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Abstract

Broadcasting is the information dissemination task whereby a mes-
sage from one site of a network (the sender) is transmitted to all other
sites (receivers). In this paper, we initiate the study of broadcasting
under operational protocols that bound the number of calls made by
any site to be less than or equal to a predetermined constant, ¢. Specif-
ically, we: (i) investigate the c-call broadcast time function, being the
minimum possible time required to inform all vertices in a network
when the number of calls made by each site is bounded by ¢; (ii) de-
fine a general class of sparse minimum time c-call broadcast graphs
and an associated broadcast protocol; (iit) characterize the structure
of minimum broadcast trees with call bound ¢; (iv) discuss the com-
plexity of the recognition problem for minimum time ¢-call broadcast
graphs, and (v) present a catalog of minimum 2-call broadeast graphs,
for small values of n.

1 Introduction

A communication network provides the means for dissemination of informa-
tion among a set of sites by transmission of messages embodied in calls placed
over lines interconnecting the sites. Definition of a communication network
consists of two aspects: topological and operational. A network’s topological
specification describes relatively static aspects of the network: the set of sites
and their interconnection by lines, together with relevant properties of the



components, such as a line’s length, cost, and bandwidth or a site’s buffer
capacity.

We model some of the topological aspects of a network by an undirected
graph G = (V, E), consisting of a set V of vertices, corresponding to network
sites, and a set E of edges, where each edge e connects a distinct pair of
vertices (vi1,vg), corresponding to lines of the network. The degree of a
vertex is the number of edges incident with that vertex. A path between two
vertices, z and y, is a sequence of edges (vy,v;),(v2,v3), ..., (Vp-1,2,) such
that v; = 2 and v, = y. The length of a path is the number of its edges.
The distance between two vertices is equal to the length of a shortest path
between them. Two vertices at a distance of 1 (i.e., directly connected by
an edge) are said to be adjacent or neighbors. A graph is connected if there
exists a path between every pair of vertices. The diameter of a connected
graph is equal to the maximum distance between vertices of the graph.

A network’s operational specification indicates functional properties of
specific components, such as whether a site can receive messages on separate
lines concurrently, and general network properties, such as whether it is a
store-and-forward or common-access network and particulars of the commu-
nication protocols followed.

We model the operational aspects of a network by communication pro-
cesses executed by sites of the network and by the data structures upon
which those processes depend, including routing tables and calling sequences
for various information dissemination tasks. In our research we are not con-
cerned with the details of lower level communication protocols such as the
encoding of routing information and message content.

Several information dissemination tasks have been considered in commu-
nications research. These include message transfer, broadcasting, gossiping,
and polling. The basic communication task is that of a message transfer
between one site, the sender, and another site, the receiver (i.e., a one-to-one
process). Of particular interest in this paper will be the task of broadcasting.
Broadcasting is the information dissemination task whereby a message from
a broadcast originator is transmitted to all other sites as receivers (i.e., a
one-to-all process). Gossiping is the all-to-all process, while polling is the
one-to-all-to-one process. Broadcasting and gossiping have been studied as
important subprocesses within distributed algorithms that require informa-
tion sharing.
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We will consider broadcasting in store-and-forward networks. In such
networks, broadcasting is accomplished over a sequence of time units. During
each time unit, a set of calls is made, each call involving two sites that are
directly connected by a line; a subset of previously informed sites places calls
during a given time unit, each site calling a different, uninformed receiver.

Given any broadcast, the message follows paths in the network from the
originating vertex to all other vertices; for a non-redundant broadcast, the set
of those paths forms a broadcast tree. Two observations immediately follow:
(i) for broadcasting to be possible in a given network, the graph representing
its topology must be connected; (ii) the broadcasting process must take at
least as many time units as the diameter of that graph.

Given a connected graph G, the broadcast time of vertex u, b(u,), is
the minimum number of time units required to complete broadcasting from
vertex u in G. It is easy to see that for any vertex u in a connected graph
G with n vertices, b(u, G} > [log, n] , since the number of informed vertices
can at most double during any time unit. The broadcast time of a graph
G,b(G), is defined to be the maximum broadcast time of any vertex u in G,
i.e. b(G) = max{b(u) : u € V(G)}. For the complete graph K, with n > 2
vertices, b(K,) = [log, n]. However, K, is not minimal (in number of edges)
with respect to this property for any n > 3. That is, we can remove edges
from K, and still have a graph G with n vertices such that 5(G) = [log, n].
We refer to the class of graphs in which broadcast can be completed in the
minimum possible time (i.e., [log, n]) as minimum-time broadcast graphs,
or mtbgs (see [10]).

