Isolated Template Immunity

Arthur M. Farley and Andrzej Proskurowski

CIS-TR-92-01
January 1992

Department of Computer and Information Science
University of Oregon






Isolated Template Immunity

Arthur M. Farley and Andrzej Proskurowski
Computer and Information Science, University of Oregon

Eugene, OR 97403
January 9, 1992

Abstract

We introduce the notion of isolated template immunity in com-
munication networks. A template is simply a connected graph. A
network’s topology is template immune to a set of templates T if it
remains connected under removal of any imbedding of an element of T.
A network’s operational protocol is template immune to a set of tem-
plates T if its topology is template immune and its protocol guarantees
that operating sites can communicate. Isolated template immunity to
a set of templates T allows multiple failures such that one imbedded
template does not contain vertices or neighbors of another imbedded
template. We discuss network topologies and associated protocols
represented as routing tables or calling procedures, that are isolated
template immune to template sets consisting of bounded length paths.



1 Introduction

The reliability of a communication network is characterized by the set of
communication tasks that can be completed in the presence of certain sets
of failures in the network. In this paper, we will focus on site-to-site commu-
nication tasks in store-and-forward network architectures. Each such com-
munication task is characterized by a message containing the information to
be communicated, an originator, being a site that creates the message, and
a destination, being the site to which the originator wishes to convey the
message. In a store-and-forward network, a message is transferred between
two sites by a series of one or more calls. A site can place a call only to
those sites to which it is directly connected; thus, if a site is to communicate
with a non-neighboring site, the message must be forwarded along a route
connecting the two sites.

We model a communication network by a combination of topology and
protocol specifications. A network’s topology is represented by an undirected
graph G = (V, E), whose vertices V' correspond to sites of the network and
whose edges E, represented as pairs of vertices (u,v), correspond to com-
munication lines of the network. We assume the edges are undirected and
correspond to lines that can be used in either direction. We will refer to the
graph representing a network’s topology as the network’s graph.

The notions of neighborhoods, paths, and connectivity will be important
in establishing our results. Two vertices are neighbors in a graph G if they
are connected by an edge of G. We denote the set of neighbors of a vertex v,
the neighborhood of v in G, by N(v). The order of N(v) is called the degree
of v,deg(v). A path between two vertices v; and v in a graph consists of
a sequence of vertices (vy,...,vx), such that for each 7, 0 < i < k, the pair
(viyviz1) is an edge of the graph. We define the length of a path to be the
number of vertices in the path. We will refer to the general path on n vertices
(of length n) as P,. By our definition, P, is a single vertex.

When considering the reliability of a network, we will be concerned with
connectivity properties of its graph. Two vertices are connected in a graph
G if there exists a path between them in G. A graph is connected if and only
if every pair of vertices in G is connected. Removal of certain elements of a
graph can disconnect the graph. A separator of a graph G is a set of vertices,
which, when removed from G, will yield a graph that is not connected. A



minimal separator S of G is a separator such that no proper subset of Sis a
separator of G.

A set of network failures will be modeled by removal of the corresponding
vertices or edges from a network’s graph. For example, in the case of a site
failure, the corresponding vertex and all edges incident to that vertex are
removed from the graph. We refer to the graph remaining after removal of
failed elements as the operative graph; the sites remaining are termed oper-
ative sites. Obviously, two operative sites can no longer successfully commu-
nicate if their associated vertices are not connected in a network’s operative
graph. However, two operative sites may not be able to communicate even
though their vertices are connected in the operative graph if the network’s
operational protocol is not sufficiently resilient to encountered failures.

A network’s communication protocol will be expressed in terms of rout-
ing tables and calling procedures associated with sites of the network. The
essential communication primitive is the call, placed by one site, the sender,
to a neighboring site, the receiver. A routing table for a site indicates, for
each other site as destination, one or more possible calls that the site is to
place. A calling procedure uses the routing table to determine which neigh-
boring site, if any, to call next with a message that a given site has received
or originated.

We characterize the reliability of a communication network by which pairs
of operative sites still can communicate in the presence of a given set of
failures. We will say that a network is immune to a given set of failures if
and only if all pairs of operative sites can still communicate in the operative
graph under the network’s protocol. We are interested in designing efficient,
immune networks. By efficient, we mean networks with graphs that have
small size-to-order ratio (i.e., the ratio of the number of edges to the number
of vertices) among all networks immune to specified sets of failures.

