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Abstract

The single-assignment property of concurrent logic programming languages re-
sults in a large memory bandwidth requirement and low spatial locality in heap-
based implementations. As large amounts of garbage are generated, it becomes
necessary to salvage used memory frequently and efficiently, with a garbage collec-
tor. Another approach is to detect when a data structure becomes garbage and
reuse it. In concurrent languages it is particularly difficult to determine when a
data structure is garbage and suitable for destructive update. Dynamic schemes,
such as reference counting, incur space and time overheads that can be unaccept-
able. In contrast, static-analysis techniques can be used to identify data objects
whose storage may be reused. Information from static analysis can be used by the
compiler in generating appropriate instructions for reuse, incurring little or no run-
time overhead. In this paper we present a new method of reuse detection based on
abstract interpretation. We present empirical performance measurements compar-
ing the new scheme against binary reference counting (MRB). It is shown that our
proposed static analysis can achieve most of the benefits of MRB and improve the
execution time.

This report is an extended version of a paper appearing in the Joint International
Conference and Symposium on Logic Programming, Washington D.C., November
1992.
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1 Introduction

Logic and functional programming languages are examples of languages utilizing the
single-assignment property of variables, i.e., a variable can be bound to a value, at
most once. In logic programming languages, a logical variable starts its life as an
undefined cell and may later hold a constant, a pointer to a structure, or a pointer to
another variable. These programming languages do not allow in-place update of data
structures. Abstractly, the effect of an update can be achieved by creating a new copy
of the structure, with some new portion inserted into the copy.

The single-assignment property is elegant because it is possible to use the availabil-
ity of data as a means of process synchronization, similar to data flow computation.
However, this property has the undesirable effect of resulting in large memory turnover,
due to excessive copying. Copying is wasteful in terms of both execution time and stor-
age requirement. The lack of economy in memory usage results in prodigious memory
requirements by programs that update aggregate data structures. Garbage collection
needs to be invoked frequently as the heap space is limited. Large memory band-
width requirements and poor cache utilization hinder construction of scalable and high
performance architectures for parallel logic languages.

Research in the area of runtime garbage collection in functional languages may
be carried over to concurrent logic languages. Cohen [8] surveys a range of tradi-
tional garbage collection techniques, classified as mark and sweep algorithms. Refer-
ence counting [22], efficient garbage collection algorithms such as Baker’s algorithm
[1, 17], and incremental garbage collection schemes {10], may alleviate the problem to
some extent by making the garbage collection operation cheaper to perform, but do not
reduce the memory requirements. Other approaches, such as maintaining multi-version
structures [11} have also been proposed to avoid excessive copying.

If it is known that there are no references to a data object (other than the process
inspecting the object!), then the structure can be reclaimed and used in building other
structures if necessary. The detection and reuse of such data objects can be done either
at compile-time through static analysis, known as compile-time garbage collection, or at
runtime with additional data structures and instructions or by a combination of both.

Runtime techniques include general reference counting and approximations to gen-
eral reference counting, known as binary reference counting. The MRB [G} scheme is
an example of binary reference counting. Much work has been done in compile-time
detection and reuse of structures in functional programs [15]). However, these results
do not carry over to logic programming because of the complexity of unification and
the presence of the logical variable. Analysis techniques for sequential Prolog (e.g.,
Mulkers [25] and Bruynooghe [4]) do not extend easily to concurrent logic languages,



where no assumptions can be made on the order of execution of the goals or about the
interleaving of their execution. On the one hand, our approach is simpler than that
for Prolog because committed-choice programs do not backtrack and therefore do not
require trailing. However, the analysis is more complex because we cannot reason about
when some goal will start or finish executing, and the related problem of concurrent
interleaving.

In this paper, we present a new analysis technique based on abstract interpretation
for compile-time garbage collection and compare it to other proposals. We restrict
ourselves to committed-choice logic programming languages [29]. In Section 2, we
review the alternative reuse analysis proposals. In Section 3 we describe our scheme
to identify structures that may potentially be reused with very little runtime overhead.
Specifically, we identify some structures occurring as input arguments as potential
candidates for reuse while constructing new structures in the clause. The runtime
test for ensuring that these structures may actually be reused is simple. Section 5
reviews alternative instruction sets devised for exploiting reuse information. We present
experimental results showing that our method reduces memory usage, and improves
execution speed when compared to the MRB method. The conclusions of this study
and a summary of future work are given in Section 6. Correctness and termination

proofs are given in the Appendix.

2 Motivation and Literature Review

We start with a brief introduction to committed-choice logic programs hefore discussing
garbage collection methods., A committed-choice logic program is a set of guarded lHorn
clauses of the form: “H :~ Gy,...,Gm | By,...,B," where m > 0 and n > 0. IT is the
clause head, G; is a guard goal, and B; is a body goal. The commit operator ‘|’ divides
the clause into a passive part (the guard) and active part (the body). When the guard
is empty, the commit operator is omitted. “Flat” committed-choice languages have a
further restriction that guard goals are simple builtin functions, such as =,<,2,#. In
committed-choice languages such as FCP(:) [29], a guarded Horn clause has the form
“H — Asky,...,Asky @ Telly,...,Tell, | By,...,Bp." The guards are divided into
two parts Ask and Tell, separated by a colon. The Ask part may contain any builtin
predicates and the Tell part may contain only unification equations.

We say that a goal @ commits to a clause i, if a successfully maiches with the
head of clause i (i.e., without causing any bindings to the variables of the goal) and the
guards of clause ¢ (the ask goals) succeed without binding any goal variable and the tel
goals also succeed. When a goal can commit to more than one clause in a procedure, it



append(X, In, Out) :- X = [] : Dut = In | true.
append(X, In, ODut) :- X = [HIT] : Out = [HIZ] | append(T,In,Z).
try_me_else bot ; set up continuation
vait_list R1 i [HIT]
read_car_variable R1,R4 : R4 = H
read_cdr_variable R1,R5 s RE =T
put_list R1 i R1 = [
write_car_value Ri,R4 ; H
write_cdr_variable R1,R2 : 12]
get_list R3,R1 ; Out = Ri
put_value R1,RS ; append(T,
] In,
put_value R3,R2 - Z)
proceed
bot: suspend
Figure 1: List Concatenation Source and Compiled Programs

commits to one of them non-deterministically (the others candidates are thrown away).
Structures appearing in the head and guard of a clause cause suspension of execution
if the corresponding argument of the goal is not sufficiently instantiated. For example,
in order for a goal foo(X) to commit to the clause “foo(X) :- X = [AIB] : true
| bar(A,B),” the argument X of the goal must already be bound to a list structure,
whose head (car) and tail (cdr) may be any term, even unbound variables. The Tell
part of the guard is empty in this case. In the rest of the paper, structures appearing
in the head or in the ask part of the guard are referred to as incoming structures.

A suspended invocation may be resumed later when the variable associated with
the suspended invocation becomes sufficiently instantiated. A program successfully
terminates when, starting from an initial user query (a conjunct of atoms), alter some
number of reduction steps, no goals remain to be executed, nor are suspended.