The broadcast function, B(n), is the minimum number of edges in any
mtbg. A minimum broadcast graph (mbg)} is a minimum-time broadcast
graph on n vertices having B(n) edges. From an applications perspective,
minimum broadcast graphs represent the cheapest possible communication
networks (having the fewest communication lines) in which broadcasting can
be accomplished from any vertex as fast as is theoretically possible.

In [11), Farley, Hedetniemi, Mitchell and Proskurowski began the study
of B(n). In particular, they determined the values of B(n) for n < 15 and
noted that B(2¥) = k21 (i.e., the k-cube is an mbg on n = 2% vertices).
Mitchell and Hedetniemi [13] determined the value for B(17), while Bermond,
Hell, Liestman and Peters [1] found the values of B(19), B(30), and B(31).
Otherwise, B(n) is not known for any value of n > 32, except for n = 2%,
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where the k-cube can be used as an mbg ([1}).

The limited results above suggests that mbgs are difficult to find. In fact,
Slater, Cockayne, and Hedetniemi [15] have shown that, given an arbitrary
graph G, vertex v, and ¢t > 4 as input, deciding whether b(v,G) < ¢ is
NP-complete. Thus, determining whether a particular graph is an mibg, let
alone an mbg, is a difficult problem. As a result, several authors have devised
methods to construct sparse graphs which allow minimum-time broadcasting
from each vertex. We use the term sparse broadcast graph to denote an mtbg
on n vertices having “close to” B(n) edges (i.e., O(nlog, n) edges).

Farley [10] designed several techniques for constructing sparse broadcast
graphs with n vertices and approximately % log, n edges, for arbitrary values
of n. Chau and Liestman [6] presented constructions based on Farley’s tech-
nique which yield somewhat sparser graphs for most values of n. Recently,
Gargano and Vaccaro [7] gave constructions which produce the best of the
known graphs for some large values of n. Grigni and Peleg’s [9] construction
produces the best of the known graphs for most values of n.

In all of the above research, it is assumed that once a site becomes in-
formed of a broadcast message, it can place calls to its neighbors during any
number of calls, until the broadcast is completed. If optimal time is to be
realized, this commitment can range from [log, n] calls for the originator
down to I or 0 calls for the sites informed during the next to last or last
time units, respectively. Since most sites are informed during the last two
time units in an optimal scheme, it would appear we may be able to limit a
site’s maximum operational commitment to a predetermined, small number
of calls and not suffer great loss in performance., Such a scheme would bet-
ter distribute the operational costs of a broadcast throughout the network,
guaranteeing a limited time commitment for broadcast procedures at each
site, regardless of originator.

In this paper, we begin the study of broadcasting under operational pro-
tocols that bound the number of calls made by any site during broadcasting
to be less than or equal to a predetermined constant, c. (We will indicate
the call bound c as a subscript of pertinent identifiers,) Specifically, we will:
(i) investigate the c-call broadcast time function b.(n), being the minimum
possible time required to inform n vertices in any network when calls at each
site are bounded by a constant ¢; (ii) define a general class of sparse mtb.gs
(i.e., minimum time broadcast graphs with call bound ¢) and an associated



broadcast protocol; (iii) characterize the structure of mb.ts (i.e., minimum
broadcast trees with call bound c); (iv) discuss the complexity of the recog-
nition problem for minimal c-call broadcast graphs, and (v) present a catalog
of mb,gs, determining values for B;(n), for small values of n. Throughout
the remainder of this paper, we will assume that n refers to the number of
sites in a network and c refers to the maximum number of calls that can be
made by any site during a broadcast.

