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Abstract

A software visualization tool is described that transforms program execution
trace data from a multiprocessor into a single color image. The image is essentially
the program’s logical procedure-invocation tree, displayed radially from the root.
An algorithm is described that condenses the image both radially and laterally, pro-
ducing a color-dense abstraction of the program's execution behavior: a program
signature, within a workstation window, Three views are offered, implemented by
painting the image with colors corresponding either to processors, procedures, or
time. Time is sequentially mapped onto the color spectrum, exploiting the user’s
perception of spatial locality. The signature can be thought of as an animation
where successive frames are superimposed; however, our algorithm has the advan-
tage, like that of a text pretty printer, of analyzing the entire trace to produce
a single, clear picture. An implementation of the tool was made in X-Windows,
including a user interface that can zoom the image and annotate any node in the
image with the corresponding procedure name. Experimentation with the system
was performed with trace data from Panda, a shared-memory multiprocessor logic
programming system. We demonstrate how the tool helps the programmer develop
intuitions about parallel performance and how condensation successfully abstracts
large traces.
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1 Introduction

Parallel programming is difficult in two main senses. It is difficult to create correct
programs and furthermore, it is difficult to exploit the maximum possible performance
in programs. One approach to alleviating these difficulties is to support debugging,
visualization, and environment control tools. However, unlike tools for sequential pro-
cessors, parallel tools must manage a distinctly complex workspace. The numbers of
processes, numbers of processors, topologies, data and control dependencies, communi-
cation, synchronization, and event orderings multiplicatively create a design space that
is too large for current tools to manage.

The overall goal of our research is to contribute to processing this massive amount
of information so that a programmer can understand it. There is no doubt that a
variety of visualization tools will be needed (e.g., [7, 10, 16, 6, 4]): no one view can
satisfy all applications, paradigms, and users. Yet each view should be considered on
jts own merits: what are its strong and weak points, how effective is it in conveying the
information desired, and hiding all else. In this paper we introduce one view in such a
system: based on a new technique, called “kaleidescope visualization,” that summarizes
the execution of a program in a single image or signature.

Unlike scientific visualization, i.e., the graphical rendering of multi-dimensional
physical processes, in parallel performance analysis there are no “physical® phenom-
ena; rather, abstract interactions between objects. Thus renderings tend to be more
abstract, are less constrained by “reality,” and are certainly dealing with many inter-
acting parameters controlling the design space. Visualization is still very much art, and
from that perspective, we consider ourselves “abstractionists,” i.e., we are searching for
the ideal abstract pictures to clearly convey parallelism, speedup, utilization, and other
metrics.

Kaleidescope visualization is the graphical rendering of a dynamic call trec of a
parallel program in polar coordinates, to gain maximum utilization of space. To fit
the entire tree into a single workstation window, condensation transformations are per-
formed to shrink the image without losing visual information. Section 3 of this paper
describes an X-windows application called VISTA that is our prototype trace-driven
implementation of kaleidescope visualization. Both condensation and coloration al-
gorithms used in VISTA are explained. In Section 4, we describe the parallel logic
programming platform upon which experiments with VISTA were conducted, and an-
alyze the performance of a few logic programs to illustrate the power of the tool. In
Section 5, conclusions are summarized and future research is outlined.
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Figure 1: A WAMTRACE Snapshot

2 Literature Review

Earlier work on WAMTRACE [2, 3], a visualization tool for OR-parallel Prolog, has
influenced our work a great deal. WAMTRACE is a trace-driven animator for Aurora
Prolog [9). Aurora creates a proof tree over which processors (“workers”) travel in
search of work. As illustrated in the snapshot given in Iigure 1, WAMTRACE shows
the tree, growing vertically from root (top) to leaves (bottom}, with icons representing
node and worker types (e.g., live and dead branchpoints, active and idle workers).

The philosophy of WAMTRACE was that an experimental tool should present as
much information to the programmer as is available. This often results in informa-
tion overload, especially because the animation progresses in time, leaving only the
short interval of the near-present animation frames in the mind of the viewer. With
comparison to WAMTRACE, our goals in VISTA were:

e peneralize the tool for other language paradigms. Specifically, AND-parallel exe-
cution is more prevalent in most languages, and needed to be addressed.

e to summarize the animation, effectively superimposing frames.