To motivate the analysis proposed in this article, we present an instance of local
reuse, at the machine level. Consider an FCP(:) program that concatenates two lists,
shown in Figure 1. The abstract machine code generated for the second clause of
append/3 in also listed in the figure! The precise semantics of this code is unimportant.
Critically, instruction put_list allocates a new list cell on the heap for every call to

1The instruction set is for the FGHC abstract machine developed by Kimura and Chikayama [21],
sitnilar in some respects to Warren’s Abstract Machine (WAM) for Prolog {33).



append. The first argument of the second clause is a list structure that can be inferred
(by the semantics of committed-choice logic programming languages) to be occurring
as an input argument. This clause also constructs a list structure in its tell part. If
there is no other reference to the input list cell, and the components of the list cell are
non-variables, then the cell can be reused while constructing the list Out. If local reuse
were exploited by the put_list instruction, no memory would be wastefully allocated
by the procedure.

Concurrent logic programs utilize single producer/single consumer communication
quite extensively. The communication, in its simplest form, is performed with a shared
variable. One process writes to the variable, and the other process reads the value.
Since there is only one reader, the reader, after reading the value, may reuse the
memory cells used for storing the value of the variable. Reuse of data structures can
have considerable impact because memory cells are allocated less frequently and the
garbage collector is invoked less often. Furthermore, memory reuse improves spatial
locality of memory references, thereby improving cache performance. Techniques to
implement reuse, relevant to logic programs, are discussed below.

2.1 Functional Language Research

One of the major implementation issues in functional languages is the efficient im-
plementation of the update operator on array data structures. The straightforward
implementation would take linear time in the size of the array, as opposed to constant
time update in imperative languages. Through static analysis of liveness of the ag-
gregates, the update operations can be optimized. The related research done in this
area are detecting single-threadedness of the store argument of the standard seman-
tics of imperative languages {28], Hudak’s work on abstraction of reference count for a
call-by-value language with a fixed order of evaluation [14], and update analysis for a
first-order lazy functional language with flat aggregates using a non-standard semantics
called path semantics [2]. All the above analyses are for sequential implementations.
The analysis of single threading or storage reusability in logic languages is different from
functional languages because of the power of unification and logical variables available
in the former.

Another important implementation area is shape analysis, the static derivation of
data structure composition. Recent work by Chase et al [5] describes a more accurate
and efficient analysis technique than previous methods. They also describe how this
storage shape graph {(SSG) method can be followed by reference-count analysis [14].

The analysis of single-threadedness or storage reusability in logic programming lan-
guages is significantly different from that of functional languages because of the power



of unification and logical variables available in the former. We do not address the issue
of shape analysis in this paper, only reference counting. One important use of our
analysis is the reuse of “local” structures that do not require shape analysis to uncover.

Recently there has also been work on reordering the expressions in a strict functional
language with the objective of making most of the updates destructive [27].

2.2 General Reference Counting

One approach is to associate with each variable, a count of the number of references to
that variable, The count is updated whenever new references to a variable are created
or old ones discarded. If a reader process detects, upon reading, that the count is one
(i.e., that there are no references to the variable other than its own), then the variable
can be updated in place, or the variable’s space can be reused. This method is known as
general reference counting. The main disadvantages of this scheme are twofold. Firstly,
memory requirements are doubled for each variable, due to the count field. Secondly,
managing the count field to keep track of references may cause considerable runtime
overhead. A garbage collector based on general reference counting is described in [10].
This scheme removes the need to store the reference count alongside the variable, by
using tables to store addresses of variables and the number of references to each variable.
The tables are stored in memory and need to be updated in the usual fashion. The
tables reduce memory requirements, but still constitute a bottleneck in achieving a high

speed implementation.

2.3 Binary Reference Counting

A binary reference count is a one bit tag associated with a data object that indicates
if there are one or more references to that object. The method is an approximation
of general reference counting in the sense that the condition when a multiply refer-
enced data structure becomes singly referenced, cannot be detected. A prime example
of this approach is the Multiple Reference Bit (MRB) garbage collection scheme [6].
One bit in each pointer, referred to as the MRB, is set if the referenced object has
multiple references active, or reset if there is only one active reference. Advantages of
the MRB are ease of hardware implementation and reasonable execution speed [18].
Several MRB-based optimizations are described in [18]. In this sclieme, memory is
incrementally reclaimed with special collect instructions that are generated for each
incoming structure. We illustrate this technique with a sample clause and its abstract
machine code, shown in Figure 2. Instruction collect_list attempts to reclaim the
list cell. The attempt succeeds if the MRB is off, in which case the cell is added to
a free list. Separate free lists are maintained for structures of varying sizes. When a



foo([AIB]) :— true : true | bar(A,B).

foo: try_me_olse bot ; set up continuation
wait_list R1 ; [AlB]
read_car_variable Ri,R2 ; R2 = A
read_cdr_variable Ri,R3 ;s R3 =8B
collect_list R1 ; collect list cell
put_value R1,R2 ; set up call to bar(A,B)
put_value R2,R3
execute R2,bar

Figure 2: List-Cell Reuse: Source and Compiled Programs

structure is created, instead of freshly allocating it from the heap, it is allocated from
a free list. If the free lists are used in a LII'O (last in, first out) manner, it is likely
that the reclaimed cell is still in the cache.

As mentioned above, collect instructions are generated for each clause-head struc-
ture. The MRB method per se does not involve compile-time determination of when
collect instructions are needed, and when they are not. The collect instructions
will succeed in reclamation if the structure is singly referenced, and fail to reclaim oth-
erwise. All structures, regardless of their potential for reuse, will incur the overhead of
collect instructions.

2.4 Compile-Time Analysis

The application of static program analysis to infer properties of programs, and the
use of this information to generate specialized and efficient code, have proved to be
quite successful in logic languages. Several static analyses of logic programs to infer
groundness, and sharing information (among others) have been proposed for sequential
Prolog (e.g., [24, 4, 9, 31]). But these techniques do not extend easily to concurrent
logic languages, where no assumptions can be made about the order of execution of
the goals or about the interleaving of their reduction. The only work in applying static
analysis techniques to detect possibility of reuse in concurrent logic languages, other
than the research described in this paper, is by Foster and Winsborough [13]. They
sketch a collecting semantics for Strand programs in which a program state is associated
with a record of the program components that operated on it. The collecting semantics
is then converted into an abstract interpretation framework by supplying an abstract
domain in order to identify single consumers. The analysis details are in an unpublished



draft [12], hence it is premature to compare their scheme with ours.

3 Overview of Proposed Static Analysis

The reference counting schemes previously reviewed have the main deficiency of excess
runtime overheads. We are not aware of any successful (efficient) implementation of
general reference counting for a parallel language. Binary reference counting, for in-
stance MR B, adds runtime overheads to the abstract machine instruction set in which it
is implemented. In this section, we propose a static analysis method based on abstract
interpretation to detect threadedness in flat committed-choice logic programs and use
this information to generate reuse instructions.

There are four distinct ways in which a variable can be used for sharing information
in concurrent logic programs. They are: Single producer-Single consumer (S5), Sin-
gle producer-Multiple consumer (SM), Multiple producers-Single consumer (MS), and
Multiple producers-Multiple consumer (AfM). Since a variable may be bound at most
once in logic languages, the notion of multiple producers implies that there are several
potential producers but only one succeeds in write-mode unification. In a successful
committed-choice program, all other potential producers perform read-mode unifica-
tion. Ueda [32] defines the class of moded FGHC programs to be those in which there
are no competing producers. In legal moded FGHC programs, MS and MM variables
- do not exist. Saraswat [26] proposes a related language, Janus, which allows only S5
variables, each appearing only twice: as an “asker” and “teller,” explicitly annotated
by the programmer.