Other researchers have considered the definition of a graphs with bounded
maximum degree in which every vertex can broadcast “quickly” (see [2]).
We will use the term bounded-degree broadcast graph (bsbg) to describe
a graph G on n vertices with maximum degree d such that b(G) is “close
to” the minimum time required to broadcast in any network with n vertices,
bt(n). In a recent paper, Liestman and Peters [12] investigate bounded-degree
broadcast graphs with maximum degrees 3 and 4 (i.e., b3bgs and b,bgs). They
give lower bounds on the time required to broadcast in such graphs and
present several constructions that produce good bounded degree broadcast
graphs. Liestman and Peters show that b(b;bg) > 1.440logyn — 1.769, and
that if n is a power of 2, then b{babg) < 2log,n + 1; the upper bound
is achieved by constructing folded-shuttle-exchange graphs [5]. They also
show that b(bbg) > 1.137log,n — 0.637 and that, if n is a power of 4,
then b(bsbg) < 1.625log, n + 2.25. More recently, Bermond and Peyrat [3]
considered broadcasting in de Bruijn and Kautz graphs. They were able to
improve on the upper bounds of Liestman and Peters, showing, in particular,
that b(bybg) < 1.5log,n + 1, if n is either a power or 3 times a power of 2.

In our discussions to follow, we will note the differences in results that
serve to distinguish the bounded-call broadcast problem discussed here from
the bounded-degree broadcast problem discussed elsewhere.

2 Broadcast Time Function b.t(n)

In this section, we investigate the function b.i(n), being the minimum time
(over all possible graphs and calling sequences, i.e., without any topological
constraints) required to broadcast a message to n sites, when we limit each
vertex to making at most c calls. We will assume that every informed vertex
makes all its calls as soon as possible.



We can characterize the minimum time required to broadcast to n vertices
in terms of the following functions indicating the maximum number of sites
informed after ¢ time units or newly informed during time unit ¢.

We define the function informed, i.(t), to be the maximum possible num-
ber of vertices informed after ¢ time units, given each site is limited to at most
c calls. By our earlier observations, i(t) < 2' for ¢,t > 0, with i.(¢) = 2* for
i < ¢. By definition, b.t(n) is greater than or equal to the minimum ¢ such
that n <i.(t).

We define the function newly-informed, ni.(t), to be the maximum num-
ber of sites informed during time unit ¢, given each site is limited to at most
c calls. Since only those informed in the immediately previous ¢ time units
can place calls during a current time unit, ni.(t) = ¥ <ic. nic(t — 7).

By definition, 7.(t) = ¥, ;<; nic(i). Table 1 give values of ni.(t) and i,(t),
for small ¢ and ¢, to illustrate behavior of the functions.

c 1 2 3 4 5

i nua(t) | 4a(t) | nia(t) [ i2(2) | nis(2) | 4a(t) | nag(t) | a(t) | nis(t) [ 452
0 1 1 1 1 1 i 1 1 1 1
1 1 2 1 2 1 2 1 2 1 2
2 1 3 2 4 2 4 2 4 2 4
3 1 4 3 7 4 8 4 8 4 8
4 1 3 3 12 7 15 8 16 8 16
5 1 6 ) 20 13 28 15 31 16 32
6 1 7 13 33 24 52 29 60 31 63
[ 1 8 21 54 44 96 46 106 61 124
8 1 9 34 88 81 177 | 98 | 204 | 120 | 244

We note that the function
recurrence relation:

i(t)= 0,
2,

i.(1) can also be expressed by the following

for t < 0;
for0 <t <g
2i(t—-1)—i(t—c—1), fori>ec

This can be compared to the recurrence relation derived in [12] for broad-
casting in graphs with vertices having degrees bounded by d:




a(t)= 0, for t < 0;
2t for0<t<d
Zid(t = 1) = id(t = d), for t > d.

The subtle difference arises as follows. In bounded-degree graphs, the
originator can place at most d calls and then all other sites can place at
most d — 1 calls. If we let ¢ = d, we see that all non-originating sites
are handicapped by being able to place one less call. Thus, when ¢ = d,
ic(t) > i4(1), for large t. If we consider ¢ = d — 1, we see that the originator
can participate in one extra call, thereby starting one more subtree of calls
and allowing the doubling of informed sites to continue for one extra time
unit. In this case, when ¢ = d — 1, i.(t) < #4(t), for large ¢.

In [2], Bermond et al. present a table that shows the best lower-bound,
asymptotic behavior for byt(n), based on the recurrence for 4(t), as a function
of the form: dfy - log, n. The lower bound values of the degree delay factor
dfs4 for small values of d are as follows: dfs = 1.1803;df; = 1.0901;dfs =
1.0450; dfs = 1.0225. As discussed above, the value for the analogous call
delay factor cf, lies between df, and df.y;, for any given c. As an example,
one can easily see that the minimum broadcast trees for ¢ = 2 are subtrees
of Fibonacci trees (see section 4). Fibonacci trees have an asymptotic depth
(thus, broadcast time) of 1.441log, n (see, for instance, [4]) which is greater
than df;. Limiting calls to at most two per site degrades optimal broadcast
performance by less than 50%. By the results quoted above, we see that if
we allow at most 4 calls per site, the time penalty for optimal broadcasting
will be less than 10% in an mtb,g, for large n.