¢ abstract away as much information as possible so as not to detract the viewer
from understanding one thing at a time. Thus we introduce different views of the
same static image, to convey different characteristics.

o more advanced use of color to reduce image complexity and increase viewer intu-

itions.



Note that the emphasis of WAMTRACE on animation is a feature, not a bug -
the animation enables the gross behavior of the dynamic scheduling algorithms to be
understood. Currently, the signature in VISTA is not animated, although it could casily
be displayed in a manner to suggest animation. In this paper, we analyze a system with
simple on-demand scheduling [12], and so animation is not critical to understanding
program behavior.

There are numerous views of performance data, quite different than WAMTRACE,
e.g., (7, 10, 16, 6, 4]. In general, these methods are effective only for large-grain pro-
cesses, and either do not show logical (process) views of program execution, or cannot
show such views for large numbers of processes. Voyeur [16] and Moviola [6] are closest
in concept to VISTA. These animators have great benefit, but this limits the complex-
ity that can be realistically viewed. The relation of these other tools with VISTA is
reviewed by Park [11]. Other related research by Kahn and Saraswat (8] concerns a
visual representation of committed-choice languages, mainly for programming benefits,

not for performance analysis.

3 VISTA: Visualization Tool for Parallel Programs

The main goal of VISTA is to give effective visual feedback to a programmer tuning
a program for parallel performance. To achieve this goal, VISTA displays an entire
reduction tree in one (workstation) window, with image condensation il needed. Two
types of condensation are performed: level and node condensing, as described in this
section.

In addition, VISTA enables a user to view the tree from different perspectives, such
as PE, time, or procedure, and zoom-up different portions of the tree. Since the tree
is usually dense for small-grain parallel programs (even after condensation), and the
tree must be redisplayed when the user desires different views, the tree-management
algorithm must be efficient and the window space must be utilized effectively.

These goals were accomplished with the algorithms described here. As a small
example, consider that the trace-processing and redisplay times of the 15,419 trace
records (524,248 bytes) for the Semigroup benchmark (see Section 4) are 45 seconds
and 4 seconds, respectively, for a processing rate of approximately 300 records/second
(SUN SPARC). These response times encourage a user to frequently redisplay data in
different views.

It is easiest to describe the algorithms by illustrating their effect on a small parallel
program. To this end, we first introduce a parallel logic programming language, FGHC,
because it has an elegant and extremely simple concurrent semantics. I'GHC is a
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go(In, Out) :- gsort{Iam, Out-[1).

qsort([], R-A) :- R=A,

qsort([XIL]), RO-R)} :- split{(L,X,L1,L2),
gsort(Li,RO-[X[R1]),
qsort(L2,R1-R).

split([1, _,S,L) = s=00, L=0.
split([XIXs],A,S,L) :- a>X | L=[XIL1], =spiit(Xs,A,S,L1).
split([X|Xs],A,S,L) :- A=<X | s=[XIS1], split(Xs,A,S1,L).

Figure 2: Sample Program : Quick Sort in FGHC

committed-choice parallel logic programming language, related to languages such as
Parlog and FCP [15]. There is nothing particular to this family of languages that
is required for the algorithms described here, or the VISTA tool. Currently we are
entertaining plans to instrument other parallel languages such as PCN [5].
Committed-choice programs are built of guarded Horn clauses of the form:

H:— G1,G2, ...,Gm I B1, Bg, ...,Bn

where m > 0 and n > 0. H is the clause head, G; is a guard goal, and B, is a body
goal. The commit operator ‘|’ divides the clause into a passive part (the guard) and
active part {the body). Note that if the guard is empty, no commit operator is given.
The informal semantics! of such programs are: to execute a procedure p(A, Az, ...,
Ai) with arguments A;, the arguments must match (passively unify with) the formal
parameters of the head of some clause with name p. In addition, the guard goals must
all succeed. If these conditions hold, the procedure invocation may “commit” to that
clause (or any other clause so satisfying these conditions). The body of the committed
clause is then executed. A program successfully executes when no goals remain Lo be
executed.

Synchronization in committed-choice programs in enforced implicitly in the comnit
rule. If no clause can commit to a procedure invocation, that invocation suspends.
Suspension occurs because a passed parameter is not sufficiently instantiated to allow
successful head matching or guard reduction. A suspended invocation is resumed when
a later binding is made to a variable associated with the suspended invocation.

To describe the algorithms, we consider the simple Quick Sort program shown in
Figure 2. We now give some terminology for describing logical call trees.

