] Fickas, S., Automating the transformational development of software, In JEEE
Transactions on Software Engineering, Vol. 11, No. 11 Nov. 1985

[Fickas&Helm, 1991] Fickas, S., Helm, R., Acting responsibly: reasoning about agents in a multi-
agent system, TR-91-02, CS Dept., U of Oregon, Eugene, Or., 97403, February 1991

[Fickas&Nagarajan, 1988] Fickas, S., Nagarajan, P., Being suspicious: critiquing problem specifi-
cations, In Proceedings of the 1988 AAAI Conference, Minneapolis, 1988

[Herlihy&Wing, 1991] Herlihy, M., Wing, J., Specifying graceful degradation, JEEE Transactions
on Parallel and Distributed Systems, January 1991

[Johnson&Harris, 1990] Johnson, L., Harris, D., The ARIES Project, Proceedings of the 5th An-
nual RADC Knowledge-Based Software Assistant (KBSA) Conference, Liverpool, NY,
pages 121-131, September 1950

[Kemeny, et al 1979] Kemeny, J. et al, The President’s Commission on the Accident at Three Mile
Island, Pergamon Press, 1979

[Novick, 1990] Novick, D. G., Modeling belief and action in a multi-agent system, Conference on
Al, Simulation and Planning in High-Autonomy Systems, Tucson, AZ, March, 1990
[Shaw, 1961] Shaw, Robert B. Down Brakes: a History of Railroad Accidents, Safety Precautions,
and Operating Practices in the United States of America, London, United Kingdom: P. R.
Macmillan Limited, 1961.

[Woods&Roth, 1988] Woods, D., Roth, E., Cognitive systems engineering, Handbook of HCI, He-
lander (ed), North-Hoelland, 1988

Position Paper for Niagra Workshop on Intelligent Information Systems