3 A Class of Sparse mtb.gs

In this section, we define a class of sparse mtb.gs and an associated calling
protocol that realizes optimal time broadcasting. Our design is based upon
the general class of graphs known as star polygons. A star polygon on n
vertices is determined by a finite offset list (s;,...,5,,) and is constructed by
numbering the vertices uniquely from 0 to n — 1, arranging them in a circle
with vertex numbers increasing sequentially, and connecting each vertex i to
the set of neighbors {¢ + s;} for 1 < j < m as computed from the offset list.
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Figure 1: Sparse minimum time 2-broadcast graph and its calling scheme

If ¢ = 1, the mib.g is a cycle on n vertices. If n = 1, no edges are
needed (i.e., broadcast is immediate). For any given pair of values ¢,n > 1,
we construct a sparse mib.g by creating a star polygon on n vertices with
offset list being nic(t), for all ¢ such that i.({) < n; any duplicated edges
are consolidated into a single edge. As an example, Figure 1 presents the
mibog on 12 vertices determined by this method. When ¢ > log, n, the
graphs produced are identical to those described in Farley [10]. As such,
the construction technique presented here is a generalization of that earlier
method.

To complete an optimal broadcast in these graphs, each vertex places
calls during at most ¢ time units directly following the time at which it
becomes informed. Broadcasting is completed by having each vertex that
can call at time ¢ place a call the vertex offset by ni.(t) (unless this would
call a previously informed site, due to wrapping around the circle}. As an
example, consider the broadcast scheme from site 0 in the 12 vertex network
with call limit 2 shown in Figure 1. The broadcast progresses clockwise from
the originator, adding ni.(t) sites each time until the broadcast is complete.
Thus, the broadcast time is optimal.

Our design of mb.tgs and calling sequences can accomodate all positive
values of ¢ and n. While the method is general and produces sparse graphs
relative to complete graphs, the smaller the ¢ the more edges required for
a graph on n vertices. This would seem a bit counterintuitive, due to our
discussion of the relationship of bounded-call broadcasting to broadcasting
in bounded-degree graphs and the fact that broadcasts are also taking longer
with smaller c. We can probably do better than the graphs generated above;
but it will not be easy to get optimal mb.gs, as we shall see.



4 Characterization of mb.ts

As noted earlier, each non-redundant broadcast in a graph G induces a broad-
cast tree in G. If the broadcast time is to be minimum, the tree must be
a member the class of minimum time c-call broadcast trees. These can be
constructed (and counted) in a manner similar to that of the general min-
imum time broadcast trees (¢f. Proskurowski [14]). We will indicate the
construction algorithm through a recurrence counting the different minimum
time c-call broadcast trees with n vertices.

Let N(n,t) be defined as the number of rooted, ordered trees with n
vertices in which the root can c-call broadcast a message in time t. We
require that every vertex forward the message (making all its calls) as soon
as possible.

N0,t) = 1 foral ¢

N(lL,t) = 1 fort>0

NA1,t) = 0 fort<0

N(n,0) = 0 forn>1

Nc(n:t) = Zn Hl(i(: Nc(niat - l) otherwise

where the summation is over all partitions of n—1, n=(nq,ny,...,n.) such
that 3°1ciccni=n—1landifn; =0thenn; =0,foralli,j:1 <i<j<e

The recurrence for Nc(n, t) reflects construction of broadcast trees through
the distribution of n — 1 descendants of the root into the ¢ subtrees repre-
sented by N.(n;,t — 1) above. The special cases of the recurrence with value
0 capture the impossibility of informing too many vertices in too little time
(when n > i.(f)). The latter contraint represents our assumption regarding
timely forwarding of messages. As an illustration of the above counting and
construction method, we give all mb,ts with at most 7 vertices in Figure 2.