Definition: The level of a node is the path length from the root to the node.

! For more formal semantics, see for instance Shaprio {14].



The level of the root is zero. The root is the initial procedure invocation,
called the query. (m]

Definition: The height of a tree is the longest path from the root to a leaf,
plus one. The height of a node is the height of the tree minus the level of
the node. ]

Definition: Level condensing is a mapping from a tree T to a tree 7" with
the same ancestor and descendant relationships, such that a node n at level
lin T is mapped into a node n’ at level /' in 1", where I’ = |//c| and c is
level-condensing ratio (defined in Section 3.1). ]

Definition: Node condensing is the removal of all the descendants of the
node n from the tree, if the allocated sector (defined in Section 3.3) for n

in the window space is less than one pixel. m]

3.1 Condensation Algorithms

There are several ways to map an arbitrarily large tree onto a limited window space.
One method is to create an entire tree from the trace, and then reduce the tree whenever
the tree is displayed. Although this method needs only one pass over the trace file, it
may be impossible to fit the entire tree in main memory. If the tree resides in secondary
storage, access time would be too slow. Another method is to reduce the tree, by the
ratio of the maximum dimension of the window to the total number of trace records.
However, the resulting tree, a simple contraction of the original tree, will not correspond
to user intuitions, because the trace is sequenced by time, not ancestor relationships.

We employ a more accurate abstraction, although it requires more I/0. Two passes
are required over the trace: one to find the tree height and a second pass to create a
level-condensed tree. Since the tree is condensed by level, the tree after condensation
keeps the shape of the original tree (although scaling is not precise). This original
shape allows us to carry our intuitions over from the tool’s view to tuning performance
of actual programs.

VISTA management is summarized in Figure 3 and explained in the following sec-
tions. There are two inputs to the algorithm: a trace file and a source program. The
first trace record is PL,,.z, the number of PEs allocated for the program. Figure 4
shows the format of the remaining trace records. Each field in a record is a non-negative
integer value. After reading a trace record, the children count (the number of body
goals in the procedure clause corresponding to the invocation) is obtained by indexing
the source program with clause#. The indez is an element of an ordered, independent



vista(trace file, source program) {
1. First pass(trace file, source program);
Calculate height of reduction tree, without actually creating tree.
Trace file is read once.

2. Second pass(trace file, source program);
Level condensing is done if needed, and a tree is created.
If this step is called by a subtree request, no level condensing is done.

3. Weight calculation(tree);
Transform tree into DAG, and calculate a weight for each node.

4. Node allocation(DAG);
Calculate the location of each node in polar-coordinate
system centered at root node, using weights.

5. Display graph(DAG);
Set up graphic environment;
Display default graph;
repeat {
wait until user initiates some action;
display the graph the user wants
if (user wants a subtree at selected root)
second-pass() through node-allocation();
until {user wants exit)

}o)

Figure 3: Overall Control Algorithm for VISTA
sequence for each PE, e.g., if indez = k, then tle trace record corresponds to the k"
procedure executed on pe.

In the first pass, the tree height? is computed from the trace, without creating a
tree data structure, as summarized in Figure 5. To calculate the height of the tree, we
use a closed hash table, accessed with the function hash(pe, indez). The hash table is
illustrated in Figure 6. The algorithm places nodes in the table with function hash-
producer, and looks-up the parent of a node with function hash-consumer. When the
child count, ccntf, in an entry is decremented to zero, the table entry can be reused.
Notice that the hash function naturally partitions the trace records corresponding to
each PE, to different segments of the table. In the example, table entries 11, 21, and
23 still have children to process, potentially calculating a new tree height.

2The basic unit of window space is assumed to be one pixel throughout the paper.
3 Assume for now that the hinder and nodeptr fields are invalid, as they are used ouly in tle next

pass.



item range explanation

lime 0~ o0 time the reduction is initiated, in msec
clause# | 1 ~ max clause # | sequence # in source program by clause
pe 0 ~ (PEngr — 1) | PE on which the reduction is executed
inder 1~ co trace sequence number for PE executed
ppe 0 ~ (PEqnaz — 1) | parent PE (ppe of the root node is 0)
pindez | 1 ~ o0 parent index (pindez of the root node is 0)