The purpose of our analysis is to determine which type of communication, 55 or
SM, applies to each of the program variables. This information is used by the compiler
to generate reuse instructions (see Section 5.1). The algorithm is safe for non-moded
programs, but little reuse will be detected in programs where multiple producers and
consumers abound. Since most (not all} programming paradigms can be implemented
in moded programs, we expect accurate information to be produced from our simplified
analysis, for a large class of programs.

Structures appearing in the head and ask part of a clause imply incoming data, by
the semantics of concurrent logic languages.? Thus if such an incoming structure is de-
termined to be reusable, an attempt could be made to use its storage when constructing
a structure in the body. Consider the following clause:

pX,5,Y) -8 =4IL,C,R), X <C : Y =4N,C,R)| p(X,L,N).

2Computation will suspend until the input arguments are sufficiently instantiated.



If the second argument in the head, S (which must be a structure ¢(L,C, R)), may be
reused, it would be best to reuse it when constructing the structure (N, C, R). This is
known as instant or local reuse. However, if no immediate use existed in the clause, the
reclaimed storage could be stored away for future use (say, added to a free list). This
is known as deferred reuse. Maintaining ordered free lists based on structure size, and
using them in 2 LIFO manner, can result in more efficient program execution. Deferred
reuse is equivalent to the collect operations defined in the context of MRB.

In the following presentation, data objects that have a single producer and single
consumer are referred to as single-threaded and all other data objects are referred to as
multiple-threaded. We assume structure-copying implementations. Qur analysis detects
single-threaded structures at compile-time. These structures can be reused at runtime
if the top-level components are nonvariables. The presence of uninstantiated variable(s)
in the top-level of a structure renders the structure unsuitable for reuse, {when variables
are allocated inside structures) even if the structure is single-threaded. The reason is
that a producer of the unbound variable may bind its value after the enclosing structure
has been reused!

We also assume that struclure sharing analysis has been done, and that the results
of the analysis are available. We envision sharing analysis similar to [31, 19], with
two modifications. First, the analysis must work for concurrent languages. Second,
if it is determined that two variables may share, no subsequent grounding can undo
this sharing. If sharing information is not available, then we can make worst case
assumptions about sharing and perform the analysis. This may produce fewer useful
results,

3.1 Multiple Threadedness of Structures and Components

Compile-time detection of single-threaded data structures necessarily involves some
representation issues and we now discuss these issues relevant to propagating thread-
edness information safely and precisely. Representation of compound structures has a
direct bearing on how the threadedness of a structure affects the threadedness of its
components and vice versa and raises the following three questions.

¢ Is a substructure of a multiple threaded structure multiple threaded?

¢ Does a structure always become multiple threaded if one of its substructures is

multiple threaded?

e How does the threadedness of a sub-term of a structure affect another sub-term

of the same structure?



If a structure is multiple threaded, it means that there are (potentially) several con-
sumers accessing the structure. Each consumer may access any substructure, implying
that each substructure may also have multiple consumers. Thus multiple threadedness
of a structure implies the multiple threadedness of its components.

Multiple threadedness of a component of a structure, however, does not always
mean that the structure becomes multiple threaded. Suppose a structure is built in
the body of a clause and it contains a head variable which is multiple threaded. A
head variable is simply a reference to an incoming argument which has already been
created. Only a poinier to that actual parameter resides in the structure built in the
body. Because the variable is not created inside the current structure, the reuse of the
structure does not affect the contents of the multiple-threaded component. Therefore
the structure does not become multiple threaded.

Now suppose a structure is built in the the tell part of the guard and it contains at
least one variable local to the clause (i.e., the variable does not appear in the head or
the ask part or in the RHS of a tell equation of the form X = f(...,Y,...) where X is a
variable that appears in the head or the ask part) and that variable is multiple threaded.
If the implementation allocates variables inside structures (as is usually the case), then a
reuse of the structure will reclaim the space allocated for the multiple-threaded variable
and is therefore unsafe. In this case, we have to make the structure multiple threaded.
If the implementation creates variables outside structures (the structure arguments are
linked to the variables by pointers), then multiple threadedness of a component would
never make the structure multiple threaded. For the analysis presented in this paper,
we conservatively assume that variables may be created within a structure. Relaxation
of this assumption, whenever appropriate, can lead to more precise analysis. In order
to be precise, however, the abstract domain must be expressive enough to represent
that the top level of a structure may be single threaded and at the same time any
of its sub-structures may be multiple threaded. The analysis presented in this paper
conservatively treats a structure as multiple threaded when one of its sub-structures is
multiple threaded.

The answer to the third question depends on the sharing of the components of the
structures. If two subterms of a structure share, then multiple threadedness of one may
make the other multiple threaded.

In the rest of the paper, we will discuss mainly the threadedness of variables. The
threadedness of structures can be derived, with the principles discussed above, from
the threadedness of its components.



4 Abstract Interpretation

In an abstract interpretation framework for a language, it is customary to define a core
semantics for the language leaving certain domains and functions unspecified. These
domains and functions are instantiated by an interpretation. A standard interpretation
defines the standard semantics of the languages and an abstract interpretation abstracts
some property of interest. The abstract and the standard interpretations are related by
a pair of adjoint functions, known as the abstraction and concretization functions. We
first provide an operational semantics for the language Flat Concurrent Prolog, FCP(:),
and then define our abstract interpretation method for reuse analysis. The proposed
technique is also applicable to Flat Concurrent Guarded Horn Clause (FGHC), Strand,

and similar languages [29]. Proof of soundness of our analysis is given in the Appendix.

4.1 Operational Semantics for FCP(:)

The following operational semantics is a minor variation of the standard transition
system semantics for concurrent logic programs and is derived from [29]. The knowl-
edgeable reader may wish to skip to the next sub-section.

A computation state is a triple (G, 8,1 ) consisting of a goal G (a sequence of atoms),
a current substitution 8, and a renaming index i, The index is used in renaming the
variables of a clause (PVar for program variables) apart from the variables of the
goal. Function rename : PVar x N' — Var subscripts the program variables with a
renaming index and rename~?! : Var — PVar removes the subscript. Function rename
can be homomorphically extended to rename : Clause x N' — Clause. The initial state
{(G,e,0) consists of the initial goal G, the empty substitution £, and the renaming index
0.

Definition: Computation

A computation of a goal G with respect to a program P is a finite or
infinite sequence of states Sg,...5;,...such that Sp is the initial state and
each Siz1 € t(5;) where ¢ is a transition function from § to P(S) (defined
below). o

A state S is a terminal state when no transition rule is applicable to it. The
state {true,f,1) is a terminal state that denotes successful computation and {fail,8,7)
denotes finitely failed computation. If no transition is applicable to a state § =
(A1, .., Ap,0,i) (n 2 1) where 4; # fail, 1 < j < n, then the state is dead-locked.
We define the meaning of a program P as the set of all computations of a goal G with

respect to P.
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Definition: Transition Rules

o (A1yeeiyAjyene, A 0,8) ™25 ((Ayy...,Ajoq, Ajpr, Bry.. ., B, 600, i+ 1)
if 3 a clause C s.t. rename(C,i) = H = Ask : Tell | By,..., By and
iry(A;, H, Ask, Tell) = ¢'.
o (A1yeeiyAjrey Any8,i) "™ (fail,6,i) if for some j, and for all
(renamed)
clauses H :— Ask : Tell| By,..., By, try(A;, H,Ask, Tell) = fail.
(]

Function iry is defined in terms of match which tests if the selected atom from a
goal matches the head of the selected clause without binding any of the goal variables.