5 Complexity of mb.g problems

In this section we will discuss the complexity status of determining the min-
imum time bounded-call broadcast from a specified vertex of a given graph
and, more generally, of determining the membership of a given graph in the
class of mtb.gs.
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Figure 2: Minimum 2-call broadcast trees with n = 1..7 vertices

The former question bears a strong resemblance to the similar question
for unrestricted broadcast (¢f. [15]) and can be answered in a similar manner.
Following the pattern of the proof in [15], we show that the Multiple Source ¢-
Call Broadcast problem is A/ P-complete by reduction from the 3-dimensional
matching problem (3DM, cf. [8]). Since our proof requires the call limit ¢ > 1,
we show that in the case of ¢ = 1 the latter question is closely related to the
Hamiltonian Path problem.

Let us first define the corresponding decision problems:

Multiple Source ¢-Call Broadcast (MSB,)

Instance: Graph G, subset of vertices Vp, integer ¢ > 5.

Question: Is there a c-bounded call broadcast from V; in G that takes
no more than ¢ time units?

3-Dimensional Matching

Instance: Three sets X, Y, Z, each of cardinality m and a set of triples

MCXxYxZ.

Question: [s there an m-subset of A{ covering all elements in X,Y, Z?
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Hamiltonian Path
Instance: Graph G.

Question: Is there a simple path in G containing all vertices?

Single Source c-Call Broadcast (SSB.)
Instance: Graph G and a vertex u, integer £.

Question: Is there a c-bounded call broadcast from u in G that takes
no more than ¢ time units?

mtb.g Membership
Instance: Graph G.
Question: Is G an mtb.g?

First we will show that the MSB, problem is N"P-complete. For any par-
ticular broadcast source, the question is roughly equivalent to the existence
of a Hamiltonian path. Below, we indicate a construction allowing a precise
reduction between the two problems.

Theorem 1. The SSB, problem is A'P-complete.

Proof: Let G bean instance of the Hamiltonian Path problem. Construct
an instance of 55B;, H, by adding to G a new vertex, u, adjacent to all
vertices of G. A Hamiltonian path in G between some v; and v; implies
the following 1-bounded call broadcast from u by first calling v; and then
completing the broadcast along the Hamiltonian path to v;. Conversely, if
H admits a 1-bounded call broadcast from u, it defines a Hamiltonian path

mG. =

By a trivial reduction from SSB;, one can see that MSB, is also N'P-
complete. We now prove a similar result for larger values of c.

Theorem 2. The M5B, problem is AP-complete.

Proof: Put more formally, the question asks if there is a sequence of ¢
subsets of vertices, V;,0 < 7 <1, such that: (i) Us<ic:V; = V(G), (ii) for all
1,0 < ¢ <1, each vertex in V; is adjacent to a different vertex in Uocj<iV;, and
(iii) each vertex in V(@) is so distinguished at most ¢ times. Obviously, the
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Figure 3: The instance of MSB; in the reduction from 3DM

problem is in A/P, since one can verify in polynomial time the conditions
of a broadcast. To prove completeness, we will show a reduction from the
N P-complete 3DM problem.

Given an instance of 3DM, we construct an instance of MSB,, G (the
graph G is indicated in Figure 3). Its vertex set, V(G), consists of a number
of disjoint subsets. There are “basic” sets of vertices representing elements
of M,X,Y,Z and |M| vertices of the originator set V;. The other vertices
will ensure proper 2-broadcasting conditions. These vertices include a set
of “intermediate” vertices between elements of M and the corresponding
vertices of Y and Z, vertices arranged in paths pending from the vertices
of Vo, X, and Y, and vertices of paths between |[M| — m vertices of ¥, and
all vertices of M, as indicated. The special m vertices of V; and vertices
of M induce a complete bipartite subgraph of G and each vertex of M is
adjacent to elements of X and (through an intermediate vertex) ¥ and Z
the corresponding to the triple the vertex represents. The 2-broadcast time
t is equal to 5.

It is fairly easy to see a 2-call broadcast scheme in G originating in ¥}
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and informing all vertices within 5 time units if there is a matching S of M.
Namely, all vertices of V; call their pending path neighbors first, and then the
m special vertices call the vertices in S, that can complete the 2-call broadcast
in the remaining 4 time units by first calling their intermediate vertices and
then the vertices of X. Also, this is the only type of 2-call broadcast that
succeds in 5 time units, since calls of the other [M|—m vertices of V, cannot
reach M before time 5, and the m vertices of M called in time unit 2 have
to call as described above. Thus, an affirmative answer to the 3DM problem
is equivalent to an affirmative answer to MSB,, completing the proof. m

The above construction can be easily modified to treat the case of the
general ¢ > 2. This would require a construction that would force ¢ — 1 calls
“up” from all vertices of V5. Thus, the following theorem could be proved.