Figure 4: Trace Record Format

first-pass(trace file, source program) {
read first and second trace record; — PE,;qx and first node record
hash-producer{current record);
tree-height := 0;
while (read next record {rec) # end of file) {
level := hash-consumer(rec);
if (level > tree-height)
tree-height := level;
cend i= child-count(ree. clausez#),
if (cent > 0) — process the node’s children
hash-producer(rec);

}

return (tree-height);

}

hash-producer(rec : trace record) {
i := hash(rec.pe, rec.inder); — i is hash index of node
cent := child-count(rec. clause#);
hash-table[i] := (rec.pe, rec.index, rec.level, cent);
return (7); — return node’s level

hash-consumer(rec : trace record) {

¢ := hash({rec.ppe, rec.pindez); — 1 is hash index of parent
hash-table[i].ccnt := hash-table[i].cent — 1; — consume one child
return (hash-table[i].level + 1); -~ return child’s level

Figure 5: Algorithm for Calculating Tree Height



i | pe | index | level | ccnt | hindex | nodepir | flag
10| 1 0 | o0 0 A
20| 2 1 | 0 1 A
3o 3 2 | o 2 C
4o 4 3 [ 0 3 C
500 5 4 [ o 4 M
6lo] 6 5 | 0 5 M
[u]1] 1 [ 3 [ ] = E
212 1 | 2 [ 1 2 E
22| 2 3 | 0 21 E
22| 3 4 | 1 29 N
3113 1 | 2 | o 2 D
3213 | 2 3 | o 31 D

Figure 6: Hash Table after Processing 15" Record (Other Entries Invalid)

In order to calculate the level-condensing ratio, ¢, the maximum tree height to be

displayed (i.e., limitation of the window space) is needed:

w
hmaz - [ﬂJ 1

where w is the maximum window width, and d is the distance between two adjacent
levels. With tree height A, level condensing is performed. If & £ hy;4z, then no
level condensing is needed and the entire tree is displayed (unless node condensing is
performed, as described in Section 3.3). If & > hy,;4r, level condensing is performed

with the level-condensing ratio, ¢, calculated as follows:

T
hias

Colmaz — co(h — colinaz)
c = Cg i S 15
B co+1 1>t

Parameter 1 is called the threshold and ! is the node level. This condensation scheme

€o

[4

puts more emphasis (space) on the levels closer to the root because carlier reductions
are generally more “important” than later reductions. The heuristic corresponds to the
user’s intuition that processes responsible for distribution of many subprocesses should
appear larger. At this stage of the algorithm, the levels to be displayed, and to be
discarded, are decided.

It should first be noted that a remaining implementation problem is how the tree
should be represented physically in memaory. Since the nodes do not all have the same



number of children, the maximum out-degree is highly variable among programs. It
is inefficient to allocate the maximum out-degree for the children pointers, and thus a
binary tree is used to emulate the logical tree. This decision is primarily an artifact of
the implementation language C.

The level-condensing algorithm is summarized in Figure 7. The closed hash table
used in the first pass is used here also. Field hindex, the parent hash index, is shown
only for clarity, but need not be stored in the table. Field nodeptr is a pointer to the
node of the trace record if the trace record is not condensed or a pointer to the parent
node if the trace record is condensed. Note that the parent itself may be condensed,
and so on. This guarantees that a tree branch is built skipping over all condensed
nodes.

Figure 8 shows the original tree for Quick Sort (the trace executed on four PLs
and consists of 23 records). Each node is labeled with a triple, (s;, pe, indez), where
s; is procedure s (abbreviated) invoked at trace index i, pe is the PE number, and
index is the sequence index of that PE. For example, (g5, 3,1) of node D denotes that
procedure gsort was invoked as the 5% trace record, and reduced on PE = 3 as the first
goal executed by that processor.

Figure 9 shows the resulting tree after level condensing, assuming level-condensing
ratio ¢ = 2. All odd-level nodes are removed because if (! mod c) # 0, all nodes in level
! are condensed. Figure 6 shows the hash table after processing the 15* record in the
second pass, assuming that no collisions occur. Values A, C, M, E, N, and D in field
nodeptr of the hash table represent pointers to the nodes of Figure 9.

The final hash table field, flag, is required if the second pass is called by a subtree
request, in which the user requires the tree to be redisplayed from a given root. The
trace index of this selected root is accessed from the tree structure and passed to the
algorithm. It is obvious that all trace records preceding the selected root cannot be part
of the subtree. However, if we attempt to process the trace file starting at the selected
root, it is not possible to determine which nodes are subtree members because ancestor
information has been lost. Therefore we reprocess the trace, from the beginning, using
the flag field. The subtree root has a valid flag, and each node inherits the flag of its
parent. Thus we can build a correct subtree. Level condensing is not performed for a

subtree in order to view detail near the selected root.

