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A finite representation of an infinite class of objects constitues a very attrac-
tive tool and an elegant result. For graphs, there have been a number of
forbidden substructure characterizations, the most famous being the Planar
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Abstract

Knowing that a class of graphs has a finite set of minimal forbidden
minors is one thing, knowing what they are is another. We present
an account of techniques used to find small sets of minimal forbidden
minors for few classes of graphs with treewidth at most 3.

Introduction

Graphs Theorem of Kuratowski:

A graph is planar if and only if it does not contain a subgraph
homeomorphic to either K or K33.

Wilf [21] gives an introduction to the notion of obstructions in his col-
umn that introduces work of Robertson and Seymour. There, one can find
Kuratowski’s theorem stated in terms of minors (Thomassen [19] attributes

it to Harary and Tutte):

A graph is planar if and only if it does not contain a minor iso-
morphic to either K5 or Kj3.



As a reminder, we state few basic definitions. A graph H is a minor of a
graph G if contracting some edges of a subgraph of G (‘minor-taking’) would
give a graph isomorphic to H (we will consider only simple graphs, without
multiple edges). For a class C of graphs closed under minor-taking, F is a
minimal forbidden minor if it is not in C, but every minor of F is in C.

For a fixed positive integer k, the complete graph on k vertices, K} is
a k-tree and every k-tree with n > k vertices can be constructed from a k-
tree with n—1 vertices by adding to it a vertex adjacent to all vertices of a
subgraph isomorphic to K;. A graph that can be embedded in a k-tree is
called partial k-tree, or alternatively, it is said to have treewidth at most k.

In the study of graphs with bounded treewidth (partial k-trees), there are
obvious characterizations for k = 1,2 by forbidden subgraphs homeomorphic
to K3 and K, respectively. Although Kj is likewise forbidden for & = 3, the
set of minimal forbidden minors (obstructions) for partial 3-trees is obviously
larger. Before discussing the tools used in the discoveries of that set, we
briefly present approaches to determining obstruction sets for some smaller
graph classes.

For partial 1-trees (forests), the completeness of {K3} as the set of ob-
structions follows directly from the definition (the acyclicity of the graphs).

Biconnected partial 2-trees (simple series-parallel graphs) can be recog-
nized by iterating the series vertex reduction (see below). A proof of {K,}
as their obstruction set follows from considering the reduction rule: A min-
imal forbidden minor must be cubic and biconnected, and end vertices of
any edge must have a common neighbor. K is the only graph that fits this
description.

K} is also 2 minimal forbidden minor for the outerplanar graphs. By the
definition, so is the graph K,3. To see that these two graphs constitute the
set of minimal forbidden minors for cuterplanar graphs, consider any plane
embedding of a series-parallel non-outerplanar graph. It must have an in-
terior vertex and at least one vertex between its attachments to the cycle
constituting the boundary of the exterior mesh in that embedding, in each
direction around that cycle. Such a graph has a subgraph homeomorphic to
K33 and thus has K3 3 as a minor. (Thomassen [19] traces this characteriza-
tion to Chartrand and Harary.)
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Figure 1: Reduction rules for recognition of partial 3-trees
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In this note, we intend to illustrate the concept of graph reduction in
the search for a complete set of obstructions. For this purpose, we give a
short survey of the different approaches that lead to the discovery of the
set of minimal forbidden minors for partial 3-trees. We will start with a
presentation of one of the tools (vertex reduction system), then describe the
search for obstructions, and conclude with a brief description of continued
efforts to find a general (constructible) algorithm paradigm for obstruction
sets.