Definition:
match(A;, H) =
Jail if mgu(A;, H) = fail
8 if # is the most general substitution s.t. 4; = Hé
suspend otherwise
a
Definition:
try(Aj, H, Ask, Tell) =
fod if match(A;, H)= 6 A test(Ask@) = success A mgu(Tellf) = ¢
fail if match(Aj, H) = fail v (match(A;, H) =6 A test(Askf) = fail) v

(match(A;, H) =0 A test(Ask8) = success A mgu(Telld) = fail)

suspend otherwise
a

This sufficiently summarizes the operational semantics of flat concurrent logic lan-
guages to define our abstract interpretation scheme.

4.2 Syntactic Assumptions

Without loss of generality, the following syntactic constraints are placed on logic pro-
grams to facilitate the analysis. These constraints can be satisfied by simple trans-
formations at compile-time. The rationale behind the constraints (especially 2 and 3}
is to ensure that Ask and Tell equations are in a solved form [23]. These conditions
facilitate reasoning about structures that are definitely created at commit time (see
Section 4.6).
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. Head arguments are distinct variables. This restriction simply moves the match-
ing of head arguments with those of goal to the ask part of the guard.

. Equations of the ask part may be of two forms:

¢ X =Y, where the variables X and ¥ must also appear in the head.

o X = f{...) where variable X must appear in the head.
The left hand side variables may occur exactly once in the ask part.
. Equations of the tell part may be of two forms:

e X = Y, where the variables X and Y must also appear in the head or the
ask part of the guard.

s X =f(.)
The left hand side varjables may occur exactly once in the tell part.

. All program variables have been renamed such that no variable occurs in more
than one clause. This is because, when we define the abstraction function, we
will merge information about various incarnations (renamed versions) of the same

variable.

. Arguments of procedure calls are variables. A goal such as p(X, f(Z)) can be
replaced by a pair of goals p(X, Y)and Y = f(Z) where Yis a new variable not
occurring in the clause and the unification goal ¥ = f(Z) can be moved into the
tell part of the guard. Unification equations of the form Y = f{...) may appear
in the tell part but not in the body. The reason for this transformation is to
make explicit the structure creation operation and to simplify the abstraction of
head-goal matching,.

4.3 Abstract Domain

In the standard semantics, computation is defined as a (finite or infinite) sequence of

states where two successive states are related by the transition function. Hence, the

standard domain of interpretation is P(Computation). We are interested in determining

the set of program variables that will be bound only to single-threaded data structures

in any computation. In our abstract domain a variable can take values from the two-

point complete lattice L whose least element is SS (Single Producer/Single Consumer)

and the top is SM (Single Producer/Multiple Consumers). Thus, our abstract domain
AbEnvis PVar — {585, SM} and the partial ordering on AbEnvis the usual point-wise

ordering.
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Our abstraction function a will map a set of computations to AbEnv. Function a
is defined in terms of two other functions, o’ and a”. Function o/ maps a state to
AbEnvand o' maps a computation (which is a sequence of states) to AbEny. We need
an auxiliary predicate multi_occurs( Term, State) which is true whenever the term T
occurs more than twice in state Stale (counting each occurrence of a term T in each
atom in the state).

Definition: o : State — AbEnv
a'(8) = {Z+— SM if Z € {rename~?(X)| multi_occurs(X,§) Vv
(§=1(G,0,i} AT € sub-terms(X ) A
multi_occurs(T, 5))}

Z w85  otherwise }
O

A variable X (representing some data structure) can be multiple-threaded in one of

two ways.

¢ X is multiple-threaded if it appears more than twice in the current state.

¢ Suppose X is bound to a term f(...T...) in the current substitution # and a sub-
term, say T', occurs more than twice in the current state. Then X may or may

not be multiple-threaded. Consider:
- p(X).
p(Xh) - true : X; = f(e) | ¢(Xy), r(X1),s(X1).

Let the initial state be (p(X1),{},0). The state S1 resulting from reducing the
goal p(X) with respect to the above clause is

(9(f(a)),7(S(a)), s(f(a)},0 = {X  f(a), X1 — f(a)},1). The sub-terms f(a) of
the literals q,r, and s represent the current binding of the variable X; (and X)
shared by the literals ¢, 7 and s. Hence, in this case, both X and X, are multiple-
threaded. On the other hand, if the goal p(X) is reduced with respect to the
following clause, we will obtain a similar state §2 but in which variables X, X
and X, will not be multiple-threaded.

p(X1) i—true : Xy = f(a), X2 = f(a) | ¢(X1),7(X2), s(X2).

There is not enough information in the states §1 and 52 to distinguish between
them and hence we safely approximate X, X (and X,) to be multiple-threaded
in both states.

13



Note that our abstract domain does not keep track of the threadedness of the top
level of a structure and its sub-structures separately. This can be done by a more
expressive abstract domain and corresponding abstract domain operations. We have
developed such an expressive domain and are experimenting with its usefulness, the
results of which will be reported elsewhere.

Different (renamed) versions of the same variable may occur in a state but we merge
their threadedness. We consider a variable to be multiple-threaded in a state if any
one of its renamed versions is multiple-threaded. It is straightforward to extend the
definition of a' from State — AbEnv to Computation ~+ AbEnv , since a computation
is just a sequence of states. In the following definition, § € Comp denotes each state
S in the computation sequence Comp (by a slight abuse of notation).

Definition: o" : Computation — AbEnv

a’(Comp)= || o'(5)
SeComp =

The abstraction function a and the concretization function ¢ can now be defined as
follows.

Definition: «:P(Computation) — AbEnv
a(CompSet)= || o"(C)

CeCompSel m)
Definition: v : AbEnv — P(Computation)
¥(X) = {C : Computation | a"(C) C X}
a

In the following subsections, we describe the abstract interpretation algorithm in de-
tail. The algorithm consists of (i} abstract reduction which is composed of initialization
of the abstract environment of a clause (Section 4.4), head-goal matching and guard
execution (Section 4.6), (ii) local fixpoint computation and abstract success environ-
ment computation (Section 4.5) and (iii) global fixpoint computation in the standard
fashion (e.g., [9, 3]).

4.4 Initialization

The initial abstraction of the threadedness of variables is based on the number of
occurrences of a variable (and the variables it shares with) in the head and the body.
All occurrences of the same variable in the head and the guards are counted as a single
occurrence and each occurrence of a variable in the body is counted individually.
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If a variable occurs two or fewer times, it is initialized to SS. If it occurs more
than twice, it is initialized to SM, implying that variables that occur only in the guard
{Ask or Tell part) are initialized to SS. The variables that occur only in the guard will
inherit their threadedness from other structures with which .they are matched/unified.
The following example illustrates the computation of an initial approximation for the
body occurrences.

F(X1,X2) = X1 < Xa @ X3 =8X,) | p(X1,X4), (X1, X2, X3, Xy).