3.2 Weight Calculation

Each node at level / in the logical tree is displayed in the window at a locus defined
by radius r = d x {, where d is the (constant) distance between two adjacent levels.

The node is illustrated by a point, however it is connected to its children (at the next



second-pass(trace file, source program) {
co ;= tree-height [ hpmaz;
calculate threshold;
read first and second record; — PE,;;oz and first node record
hash-producer(current record);
while (read next record # end of file) {
level := hash-consumet(curtent record);
if ((tree-height < hma-) or (subtree request})
level-condense-no(current record);
else {
if (level < threshold)
rem := level mod cp;
else rem := level mod (cp + 1);
if (rem = 0)
level-condense-no{current record);
else level-condense-yes(current record);

L

level-condense-no(rec : trace record) {
node := make-node(rec);
hinder ;= hash(rec.ppe, rec.pindez);
connect to the parent or siblings using parent node ptr;
ceni ;= child-count(rec.clausez);
if (cent > 0) {
i := hash-producer(rec);
hash-table[i].nodeptr := node;  — hash entry points to new node

bl

level-condense-yes(rec : trace record) {
hindez := hash(rec.ppe, rec.pindes);
cenl := child-count(rec.clause#);
if (cent > 0) { — hash entry points to parent
i := hash-producer(rec);
hash-table[i].nodeptr := hash-table[hindez].nodeptr;

Figure 7: Algorithm for Second Pass: Level Condensing

10
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Figure 8: Whole Reduction Tree for Quick Sort Program: -
gsort([2,1,4,5,3],X)"

Figure 9: Reduction Tree After Level Condensing Quick Sort Program by 2:1
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level) by a closed polygon around the “family” (the polygon degenerates into a line
if there is one child). The polygon itself is filled, as is discussed in Section 4. After
level condensing has completed, the main problem is how the nodes at each level are
allocated to the corresponding locus (a concentric circle). This is analogous to the
pretty printing problem for text.

A naive, evenly-spaced allocation has the serious disadvantage that nodes at further
levels are not taken into account, resulting in overlapping polygons and a general mess.
We solve this problem heuristically by allocating a sector to each node depending on
its weight. The node and its children are then displayed within the range of the sector
only.

Before calculating the weight, a level-connection transformation is made to enable
effective traversal of the tree. Standard depth-first and breadth-first search techniques,
even if implemented without recursion, have high space complexity for large graphs.
We transform the tree into a more efficient data structure, as illustrated in Figure 10.
This figure represents the Quick Sort reduction tree (Figure 8) after level connection,
assuming no level condensing has been done. A binary tree has been implemented, as
discussed in the second pass. In order to traverse the tree by level, a cousin pointer
(represented as “-- " in Figure 10) is introduced. This level-connection transforination
cannot be done in the second pass because at that time, the nodes on the same level
are not necessarily processed in order. After the transformation, the array level-start-
node[i] points to the first node in each level ¢, and all the nodes in the same level are
connected. The tree (actually a DAG) can now be quickly processed from any level.
When a subtree is requested or a node inquiry made, the tree is searched from the level
nearest to the mouse cursor position.

The weight w for each node is heuristically defined as the sum of the weights of its
children plus the height of the node. Thus more weight is put on nodes closer to the
root because, the closer the node is to the root, the fewer nodes the corresponding circle
can contain, Figure 11 shows an example of the weight calculation for the Quick Sort
program. For example, the weight of the node in level two is 78, which is calculated
from 72 (the sum of its child weights) plus 6 (the height of the node).