Theorem 3. The MSB, problem is AP-complete. =
The single source broadcast problem has the same complexity status.

Theorem 4. The S5B, problem is A'P-complete.

Proof: Since it is a special case of the MSB, problem, it is in NP. To
prove completeness, we will follow again the proof of [15] in reducing the 3DM
problem to our problem, for ¢ = 2. The construction involves some additional
vertices and edges in the graph from the previous proof (Figure 3). Namely,
the originator vertex u will be the root of a tree with leaves connected in
one-to-one fashion with the vertices of V5. The structure of the tree will
ensure that all vertices of V4 will become informed at the same time or else
the broadcast will not be completed in the required time |M|+ 5. «

The complexity status of mtb.g Membership problem is not certain. The
problem is equivalent to the existence of spanning trees rooted at every vertex
of the instance graph and belonging to the set of mb.ts. In the case of ¢ = 1,
the reduction from the Hamiltonian Path problem is given below.

Theorem 5. The mtb,¢ Membership problem is AP-complete.

Proof: Let G be an instance of the Hamiltonian Path problem. Con-
struct an instance of mtb, ¢ Membership problem, H, by creating two disjoint
copies of G, H' and H" (with vertices labeled, say, v/ and v) and two new
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vertices k', h" adjacent to all other vertices (but not to each other). A Hamil-
tonian path in G between some v; and v; implies the following 1-bounded call
broadcast from a vertex v} in H: call along the Hamiltonian path in H' up
to v}, then call #',v/, along the Hamiltonian path in H” up to ¥, k" » U}, and
complete the broadcast along the Hamiltonian path in in H’. (As broadcast
originators, vertices k', A" call the corresponding starting points of Hamilto-
nian paths first.} Conversely, if H is an mib, g, then it admits a 1-bounded
call broadcast from A'. Such a broadcast defines a Hamiltonian path in G,
since all vertices in an isomorphic copy of G have to be informed before
calling h”.

While we have not proven that the mtb.g Membership problem (for gen-
eral ¢) is N"P-complete, we have shown related problems to be so. Given that
the problem of determining whether a graph is an mtb.g appears difficult, if
not A'P-complete, the investigation and enumeration of mb,gs for restricted
classes of ¢ and n is well motivated.

6 Instances of mbogs for small n

Below, we will construct mbygs with 1 through 12 vertices. We will use the
standard notation C; for the cycle with 7 vertices. A graph is unicyclic if it
has exactly one cycle. “Degree 2 path” and “degree 2 loop” denote a path
and a cycle of degree 2 vertices, respectively. Degree sequence analysis will
require the matching “half-edges”, i.e., considering vertices with unassigned
(“uncommitted”) vertex degrees as adjacent.

In our proofs, we will make use of the structure of minimum time c-
broadcast trees. Based on the shape of these trees, we will derive certain
necessary or impossible neighborhood configurations for the broadcast origi-
nator. We will be able to eliminate certain graphs by discovering that (i) their
diameter exceeds the purported broadcast time, (ii) more than one vertex is
at the diameter distance from a broadcast originator, or (iii) two vertices
have to make a call and share a potential receiver of the call (a “choking”
situation).

Our presentation consists of a terse description of the mbygs for a given
number of vertices, n, with proof based upon the above considerations. We
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leave the task of finding minimum time broadcast schemes from every vertex
as an exercise for the reader.

n =1 —4. The optimum graphs are unique (paths and C,).

n = 5. The optimum graphs are unicyclic. A tree will not work because of
a combination of "choking” on a degree 3 vertex and the diameter;
this argument applies also to n = 4. Each of the three possible graphs
derived from C5, Cy, Ca, where degree 1 vertices are adjacent to distinct
vertices of the cycle, succeeds.

n = 6. The unique optimum graph is the Cg, since any degree 1 vertex as
the originator would require broadcasting in 1 = 2 among 5 vertices.

n = 7. The optimum graphs have at least 9 edges. Since there must be no
degree 1 vertex, C7 does not work; every vertex needs a degree > 3
neighbor, therefore a C; with a chord fails. Vertex degree sequence
analysis for graphs with 9 edges that have at least two adjacent vertices
of higher degree follows:

ng = 5,n3 = 1,n5 = 1: unavoidable C, off the degree 5 vertex fails to
broadcast in minimum time.

nz = 4,n3 = 2,n4 = 1: case analysis based on mutual adjacency of de-
gree 3 vertices gives two graphs.

ng = 3,n4 = 2: since there must not be an articulation point, case anal-
ysis over the lengths of the three degree 2 paths gives one graph.

ny = 3,n3 = 4: case analysis based on subgraphs induced by degree 3
vertices shows that two pairs of adjacent degree 3 vertices fail,
as do all other connected configurations, except for a path and

a delta that yield two graphs (each isomorphic to C7 with two
chords).