Variable X, is initialized to SM since it occurs three times — once in the head and
twice in the body of the clause. Variable X starts as single-threaded because it occurs
once in the head and once in the body. Similarly, X3 = X4 = 55. We refer to the
initial environment of the clause, obtained with the above rules, as AbEnvy; = {X; —
SM, X, 55,X3+— 55, X4 — S5} and use AbEnv! ;, to mean the initial environment
of clause i{. Function init: clause — AbLnv returns the initial abstract environment for
a clause using the above rules.
As an example of sharing, consider the following;:

(X1, X9, X3) i~ true : Xo= Xy | q(Xl,Xg), T(zY;;).

Assume that the tell goal may cause X; and X3 to share. Without considering sharing,
the number of occurrences of X, and X3 are each two. However, considering sharing,

we count four occurrences of each. Thus we initialize each to SM.

4.5 Threadedness Propagation

Propagation of information across procedure calls involves modeling the reduction of
a goal into a set of goals by head matching, including the successful execution of
the guards and the interleaved execution of body goals. The overall mechanism is
summarized in Figure 3, which is described in the following sub-sections. Given a
goal Goal, a caller’s environment AbEnuv.y, and a clause C' we abstract the reduction
process by first computing the initial environment AbEnv;n;; of C, and then by safely
approximating the effects of head-goal matching, Ask testing, and Tell unifications.

Definition: AbsRed: Atom x Clause x AbEnv — AbEnv
AbsRed(Goal, C, AbEnv..y) =

let H:-A:T|B = rename(C) (1)
AbEnvini; = init(H - A:T | B) (2)
E = Match(Goal, H, AbEnvay U AbEnvin) (3)
E" = Punify(A, E') (4)
E" = Aunify(T, E") (5)
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Goal Head
AbEnvyyy  AbEnuvyg
AbsRed
Figure 3: Abstract Interpretation Mechanism
in
rename = (restrict( E", Vars(H, A, T, B))) (6)

Qa

The variables of the clause C are consistently renamed (1) to avoid capturing the
goal variables. The initial environment AbEnuv;,; of the renamed clause is computed
using function init discussed in section 4.4. Match approximates head-goal matching
in the environment of the goal and the initial environment of the renamed clause (3).
Punify abstracts the effect of Ask goals of the guard (4) and Aunify abstracts the effect
of Tell unification goals (5). We restrict the resulting environment E' to the variables
of the renamed clause, and then apply the inverse of the renaming function {6). This
gives us the abstract environment AbEnvn,,, for the variables of clause C on reducing
goal g with respect to clause C.

The success environment of a user-defined goal G is obtained, in function Succ,
by taking the lub (least upper bound) of success environments of all the matching

clauses (3 below). Although the nondeterminism in committed choice languages is the
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don’t-care type, at compile time we do not know which clause will commit, and hence
take the lub. The program P (an implicit parameter to Succ) is analyzed by calcu-

query

lating AbEnv,y.. = Succ(Query, AbEnvI iY), where Query is the top-level procedure
guery

it 18 the initjal environment for the query variables.

invocation and AbEnv

Definition: Succ: Altom x AbEnv — AbEnv

Suce( Goal, AbEnv ) =

let {p1,p2,...,pk} be the clauses whose heads match Goal and
{b1,b2,...,br} be their respective bodies

AbEnvi,, = AbsRed(Goal,p;, AbEnv ay) (1)
AbEnvl, = Ewit(b, AbEnvl,,,) (2)
in .
| { OneSuce(Goal, pi, AbEnv ., AbEnvi;,)} (3)
i=1
a

The function OneSucc is similar to AbsRed, with two exceptions. First, we use the
exit environment of a clause instead of its initial environment. Second, after simulating
the head unifications, the result is restricted to the variables of the calling environment
(4 below) and not to the variables of clause C' whose head matched G.

Definition: OneSucc: Atom x Clause X AbEnv x AbEnv — AbEnv
OneSucc(Goal, C, AbEnvey, AVEND i) =

let (C',AbEnvyp) = rename((C,AbEnv..;)) (1)
H+~A:T|B = (' (2)
E = Aunify({Goal = H}, AbEnve,y U AbEnv,.) (3)
in
restrict(E, Vars( AbEnv..y)) (4)
a

In concurrent logic programs, body goals may execute in any order and their execu-
tion may also be interleaved. We safely approximate this by iterating the computation
of abstract exit environment (given the abstract entry environment) until the exit and
the entry environments are the same. This function is performed in FExrit, as {ollows.

Definition: Ewzit: Body X AbEnv — AbEnv
Ezit( Body, AbEnventry) =
let AbEnv = Eritlter(Body, AbEnveyy)
in if (AbEnvepsry = AbEnv.;;) then
AbEnv npry
else
Ezit( Body, AbEnv, )
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Definition: FErzitlter: Body x AbEnv — AbEnv
Ezitlter( Body, AbEnvg) =
if empty( Body) then
AbEnuvg
else let Body = {li,la,. .., 00}
in

| | Suce(ti, AbEnup)
=1 o
A different local fixed-point calculation was first used by Codognet et al. [7]. Since
the functions AbsRed, Ezit, Suce, Match, Punify, and Aunify are monotonic and the
domain L is finite, the least fixed point exists by Kleene’s fixed-point theorem [30].

4.6 Abstracting Head—Goal Matching, Ask Tests and Tell Unifica-
tions

Head-Goal Matching

Function Match(Goal, Head, AbEnv), is now defined. Since we are dealing with canonical-
form programs, head matching involves variable-variable unification orly. We first

unify the head I and the goal G' obtaining an idempotent substitution 8 = {X; ~

Yi,...,Xn — ¥} such that /4 = G. Next the threadedness is propagated by repeat-

ing the following rules until there is no change in the abstract environment. For each

Xi=Y; €0,

o if {X;— SM,Y; — 5SS} C AbEnv, then update AbEnv with Y; — SM. If Y; is
updated, for each Z that may share with ¥;, update AbEnv with Z — SM.

s or, if {X;— 55,Y; = SM} C AbEnv, then update AbEnv with X; — SM. If X;
is updated, for each Z that may share with ¥;, update AbEnv with Z — SM.

Ask Goals

The testing of Ask goals is simulated by function Punify. Recall that ask equations do
not bind goal variables; they can at most bind the variables of the clause being matched
with the current goal. Function Punify(Ask, AbEnv) is discussed below. A unification
equation in the ask part can be in one of two forms (recall the constraints of Section
4.2):
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¢ X = Y in which both X and Y must also appear in the head. This goal simply
tests for equality without creating any bindings and hence Punify ignores such
ask goals.

® X = f{...Y...) where X is a head variable. This goal does not create a binding
for X in the actual execution. However, ¥ may be bound to a component of X,
il Y doesn’t appear in the head. If Y is multiple-threaded but X is not, then X
(and all variables that may share with X ) will become multiple-threaded. I{ Y is
not multiple-threaded but X is, then ¥ (and all variables that may share with Y)
will become multiple-threaded. If YV is a head variable, then ¥ cannot be bound
to a sub-component of X but can merely be checked for equality and hence the
threadedness of X and Y are not affected.