The weight-calculation algorithm is summarized in Figure 12. Procedure connect-
level, connects levels, starting from the root. In each level, the first node in the next
level is found and stored in array level-start-node[i]. To connect all the nodes in the
same level, the rightmost child points to the leftmost child of the next node (with
children) by a cousin pointer. In procedure weight-calculation, the weight for each
node is calculated, starting at the leaves because each node needs its child weights to

compute its weight.
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level start node

level 0

level 1

leve] 2

level 3

level 4

level 5

level 6

Figure 10: Reduction Tree After Level Connection for Quick Sort Program

85] 78 + 7 =85
78] 15 + 17+ 40+ 6 =78

40| 9+ 13+ 13+ 5 =40

Figure 11: Weight Calculation for the Quick Sort Program
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weight-calculation(tree) {
connect-level(tree);
for (i = tree-height; i > 0;i:=17 — 1) {
node := level-start-node(i];
while (node # NULL) {
node-height := tree-height — 7 + 1;
node—weight := node-height + sum of child weights;
node := node—next;

|

connect-level(tree) {
level-start-node[0] = root-node;
for (i = 0; i < tree-height; i := i 4 1) {
node := level-start-node[i];
while (node # NULL) {
if (node has children) {
if (child is the leftmost node in the level)
level-start-node[i+1] := node—child;
connect right-most child to left-most child of the
next node (with children) by cousin pointer

}

node = node—next;

Figure 12: Algorithm for Weight Calculation

3.3 Node Allocation and Display

After weight calculations, a sector is allocated to each node depending on its weight.
The sector is defined as the subset of the concentric circle within which a node can be
displayed. To formalize the sector calculation, consider a unique labeling of each node
by a path from the root {z,z3, ..., 2} }, where z; is the sibling number traversed in the
path. For example, in Iigure 11, node J with weight 9 has label {1,3,1}.

The sector of a node at path p is represented as a pair (sp,a,), where s, and a, are
the starting degree and the allocation degree of the node, respectively. The sector of
the root is defined as (0, 360). The starting degree s, for a node at level k is calculated

as follows:

s _ { 82),T2 e T(k=1) leftmost child
T14EZ ey Tk - .
Szy@aren(zk—1) T Gz ,2g,..(zx—1) Otherwise

In other words, if the node is the leftmost child, then the starting degree is equal to
the starting degree of tlie node'’s parent. Otherwise, the starting degree of the node is

equal to the sum of the starting and allocation degrees of its left sibling. The allocation

14



degree a, for a node at level k is calculated as follows:

We ) T2,k

m
Zj=l wm.l »I2 l"'l(zk_j)

gy 22y = X 8zy ,x3,..0 Tk m1)

where w, is the node’s weight, the summation is the total weight of all m siblings
(including the node itsel{), and the final factor is the allocation degree of the parent.
I'igure 13 shows the sectors of the nodes for Figure 11. For example, the sector of node
D is calculated as: s=04+75 =75, and a = -}—; x 360 = 85. The sector of node J is
calculated as: s = 160 +0 = 160 and a = % x 200 = 51.

The exact position for each node in the window space isn’t calculated until the tree
is displayed, since the size and the center of the tree may be changed. The exact position
(z,y) of a node in the window is calculated in the next step as x = d x I x cos(s + a/2)
and y = d x I x sin(s + a/2), where, d is the level distance, { is the level of the node,
and (s,a) are the start/allocation degrees of the node. The algorithm for the node
allocation is summarized in Figure 14. The sector for each node is calculated, starting
at the root because each node needs the allocation and starting degrees of its parent.

After the previous steps, the execution graph is ready for display. The graphic is
drawn in the X-Window System [13] with VISTA as a client. After setting up the
window environment (i.e., connecting to the server, loading a font, creating windows,
etc.), the execution graph from the PE view is displayed. The tool then waits until
the user initiates some action. Whatever the user does is controlled in this step: flor
example, window size change, window position change, mouse cursor move, or button
press.

If the user action concerns window attributes (size or position) or tree attributes
(zooming or center change), VISTA displays the current tree type (PE, time, procedure)
in proportion to the window size. If the action is about the tree type, the requested
tree is displayed. If the action is a node inquiry, VISTA first finds the node which is the
nearest the cursor position. The information about the node is then displayed. If the
action is a subtree request, the following steps are executed. First, the current main
tree status is saved. Second, the nearest node to the cursor position is found. This
node becomes the root of the subtree, and the second pass through node allocation are
reperformed. Lastly, the PE view is displayed.