The five minimum 2-broadcast graphs on 7 vertices are given in Fig-
ure 4.

n = 8. Cg works, while no tree does. The only other unicyclic graph that
works is Cy with four leaves, each adjacent to a different vertex of the
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Figure 4: All minimum 2-call broadcast graphs with n = 7 vertices

Figure 5: The unique minimum 2-call broadcast graph with n = 9 vertices

cycle (because a degree 1 vertex must be adjacent to the root of the
unique mbot with 7 vertices).

n =9. There can not be a degree 1 vertex, since § vertices also need 4 time
units to broadcast. Consideration of minimum 2-call broadcast trees
for 9 vertices indicates that every vertex must be within distance 2 of
a big vertex (i.e., with degree> 3), so Cj fails. Also, adding one chord
is not sufficient (the “almost diagonal” is the only possibility).

However, adding a path with 1 vertex as a “subdiagonal” to the Cy
works (cf. Figure 5). The only other configurations yielding 9 vertices
and 10 edges are the octagon with a vertex on a “diagonal” path, or
degree 2 loops off the two big vertices, which both fail.

n = 10. Examination of minimum time 2-call broadcast trees with 10 vertices
(see Figure 6) indicates that all vertices must be of degree at least 2 and
have a big vertex as neighbor. This rules out 11 edges. Three graphs
with 12 edges are successful. We discover these graphs by considering
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Figure 6: All minimum 2-call broadcast trees with n = 10 vertices

degree sequences:

ny = 9,n6 = 1: no successful graphs, as the only big vertex does not
have a big neighbor.

ny = 8,n3 = 1,n5 = 1: nosuccessful graph, as the two big vertices must
be neighbors, leaving only six half-edges to accommodate eight de-
gree 2 vertices.

ng = 8,n4 = 2: the same as the preceding case.

ng =1,n3 = 2,n4 = 1: no successful graph, as the three big vertices
must be connected through at least two edges using four half-
edges and leaving only six half-edges to accommodate the seven
degree 2 vertices.

ng = 6,n3 = 4: the big vertices must induce two edges, a path, or a
star (other induced subgraphs use too many half-edges). Each of
these cases leads to exactly one successful graph (see Figure 7).

n = 11. Examination of the minimum time 2-call broadcast trees with 11

vertices (see Figure 8) indicates that the originator must induce a path
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Figure 7: All minimum 2-call broadcast graphs with n = 10 vertices

Figure 8: All minimum 2-call broadcast trees with n = 11 vertices



Figure 9: The minimum 2-call broadcast tree with n = 12 vertices

with two big vertices. Since the originator can be a big vertex itself, we
must allow for three big vertices in a successful graph. The minimum
possible number of edges in such a graph would be 13, since three big
vertices must have degrees 4, 3, and 3, or 3, 3, 3, and 3. In either
case there is not enough half-edges from the big vertices (4 or 6 half-
edges reserved for connections between big vertices) to accommodate
the small vertices as neighbors. Thus, at least 14 edges are necessary
in an optimal graph with 11 vertices. Indeed, 14 edges are sufficient,
as shown by the example graph in Figure 10.

n = 12. The broadcast originator must induce a four-vertex path with three
big vertices, itself an interior vertex of this path (see Figure 9 for the
minimum time 2-call broadcast tree). 14 edges are not sufficient, since
four degree 3 vertices have too few half-edges to accomodate the degree
2 neighbors (at least 8 half-edges reserved for the connections between
the big vertices).

A graph with 15 edges could be achieved by six degree 3 vertices, con-
nected by at least 6 edges; this leaves too few half-edges to accomodate
small vertices. With a degree 4 vertex and four degree 3 vertices (at
least 5 connecting edges) or with a degree 5 vertex and three degree
vertices, we have the same deficiency as before.