Tell Unifications

Function Aunify approximates the effect of Tell unifications. We assume that tell
unification equations are in solved form, i.e., the LHS variables occur exactly once in
the tell part (Section 4.2). Furthermore, in each equation of the form X = ¥ (where
X and Y are variables) both X and ¥ must appear in the head or the ask part of
the guard. The set of tell equations X; = ¢;,...,X,, = 1, in solved form represents
an idempotent substitution {23] {X1 — t1,..., X, — {,}. An idempotent substitution
can be viewed as a bipartite graph [20]. The variables X; form a vertex set S and the
variables that occur in t; form another vertex set T and these two are disjoint. There
is an edge from a vertex X € § to a vertex ¥ € T whenever X — f(..Y...)or X —~ Y
is in 8. We propagate the threadedness by repeating the following rules until there is

no change in the abstract environment.

1. For each X € § such that there is an edge between X and ¥, and {X — SM,Y ~—
58} € AbEnv, update AbEny with Y +— SM. Whenever Y is updated, for each Z
that may share with Y, update AbEnv with Z +— SM. We are simply propagating
the multiple-threadedness of X to its components and their aliases.

2. The symmetric case of {X =+ 55,Y + SM} is treated similarly. Abstraction of
a tell unification equation thus involves propagating the lub of the abstractions
of the two arguments.

A more general, and therefore more precise, formulation of abstract tell unification

involves keeping track of local and output variables,? in conjunction with extending the

*For languages that restrict unification to assignment, such as Strand, this condition is known
precisely.
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X1 X2 X3 X4
' i
’ ’ \ 7 5 :
N I
)fl Yg YS Y:i Y5
Figure 4: Approximating Tell Unifications

abstract domain to express information about the threadedness of sub-structures. The
current formulation is imprecise in the following sense. Consider the structure created
by the tell unification equation X = f(¥],...,Y¥,) where X is a local variable, none of
the ¥; is local and some Y; is multiple-threaded. The structure X is reuseable if there
are no more than two occurrences of X in the body of the clause, and those occurrences
do not become multiple-threaded due to other reasons such as aliasing. However, our
abstract domain cannot express that the top level of X is definitely single-threaded but
other levels are not. This is a source of imprecision in our analysis.

As an example of the propagation steps, consider the set of tell unification equations
{X1 = f(M1,Y2), X2 = g(Y2,Y3), X3 = h(Ya,Y1), Xy = Y35} represented by the bipartite
graph in Figure 4. Assume that initially only X3 is multiple-threaded and let {{ X3, X4),
(Y3,Y5)} be the set of pairs of variables that may share. Since X3 is SM, Y3, Y, also
become SM and so does Y5 since it shares with Y3. X4 becomes SM because of the
equation X4 = Y5 and so does X since it shares with Xy. We can now apply rule one
again and this time Y, becomes SM. Since we cannot further apply the rules, the final
result is {Xo, X3, X4, Y2, ¥3,Y), Y5} are SM and the rest {X,1;} are SS.

4.7 A Quick Example

In this section we illustrate the analysis for the quicksort program as listed in Figure 5,
which is in flattened canonical form. First, the initial abstract substitution is computed
for each program variable in each clause. All program variables are initialized to SS.
Let us assume that the input abstract environment is {Z; = 55, Z; = 55} in the query
“?—gsort(Z,, Z,)." On completing the analysis, we obtain abstract substitutions for all
program variables. In other words, we have identified which of the incoming arguments
are of types 55 and SM. In the example above, it was determined that all six potential
applications of reuse are safe: variables L1 and L2 in gsort/2, X1 and X2 in append/3,
and List1-List3in split/{. A compiler can generate the appropriate reuse instructions
after the code for inspecting the head arguments.

Figure 6 illustrates a use of gsort that precludes reuse of the f/3 structure in
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qsort(Li, Sortedl) :-
L1 =1) :
Sortedl = [J |
true.

gsort(L2, Sorted2) :-

L2 = [Pivot|Rest]

Large = [PivotILS] |
split(Rest, Pivet, S, L),
qsort(S, S8},
gsort(L, LS),
append(SS, Large, Sorted2).

append(Xt, Yi, Z1) :-

Xt =0 :
Yi =21 |
true.
append (X2, Y2, 22) :-
X2 = [HIT]
z2 = (HiTemp] |

append(T, Y2, Temp}.

split{Listl, P3, S3, L3) :-
List1 = [J :
s3=0,L3 =101
true.
split(List2, P4, S4, L4) :-
List2 = [X|Xs], X =< P4 :
S4 = [X|Rest] |
split(Xs, P4, Rest, L4).
split(List3, P, Sb, LB) :-
List3 = [X3[Xs3], X3 =< P5 :
L5 = [X3{Rest] !
split(Xs3, P5, S5, Rest}.

Figure 5: QuickSort Program in FCP(:)

?- funny_qsort{A,B),
funny_use(B,C).

funny_qgsort(LO, Out)} :- true :
Qut = £(LO,L1,L2) |
gen(LO),
gsort(LO,L1),
rev(Li,L2).

funny_use(f(D,E,F), Z) :- true :
Zz = £(F,D,E) |
true.

Figure 6: Modified QuickSort Program in FCP(:)

2]




funny_use/2 because of the imprecision caused by the coarseness of the abstract domain.
In the body of funny_gsort/2, gen/1 generates a list and rev/2 reverses a list. The
original list, sorted list, and reversed list are packaged together in f/3. Since LO occurs
three times, it is SM (outside consumers of LO must be protected). However, f/3 itself
is actually single threaded, although we conservatively set it to SM. Also, consider
the query “? — funny_gsort(-, X),” which does not use the initial list, yet our analysis
prevents reuse of LO inside the procedure, In the next section we discuss the problem
that arises if at runtime, unbound variables occur in the top level of the structure.

4.8 The Problem of Unbound Structure Arguments

The presence of uninstantiated variable(s) in the top-level of a structure renders the
structure unsuitable for reuse, even if the structure is single threaded. The reason
is because a producer of the unbound variable may bind its value after the enclosing
structure has been reused! This might result in an erroneous unification failure.

This problem may be avoided by always allocating variable cells outside of struc-
tures and placing only pointers, to the variable cells, inside structures. While this
permits reuse, it introduces extra dereference operations and may also increase mem-
ory consumption. These tradeoffs have been quantitatively analyzed by Foster and
Winsborough [13].

If outside allocation is not the storage management policy, then a variable check of
the top-level arguments must be conducted at runtime. Usually when a structure js
inspected by a consumer, the components of the structure are decomposed, and copies
of the elements placed in machine registers, or in the environment of the consumer.
During this decomposing, the runtime check is relatively cheap to perform.

5 Experimental Results

In this section we review two alternative committed-choice language instruction-set ex-
tensions for exploiting reuse information. The extensions are from the Strand abstract
machine and the PDSS emulator. These extensions are similar, and deserve some ex-
planation to put our empirical performance measurements in context. A performance
comparison between our method and MRB is presented. The main purpose of this
analysis is to illustrate that our analysis technique in fact works! Of course, further
research is needed to present a full characterization of the utility of the scheme for real

benchmarks.
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5.1 Reuse Instruction Sets

Foster and Winsborough [13] describe a reuse instruction set for the Strand abstract
machine. The extension includes:

e test_list_r(L,H,T) — If a register L references a list structure, then place a
reference to the list in reuse register R, and place references, to the head and tail,
in H and T, respectively.

o assign_list.r(L) — Place a reference to the list structure, referenced by reuse
register R, into register L, and let the structure pointer point to the head of the
list.

e reuse_list_tail_r(L) — Place a reference to the list structure, referenced by
reuse register 12, into register L, and let the structure pointer point to the tail of
the list. Here we avoid the write mode unification of the head cell,

The reuse instructions use an implicit operand, the reuse register R, or a set of reuse
registers. The reuse register is effectively a fast “free list” of currently reusable struc-
tures. This method is an efficient way of managing reusable dead structures for deferred
reuse.