When drawing the graphic, if the sector calculated is less than one pixel, node
condensing is done. That is, the node and all its children are not displayed. The

detailed display algorithms are given in Park [11].
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Figure 13: Node Allocation for the Quick Sort Program

node-allocation(DAG) {
root-node := level-start-node[(];
root-node—+alloc-degree = 360;
root-node—sstari-degree = 0;
for (i = 0; i < tree-height; i := i 4+ 1) {
node := level-start-nodefi];
while (node # NULL) {
ad := node—alloc-degree;
sd := node—start-degree;
tw := node—weight — height of the node; ~ tw = sum of child weights
child := node—+left-child;
while {child # NULL) {
child—alloc-degree := {(child—weight / tw) * ad;
child—start-degree := sd;
sd := sd + child—alloc-degree;
child := node—right-sibling;

Figure 14: Algorithm for Node Allocation
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4 Program Analysis: Panda Platform and Coloration

Our initial experimental testbed for VISTA is an instrumented version of the parallel
FGHC system, Panda {12, 17]. Tuning a fine-grain parallel FGHC program for increased
performance involves understanding how much parallelism is available and what portion
is being utilized. In experimenting with parallel logic programs using VISTA, we have
found a number of approaches useful for understanding performance characteristics.
Qur experiments consisted of a set of execution runs on a Sequent Symmetry, and
involved both modifying the benchmarks and varying the numbers of PEs. Due to

space limitations, we give only two simple examples here.

4.1 Pascal’s Triangle Problem

Pascal’s Triangle is composed of the coefficients of (z + y)" for n > 0. The binomial
coefficients of degree n are computed by adding successive pairs of coeflicients of degree
n—1. A set of coefficients is defined as a rowin Pascal’s Triangle. Our first benchmark
computes the 35 row of coefficients, using bignum arithmetic (see Tick [17] for details).

The easiest way to understand a program in VISTA is with a procedure view or
graph. Figure 15 shows the reduction tree from the procedure view. This graph,
displayed here without any condensation, has 2,235 nodes and a height of 56. The
interesting snail shape, where the radial arms correspond to row calculations, indicates
that the rows, and therefore the computations, are growing in size. Near the root, a
cyan distribution procedure spawns the rows, and near the leaves, a sky-blue bignumn
procedure adds coefficients. The size of the subtree (i.e., one row) is increased by one
for every two rows. ‘This means that % and 5 + 1 rows have the same number of
coefficients (because only the first half of the row is ever computed, taking advantage
of the symmetry of a row). The two lines at the east side represent the expansion of
the final half row into a full row. This program illustrates how the user can roughly
understand execution characteristics from the procedure view, even without knowing
the precise details of the source code.

To analyze the parallelism of the execution graph, we first examine load balanc-
ing among PEs. Good load balancing among PEs does not necessarily mean efficient
exploitation of parallelism. However, without fair load balancing, full exploitation of
parallelism cannot be achieved. In VISTA, a fair color distribution in the PE view
or graph represents good load balancing. Figures 16 (PE graph) and 17 (time graph)
represent the execution on five PEs. In the time view, the RGB color spectrum from
blue to magenta represents the complete execution time. Because there are few visibly

distinct colors in this range, the same color in the time graph does not necessarily
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Figure 16: Execution Graph of Pascal’s Triangle from PE View (5 PEs)
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Figure 17: Execution Graph of Pascal’s Triangle from Time View (5 PEs)

Figure 18: Execution Graph of Pascal’s Triangle from Time View (1 PE)
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represent the same time. If some nodes are represented with the same color within
the time graph, and by the same PE color within the PE graph (i.e, all the nodes are
executed by the same PE), then the reductions were executed sequentially.

All five colors are distributed almost evenly in the PE graph for Pascal, representing
good load balancing. To further analyze parallelism, both PE and time graphs are used
in conjunction. In the time view, the spectrum is distributed radially, although not
perfectly so. This indicates that most rows were executed in parallel. Although the
maximum parallelism is limited by the PEs at five, again the vagueness of the RGB
spectrum can be misleading, making it appear as if there is more parallelism. This
problem can be overcome to some extent with a subtree display, where the spectrum is
recycled to represent time relative to the selected root.

Figure 18 shows the single-PL time graph for Pascal. In this graph, the spectrum js
distributed laterally, around the spiral. This distribution indicates that the nodes were
executed by depth-first search, the standard Panda scheduling when no suspensions
occur. By comparing the two time graphs, we can infer the manner of scheduling:
breadth-first on five PEs, and depth-first on one PE, but without a PE view, we cannot
conclusively infer parallelism. Figure 16 shows that some rows are not executed entirely
by the same PE (i.e., task switches occur within some rows). These characteristics
indicate that suspensions are occurring due to data dependencies between successive
rows of coefficients. All three figures in conjunction indicate the “wavelike” parallelism
being exploited as the leftmost coefficients of the Triangle propagate the computation
down and to the right.