2 Vertex reduction rules for partial k-trees

Recognition of forests by checking the irreducible result of repeated ‘pruning
of leaves’ (removal of degree 1 vertices) and discarding isolated vertices has
been taken for granted for a long time. Recognition of partial 2-trees by,
in addition, contracting an edge incident with a degree 2 vertex has been
proposed by Wald and Colbourn [20]. Amborg and Proskurowski [2] give
a complete set of confluent vertex reduction rules for partial 3-trees. (This
means that a graph is a partial 3-tree if and only if any sequence of appli-
cations of these rules reduces it to the empty graph; if one does, so does
any other.) There, the three reduction rules mentioned above are augmented
by three more reductions of degree 3 vertices (see Figure 1). These mimic



pruning 3-leaves (degree 3 vertices) of an embedding 3-tree, but also indicate
that not all degree 3 vertices in a partial 3-tree are such 3-leaves.

Independently, the same set of reduction rules was derived by Kajitani ef
al. [11] who discovered the necessity of certain configurations in 3-connected
partial 3-trees following a very similar line of reasoning.

A fairly natural implementation of these rules leads to an O(nlogn) al-
gorithm; Matousek and Thomas [15] noticed that the rules can be modified
to yield a linear algorithm.

As these reduction rules constitute an important tool in the investigations
of ‘small’ properties of partial k-trees, the following result of Lagergren [13]
is quite discouraging.

There is no complete set of confluent vertex reduction rules that
reduce a graph to the empty graph if and only if the graph is a
partial k-tree, for k> 3.

Yet, it turns out that there exist more general graph reduction systems
that decide membership in classes of partial k-trees. Namely, Arnborg et
al. show in {1] that this is the case for any subclass of partial k-trees (fixed
k) definable by the Monadic Second Order Logic (MSOL) (cf., for instance,
Courcelle [7]).

For any class of graphs of bounded treewidth that can be de-
scribed by an expression in the MSOL formalism there is a finite
terminating graph rewriting system with the following property:
Repeated applications of the rewrite rules lead to an irreducible
graph that is a member of a finite accepting set of graphs if and
only if the original graph is a member of the graph class in ques-
tion. :

Such a graph rewriting system can be implemented as a linear time (al-
though space intensive) algorithm. As usual, however, constructing such a
system might be a difficult task, even though the existence proof (of the
above result) is constructive. More importantly for the subject of this note,
such a system gives little insight into construction of the set of forbidden
minors. Yet, it might provide some computational help, see section 4.
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Figure 2: The set of minimal forbidden minors for partial 3-trees

3 Minimal forbidden minors for partial 3-
trees

The sets of minimal forbidden minors for partial 3-trees and for planar par-
tial 3-trees have been discussed independently, even though the former - in
conjunction with the minors form of the Planar Graph Theorem - implies
the latter.

El Mallah and Colbourn [10] state the following characterization of planar
partial 3-trees.

A planar graph is a partial 3-tree if and only if it does not have
a minor isomorphic to either Ms or M;g in Figure 2.

In their proofs, they exploit the duality between A-Y and Y-A reduc-
tions (replacing triangle K3 by star K3 and vice-versa, respectively) and
properties of geometric duals of the graphs defined with help of these reduc-
tions. The proof of a similar result presented by Dai and Sato [9] is based on
Tutte’s characterization of planar 3-connected graphs. Both papers rely on
the presence of the lefthand-sides of vertex reduction rules used in recognition
of partial 3-trees in edge-contracted planar graphs.

Arnborg, Proskurowski and Corneil characterize the class of partial 3-
trees in [4].



A graph is a partial 3-tree if and only if it does not have a minor
isomorphic to any of the graphs in Figure 2.

Their proof depends very heavily on the small complete set of conflu-
ent reduction rules for this class of graphs (see above). The minimality of
the investigated minors implies 3-connectivity, and the reduction rules (and
the fact that they are vertex-reducing) imply that any vertex degree can
be only 3 or 4. Investigation of cases of possible neighborhood configura-
tions of contracted or extracted edge in any minimal forbidden minor (those
‘configurations’ must admit vertex reductions) completes their proof.

Theirs was just one of several independent investigations that ended with
similar results. The approach based on the same set of reduction rules for
partial 3-trees was used by Borie, Parker and Tovey [6].