In contrast, the PDSS system {16] implements a reuse instruction set, designed
around the MRB method, for the KL1 abstract machine. Deferred reuse is based
on the collect operation which places reusable structures in free lists. When a new
structure is required, it may be allocated from the free list. PDSS also includes includes
instructions for instant reuse. The extensions for instant reuse include:

e put_reused_func(Rvect,01ldVect,Atom) — Set the Rvect to point to the same
location as Oldvect, set the name of functor to Atom,

¢ put_reused_list(Rlist,01dList) — Set Rlist to point to the same location
as pointed by 0OldList.

Instant reuse is more efficient than deferred reuse since the intermediate move onto
the free list is avoided. However, recall from Section 4.8 that a runtime variable check
is needed for each structure argument. In our empirical experiments with reuse anal-
ysis, presented in the next section, the PDSS system was used. Since PDSS allocates
unbound variables outside of structures, variable checks are not needed, so our com-
parison is fair. It is an open research question as to the performance tradeolf between
allocating variables inside structures and doing this check, or allocating variables out-
side structures and thereby incurring additional dereferencing,.
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Heap Usage (Words)
Program Naive | Dynamic | Static
insert 1,500,000 6,314 | 6,314
append 5,000,000 6,202 6,202
prime 323,786 12,128 | 12,158
gsort 8,000,000 61,725 | 61,725
pascal 167,070 127,072 | 147,270
triangle 543,809 539,523 -—

Table 1: Heap Usage: Comparison of No Optimization, Dynamic, and Static Analysis

5.2 Performance

Measurements were made with the PDSS emulator running on a Sun SparcStation I.
Six small benchmark programs were analyzed: append, insert, primes, gsort, pascal,
and triangle. Insert constructs a binary tree of integers. Prime uses the Sieve of Eratos-
thenes to generate prime numbers. Qsort is the standard quicksort algorithm previously
shown. Pascal generates the 32™¢ row of Pascal’s Triangle. Triangle solves the triangle
puzzle of size 15. Ior each benchmark, three compiled versions were generated:

Naive — A version with no collect nor reuse instructions. This program is used as a
basis for comparison.

Dynamic — A version with collect instructions as generated by the existing PDSS
compiler.

Static — A version with instant reuse instructions appropriately used and no collect

operations are used.

Note that the Naive and Static systems still have MRB management overheads associ-
ated with individual instructions that make bindings, potentially requiring modifying
the MRB.

Both static and dynamic methods can be used together in a hybrid scheme. How-
ever, in this study we wish to compare the efficacy of reuse with that of the MRB
scheme, and therefore we do not present results concerning the hybrid. The heap usage
patterns in the benchmarks are presented in Table 1. The measurements in Table 1 re-
flect the behavior we expected from the benchmarks. The benchmarks illustrate classes
of full, partial, and no-reuse programs. Insert, append, prime and gsort extensively
use stream-based single producer/single consumer communication. Our algorithm pre-
dicted potential for {ull instant reuse, as confirmed in the table. In these benchmarks
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Execution Time (sec)
Program | Naive | Dynamic | Static | % Save }
insert 52.2 53.6 50.5 5.6
append 111.0 114.3 | 106.5 6.7
prime 11.1 11.3 10.5 7.0
qsort 234.0 237.5 | 221.7 6.7
pascal 12.1 12.9 12.3 4.7
triangle 60.5 63.8 —_ —_

1 Reuse compared to Collect Optimization

Table 2: Execution Speed: Comparison of No Optimization, Dynamic, and Static
Analysis

the heap memory requirements of the static and dynamic versions are nearly identi-
cal. This demonstrates that it is possible to achieve as much efficiency as collect in
benchmarks where a large number of single-threaded structures are constructed.

In pascal, where only 50% ({167,070 — 147,270)/(167,070 — 127,072)) of single-
threaded structures were statically determined, the heap requirementis of the static
version are only slightly higher than that of the dynamic version. In triangle, the
board structure is multiple-threaded. The collect operations almost never succeed in
reclaiming memory and the memory requirements of the dynamic and naive versions
of the program are nearly the same. Since reuse is not possible, we did not generate a
static version of the program.

The memory requirements of the naive versions of the benchmarks can be several
times higher than the static and dynamic versions. The extent of memory reuse is
highly program dependent however. These measurements are meant only to illustrate
how our algorithm can exploit reuse when conditions are ripe. To further illustrate the
effectiveness of static analysis, the execution times of the benchmarks are presented
in Table 2. By compiling reuse into the program, the execution speed is consistently
better than that obtained through the MRD optimization. By implementing reuse more
efficiently (than in PDSS), the savings may be even higher. The results are biased
against the static system which still pays the overhead of MRB manipulation within
abstract machine instructions that make bindings. Thus the savings appear lower than
what could be achieved in a completely MRB-free system. Note that in PDSS, even
after stop-and-copy garbage collection, the naive version of a benchmark runs as fast
as, if not faster than, the dynamic version. This lends support to our claim that in the
absence of special hardware to implement MRB, a good garbage collector is important,.
To better the combination of reference counting and a good garbage collector, memory
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reuse is necessary.

In programs with a preponderance of multiple-consumer communication, the collact
operations simply add runtime overhead without reclaiming memory. In such a case,
the program performs better if the collect operations are simply removed. This is
evident in triangle, for instance, where our analysis determined that there is no scope
for reuse. The naive version outperforms the version with collect operations.

In programs where the majority of the structures have single consumers, collect
operations are avoided wherever instant reuse is possible. This reduces the overhead
of free-list management. The static version is 6-7% faster than the dynamic version
in insert, append, prime, and qsort, where 100% instant reuse was possible. Even
in pascal, where instant reuse was only 50% as memory-efficient as collect, the static

version was 4.7% faster.

6 Summary and Conclusions

We have introduced a new compile-time analysis method for determining single-thread-
edness of data structures in concurrent logic programs. The analysis is formulated in
the framework of an abstract interpreter for FCP(:). The information produced is the
“threadedness” of each logical variable: either single or multiple threaded, referring
to the number of consumer processes associated with the variable. To avoid over-
conservative approximation, the analysis imposes simple syntactic constraints that can
easily be achieved at compile time without loss of generality. Sharing information
is required to ensure correctness of the analysis, and its use is integrated into the
threadedness propagation algorithm.

Empirical results indicate that the analysis enables local memory reuse that is
comparable to the multiple-reference bit (MRB) scheme [6] in terms of amount of
memory saved. In addition, execution speed is improved (4.7%-7.0%) in some cases.
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Appendix

In this appendix we give the correctness and termination proofs of the reuse analysis
algorithms previously described. For the purposes of analysis, we define our abstract in-
terpretation by the following set of semantic equations. In these equations, the function
abstract reduction is modeled by AbsRed defined in Sections 4.4-4.5. We define three
functions called rge, reducing a goal with respect to a particular clause, rb, reducing
a set of goals, and rgp, reducing a goal by considering all the clauses (of a procedure)
which potentially can match with it. In the following, we ignore details of variable
renaming (which can be found in Section 4.5). The equations are:

rgelg, (h - G| B)] abenvey = let abenvg = AbsRed(g, (h :- G | B), abenv.yy)
in rb[B]abenvy

end
rbfby,. .., bi)abenvg = fiz()o. Grgp[[b,-,p,-]](a U abenvg))
rgplg, (k1 = G| b1), ..., -
(ht =~ Gk | bi)]abenv = [ilrgc[g, (ki == Gi | b)]abenv
i=1

The three components of the algorithm, namely, abstract reduction, local fixpoint
computation, and global fixpoint computation, are reflected in these equations. We

first prove that the abstract reduction is correct.