4.2 Semigroup Problem

The Semigroup Problem is the closure under multiplication of a group of vectors [17].
The benchmark program uses an unbalanced binary hash tree to store the vectors
previously calculated so that lookups are efficient when computing the closure. Figure
19 (PE graph) and Figure 20 (time graph) were executed on five PEs. The total number
of nodes in the reduction tree is 15,419, and the tree height 1 = 174. In this experiment,
the window size was 850 x 850 and the level distance was four. The maximum tree
height to be displayed is calculated as hq, = L% X 2] = 106. Level condensing is
performed because h > figz. The first 38 levels are not condensed, but the remaining

136 levels are condensed by the ratio of 2:1. This example demonstrates some strong
points of VISTA:

o After level condensing, the tree keeps the shape of the original tree.
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Figure 20: Execution Graph of Semigroup from Time View (5 PEs)
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e The window-space efficiency is very good in this example. If the tree were rep-
resented in a conventional way (propagating from the top of the window), repre-
sentation would be difficult, and space efficiency would be poor.

To understand the parallelism characteristics of Semigroup, load balancing among
processors is analyzed first. The most immediate characteristic of the PE graph is that
the reductions form the shape of many spokes or threads of procedure invocations. Near
the root are distribution nodes. Each thread represents a vector multiplication. As the
graph shows, almost all threads were executed without task switch. This indicates few
suspensions due to lack of data dependencies, i.e., the vectors are not produced in the
pipelined fashion of the Pascal program. By eye, we judge that the five colors in the
PE graph are evenly distributed, indicating that load balancing is good.

Lack of data dependencies between nodes is confirmed by a single-PE time graph
(not shown). The color distribution of this graph is similar to that of Figure 20,
indicating that as soon as the first node of the new thread is spawned, both the child
and parent threads were executed in parallel, without any suspensions. The reason that
the threads are not executed clockwise or anti-clockwise in Semigroup, as in Pascal,
is that there were some initial data dependencies near the root. These dependencies,
caused by hash-tree lookups for avoiding recomputation of a semigroup member, cause
critical suspensions that “randomize” the growth pattern.

When the PE graph (Figure 19) is viewed in conjunction with the time graph {Figure
20), parallelism can be analyzed in more detail. Threads with the same colors in the
time graph, and different colors in the PE graph, are executed in parallel. The PE graph
still has a fair number of threads per PE, indicating that not all potential parallelism
has been exploited and additional PEs will improve speedup. These approximations
can be refined by examining subtree displays. Recall that subtrees are not condensed,
and that the RGB spectrum is recycled starting at the subtree root, allowing detailed
analysis.

The examples analyzed here are limited because of lack of space, and for lacility
of explanation. Intuitions gained {or these programs have been confirmed by timing
measurements [17]. Programs without as much parallelism, and on larger numbers of
PEs, can be similarly analyzed in VISTA. As the number of PEs grows, however, the
tool approaches its limitations because the user can no longer distinguish hetween the

multiple colors representing the PEs.
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5 Conclusions and Future Work

This paper described the concept and implementation algorithms of “kaleidescope vi-
sualization” of small-grain parallel programs. The VISTA system is an X-Window
realization of the method, and is demonstrated in the context of parallel FGHC pro-
grams. We showed how the user can tune a large-trace program for performance by
examining alternative abstract views of the execution. This tool complements, but
by no means replaces, other visualization methods, e.g., animation ol PE activity and
message passing.

We are currently extending this research in several areas. First, we need to experi-
ment more with the current VISTA prototype, for various programming languages, to
determine its utility. A critical question is what program characteristics will frustrate
VISTA'’s heuristics, producing non-intuitive signatures. This will lead to the develop-
ment of better use of shape, layout, and color to handle these cases.

Second, coloration methods for combining the time and processor views need ex-
ploration. We are currently developing a method of spectral superposition [1] that
appears quite exciting. Related to this, we have already introduced limited animation
when displaying the signature, in an effort to gain information from *secing the llower
blooming.”

A third, ambitious project is to “invert” the tool, allowing user inquiry (via mouse)
into a node in the signature, to decompile that event back into the source program.
Such a facility can be used for scheduling, e.g., inserting pragma for distributing work
at certain events.
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