Satyanarayana and Tung [17] do not use the reduction rules in their
proofs, but they rediscover (in fact) the properties of 3-connected compo-
nents of minimal forbidden minors implied by those reductions. The flow
of their proofs follows a similar path of discovering cubic minimal forbidden
minors, then 4-regular such graphs, and then showing that minimum vertex
degree 3 implies 3-regularity of a minimal forbidden minor.

A recent paper by Satyanarayana and Politoff [16] gives an alternative
proof of the minimal forbidden minors for partial 3-trees. In their discussion
of quasi 4-connected graphs (that have no 3-vertex separators except for those
that separate several degree 3 vertices) they find that only few graphs are
‘responsible’ for this property. Namely, a non-planar quasi 4-connected graph
has a K5 minor or is a ‘small graph’. A planar quasi 4-connected graph has
Ms as a minor or is some other ‘small graph’. These ‘small graphs’ are Mg and
M;p from Figure 2, and some partial 3-trees. Since no partial 3-tree, except
for some small ones with only trivial 3-separators, is quasi 4-connected, every
large enough quasi 4-connected graph has a minor from the set of minimal
forbidden minors for partial 3-trees. Analysis of those small partial 3-trees
and the ‘small graphs’ in their lemmata implies the desired characterization
of partial 3-trees. Although tediously relying on case analysis, the proofs are
somewhat shorter than case analyses in the previously published proofs.



4 Other tools for finding forbidden minors

Graph reduction rules are of some help in constructing the obstruction set,
but they are by no means the only tool available. The computational power
of modern computers and the skill of their programmers can go a long way
in searching for minimal forbidden minors, especially among subclasses of
partial k-trees, for small values of k. An example of such a result is the set
of 110 minimal forbidden minors for graphs with pathwidth 2 constructed by
Kinnersley [12]. Similar result concerning acyclic such minors for k = 2,3
and 4 is presented by Takahashi et al. {18].

Another approach, yet to be implemented, is to construct the obstruction
set using raw computational power for searching a finite list of graphs among
which all such graphs are guaranteed to be found. Arnborg et al. [5] describe
the translation process of a MSOL formula defining a subclass of bounded
treewidth graphs into a tree automaton. The number of states in the resulting
automaton can be used to determine a bound on the number of vertices in a
minimal forbidden minor for that class.

Using an encoding of tree decompaositions of width k, Lagergren and Arn-
borg [14} find a finite congruence in a graph algebra that defines the class
of partial k-trees. Subsequently, they describe how to obtain the set of ir-
reducibles that contains the obstruction set by a procedure similar to the
construction algorithm for the corresponding graph reduction system of [1]
(cf. Section 2).

Given a graph grammar defining a class of graphs, Courcelle and Prosku-
rowski [8] use formal linquistic tools to derive another graph grammar that
generates a finite superset of minimal forbidden minors for the original class.
Graph grammars, upon which we will not elaborate here, provide another
way of defining classes of graphs with interesting algorithmic properties.

Using a finite characterization, a class of graphs with bounded treewidth
can be defined by:

(i) a set of minimal forbidden minors,

(ii)) an MSOL description,

(iii) a graph reduction system.

These have been shown equivalent by Lagergren and Arnborg [14]. While
we have some developed understanding of the conceptual relationships be-
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tween these description methods, constructive proofs of their equivalence re-
main still an important research topic. This is due in part to the potentially
gigantic size of any such finite characterization.

We have chosen a small example of the class of partial 3-trees to illus-
trate some of the notions used in discovering the corresponding obstruction
set. Vertex reduction rules used in this process can not be directly gener-
alized for graphs with larger treewidth, but more general graph reduction
systems might bring some assistance in the search for minimal forbidden
minors bounding the set of candidate graphs.

Disclaimer: It is not within the scope of this note to present a complete
historical and methodological survey of this extensive and exciting area. The
author readily accepts the blame for omissions of references to and timing of
any independent work.
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