Theorem 1
If § is a concrete state and .5' is the state resulting from the single reduction
of the goal g with respect to a clause h :~ G | B, then
o §") C AbsRed(g, (h :- G | B), a($)). 0

Proof Qutline: We prove the above theorem by cases. We have to consider the cases
in which a variable becomes multiple threaded in a concrete reduction and show that
the abstract reduction operation also makes these variables multiple threaded.

Case 1: A variable X occurs in state S before the reduction and was multiple threaded.

Since the abstract reduction operator may only make a single threaded vari-
able into multiple threaded variable but not vice versa, the variable is multiple
threaded in

AbsRed(g, (h := G| B), a(5)). Thus a(5’)[X] C AbsRed(g, (h - G | B), a(5))[X].

Case 2: A variable X occurs in state § before the reduction and was single threaded.

The only way X can become multiple threaded after the reduction (in state §") is
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by the tell unifications. This is because ask unifications and head-goal matching
do not bind any goal variables. They pass the threadedness of the variables in the
goal to the variables of the clause under consideration. There are three possible
ways in which X may become multiple threaded due to tell unifications. We
show that in each of these three cases, our initialization rules and the abstract
unification algorithm safely conclude X to be multiple threaded.

e X became multiple threaded because of a tell unification X = ¥ and be-
cause Y is multiple threaded in 5, i.e., a(S)[Y] = SM. Since the abstract
tell unification of X = Y propagates the least upper bound of the thread-
edness of its arguments to both the arguments, (section 4.6) a(S5)[X] C
AbsRed(g, (h - G| B), a(S))[X]

¢ X became multiple threaded because of a tell unification X = f(...};...) and
because ¥; is multiple threaded. If ¥; is non-local,* then either it must have
been multiple threaded in the previous state §, i.e., a(S)[Y;] = SM, or ¥;
itself must have become multiple threaded (due to the reduction from state
S to state ') because of another tell unification.

If Y; is local, then Y; is multiple threaded either because it occurs more than
twice in S’ (in which case the function Init would have correctly classified Y;
as multiple threaded) or because of another tell unification equation X' =
f(...Y;...) where X' is multiple threaded.
In either case, function Aunify (section 4.6) correctly propagates the thread-
edness of ¥; to X, and thus a{S")[X] C AbsRed(g, (h :- G| B), a(S5))[X]-
¢ X became multiple threaded because of a tell unification equation Y =
f(...,X,...) where Y occurs in state S and }" either was multiple threaded
in state S or became multiple threaded in state §’. After unification, X
refers to some subterm of Y. This is approximated by our abstract tell
unification rule (section 4.6) for propagating threadedness of a structure to
its components. Since Y is mulltiple threaded in state S, the abstract tell
unification makes X multiple threaded. Thus

a(8)[X] C AbsRed(g, (h:- G| B), a(5))[X].

Case 3: X is a variable of the current clause, which implies X does not appear in
state S but appears in state §’. Variable X can become multiple threaded one of
the following ways.

4 Those variables of a clause that do not appear in the head and the ask part of the guard nor in the
RHS of a tell equation of the form X = f(...,Y,...) where X is a variable that appears in the head
or the ask part will be referred to as local variables of the clzause. Non-local variables of the clause are
just references to the terms or the sub-terms of the goal.
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e Variable X is multiple threaded in state §' because it occurs more than
twice in that state. X may occur more than twice in state S’ because it
occurs more than twice in the clause. If so, function init would classify X as
multiple threaded and thus o(S")[X] C AbsRed(g, (h :- G| B), a(8))[X].

e Variable X is multiple threaded in state §’ because it is bound to f(...,Y,...)
in the current substitution # and Y is mutiple-threaded. This situation
may arise because of a tell unification equation X = f(...,¥,...). Or it
may arise because of another tell unification equation Z = g(...,X,...)
where Z is a multiple-threaded local variable. The abstract tell unification

function would correctly classify X as SM in either case. It follows that
a(S)[X] E AbsRed(g, (h - G | B), o(S)[X]

We have thus shown that the abstract reduction safely approximates all possible
cases in which a variable can become multiple threaded in a single reduction.

Lemma 1
The function AbsRed is monotonic. O

AbsRed is monotonic because it is a composition of monotonic functions Aunify and

Punify.

Lemma 2
L{a"(C) | C € Comp is a computation of length & with intial state Sp} C
U{a"(C) | C € Comp is a computation of length ! > k with initial state
So}

O

From the definition of a”, it is obvious that a”(C) C a”(C") where C is a prefix
of C'. Since every computation of length & is a prefix of some computation of length
{ > k, the above lemma holds.

Lemma 3
The local fixpoint computation gives a safe approximation of any state that
could result from the reduction of the body goals of a clause. o

Proof Outline: The only way in which two body goals can interfere with each other
is through common or shared variables by which they can propagate the multiple-
threadedness of one to the other. Each body goal is solved abstractly with the current
abstract substitution as the initial substitution, to gather the threadedness information
of its variables. Since the reduction of goals may be interleaved, a goal a can be reduced
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after some arbitrary & reductions of another goal 6. By lemma 2, we know that the
abstract environment after & reductions is less defined than the environment obtained
by solving the goal completely. Given an environment that is a safe approximation of
the current state, the least upper bound of the environments obtained by solving each
goal individually, is also a safe approximation to the state at which any goal is reduced
because it captures the worst case behavior of all other goals during reductions. In
other words, the effect of any reduction of one goal on the other is taken care of by
the least upper bound operation. The new environment if different from the initial
environment, is used as the new initial environment for solving each body goal. This
is formally achieved by computing the fixpoint of the equation:

abenv = | |{rgplb:, p:](abenv U abenvo)}

abenvg is the initial environment in which the goals are called and p; is the procedure
that defines the body goal b;.

Lemma 4
The effect of a procedure is safely approximated by the global fixpoint
computation. o

Proof Outline: Since the effect of each clause is safely approximated by the local
fixpoint computation, the effect of a procedure is given by finding the effect of each
clause and then taking the least upper bound. Given an environment which is a safe
approximation to the state, the environment obtained by rgp safely approximates the
state reached by the concrete execution of the procedure. This follows from the safety
of abstract reduction (AbsRed ), correctness of local fixpoint computation, and the
monotonicity of the least upper bound operator. Since the procedures can be defined
recursively, the global fixpoint is computed by successive approximation. The intial
approximation of each predicate is an identity function (mapping an environment to
itself). The #** approximation uses the (i — 1)** approximation of the abstractions

computed for each procedure.

Theorem 2

The analysis is sound. (|

Proof: It follows from Theorem 1 and Lemmas 2, 3, and 4.
The termination of the analysis follows from the finiteness of the program (finite
number of program variables), finiteness of the abstract domain, and the monotonicity

of abstract reduction (lemma 1).
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