Let us consider graphs with 16 edges. Since every big vertex has to
be connected to at least two others, k edges connecting k big vertices
are required. This leaves eight degree 3 vertices as the only possibility
in the vertex degree sequence (the presence of a degree 4 or 5 vertex
leaving too few hall-edges to accommodate the small vertices). The
single cycle, Cg, connecting the big vertices provides only two feasible
connection schemes for small vertices: along diagonals or along sub-
diagonals of the octagon. (This is because a small vertex in a cycle of
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netl ne= 2

Figure 10: Minimum 2-call broadcast graphs with n = 11,12 vertices

length 3 or 4 with degree 3 neighbors necessarily chokes the broadcast.)
By inspection, both graphs fail. Similarly, degree 3 vertices inducing
two C,’s choke the broadcast.

Thus, at least 17 edges are necessary. Figure 10 presents two graphs
with 12 vertices and 17 edges in which minimum time 2-call broadcast
is possible.

To summarize our results from this section, we compare the traditional
broadcast function B(n), indicating the minimum number of edges required
in a minimum-time broadcast graph on n vertices, with the bounded-call
broadcast function By(n), for n from 1 to 12.

m |1 2 3 4 5 6 7 8 9 10 11 12
B(n) [0 1 2 4 5 6 9 12 10 12 13 15
By(n)[0 1 2 4 5 6 9 8 10 12 14 17

The difference at » = 8 is due to the difference in broadcast times: byt(n)
is 4, while bt(n) is 3. Of particular interest are the results for n =11 and
12. They indicate that, though broadcast times are the same, bounding the
number of calls a site can make necessitates more edges in the corresponding
minimum broadcast graph. We noted this was a property of our general class
of sparse minimum-time broadcast graphs defined in Section 3.

The result for n = 12 indicates there exists a minimum broadcast graph
for ¢ = 2 that contains a vertex with degree greater than 3, thus further
distinguishing bounded-call broadcasting from the bounded graph degree
constraints discussed in [12,2]. The other mbyg with 12 vertices does have
maximum vertex degree bounded by 3.
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It remains an open question whether there exists an mb.g with maximum
vertex degree bounded by ¢+ 1, for all ¢,n > 1.

References

[1] J-C. Bermond, P. Hell, A.L. Liestman, and J.G. Peters, Sparse broadcast
graphs, Discrete Applied Mathematics

[2] J-C. Bermond, P. Hell, A.L. Liestman, and J.G. Peters, Broadcasting in
bounded degree graphs, SIAM Journal of Discrete Mathematics

[3] J-C. Bermond and C. Peyrat, Broadcasting in DeBruijn networks, Pro-
ceedings of the 19th South-Eastern Conference on Combinatorics, Graph
Theopry and Computing, Congressus Numerantium (1988), 283-292;

[4] Brown and Sedgewick, A dichromatic framework for balanced trees, in
Proceedings of 19th STOC (1978), 8-21;

[5] F.R.K. Chung, Diameters of graphs: old problems and new results, Pro-
ceedings of the 18th South-Eastern Conference on Combinatorics, Graph
Theory and Computing, Congressus Numerantium (1987), 295-317;

[6] S.C. Chau and A.L. Liestman, Constructing minimal broadcast net-
works, J. Combinatorics, Information and System Science 10 (1985),
110-122;

[7] L. Gargano and U. Vaccaro, On the construction of minimal broadcast
networks, Networks 19 (1989), 673-689;

[8] Garey and Johnson, Computers and Intractability, Freeman (1978);

[9] M. Grigni and D. Peleg, Tight bounds on minimum broadcast networks,
TR MIT/LCS/TM-374 (1988);

[10] A.M. Farley, Minimal broadcast networks, Networks 9 (1979), 313-332;

[11] A.M. Farley, S.T. Hedetniemi, S.L. Mitchell, and A. Proskurowski, Min-
imum broadcast graphs, Discrete Mathematics 25 (1979), 189-193;

21



[12] A.L. Liestman and J.G. Peters, Broadcast networks of bounded degree,
SIAM J. of Dicrete Mathematics 1 (1988), 531-540;

[13] S.L. Mitchell and S5.T. Hedetniemi, A census of minimum broadcast
graphs, J. Combinatorics, Information and System Science 5§ (1980),
141-151;

[14] A.Proskurowski, Minimum broadcast trees, IEEE Transactions on Com-
puters C-30, 5(1981), 363-366;

[15] P.J. Slater, E. Cockayne, and S.T. Hedetniemi, Information dissemina-
tion in trees, SIAM J. Computing 10 (1981), 692-701.