Qur presentation proceeds as follows: In Section 2 we introduce and
illustrate by simple example the notions of templated immunity and isolated
templated immunity, as well as a class of benchmark graphs, the k-trees. We
then introduce topologies immune to isolated templated failures consisting of
paths in Section 3; in Section 4, we present protocols proving those topologies
immune.



2 Restricted Element Failures

In this section, we discuss a network’s robustness with respect to possible
multiple, but restricted, occurrences of prespecified configurations of element
failures. We will introduce the notion of template immunity and then extend
it to isolated template immunity.

2.1 Template Immunity

A template is a connected graph. An imbedding of a template ¢ in graph G
is a one-to-one association of all vertices of ¢ with a subset of vertices in G,
such that if there exists an edge between two vertices of ¢ then there exists
an edge between the corresponding vertices in G. A templated failure will
be a failure of elements of a communication network that corresponds to an
imbedding of a template in the network’s graph. A templated failure will be
said to be based upon a set of templates T if the subgraph associated with
the failure corresponds to one of the templates in T. We say a templated
failure covers the associated vertices in the graph.

A graph G is template immune to a set T of templates if and only if it
remains connected after introduction of any possible templated failure based
upon T in . We can state the following lemma regarding graphs that are
template immune, based upon definitions given above:

Lemma 2.1 A graph G is template immune to a set of templates T' (i.e., G
is in Immune(T')) if and only if no templated failure based upon T in G can
cover any minimal separator of G. »

The class of graphs template immune to a set T of templates is referred
to by Immune(T). For example, if the set T consists of a single element,
the single vertex graph P, , then Immune({P,}) is the class of 2-connected
graphs (¢f. [4]). Minimum size examples of such graphs are the cycles. The
cycle C, is the unique connected graph on n (n> 1) vertices, such that every
vertex has degree 2.

In a previous investigation of template immunity, we restricted our atten-
tion to templates consisting of a node and its & neighbors {3]. Such graphs
are called stars and are denoted as K, graphs. The distinguished node
and its neighbors are called the center and the tips of the star, respectively.
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When considering failures of star subgraphs, we assumed that a failure at a
selected node causes the removal of that node and & of its neighbors (or all
of its neighbors, if there are less than k neighbors). This corresponds to the
template set T = {K,; | 1<j <k}

In [3], we considered several classes of graphs immune to single star fail-
ures, discussing their trade-offs as to size-to-order ratios, diameters, and
after-failure diameters. The graph of smallest size for given order n which
remains connected after an arbitrary star failure is the cycle C,. Such a
graph has n edges and diameter of n/2. After failure, the operative graph is
a path with either n—3 or n—2 (when k=1) nodes and diameter of n—4 or
n—3. A double star consists of two stars Ky (n/2-1 with respective tip nodes
made adjacent in a one-to-one manner. It has 3n/2 edges and diameter 3.
After a star failure, the operative graph has either n—3 remaining nodes (or
n—2 when £=1) and diameter of 4 when 2 tip node corresponds to the center
of the failed star, or n—(k+1) remaining nodes and diameter of 2 when one
of the two centers corresponds to the center of the star.

These two classes of graphs, cycles and double stars, while having rela-
tively few edges, seem to be at opposite extremes of the trade-off between
number of operative sites and diameter of the remaining operative network.
A complete graph on n nodes, K, is immune to any single templated failure
but requires many edges for the benefit derived.

2.2 Isolated Template Immunity

An imbedding of elements from a set of templates T in a graph G is an isolated
imbedding if no two of the imbedded templates have associated vertices in G
that are identical or adjacent. In other words, around each failure there is a
buffer of operative sites; thus, the failures are topologically isolated from each
other. A graph G is isolated template immune to a set T of templates if and
only if it remains connected after removal of any possible isolated imbedding
of elements of T in G. The class of graphs that are isolated immune to a set
of templates T will be denoted by Isolmmune(T).

Lemma 2.2 A graph G is in IsoImmune(T) if and only if no isolated imbed-
ding of templated fatlures based upon T in G can cover a minimal separator

of G. m



If a graph is to be immune to isolated imbeddings of a particular set T
of templates, Lemma 2.2 gives a general, minimal condition that must be
satisfied. However, this condition is not particularly useful in design of the
corresponding immune networks; it simply restates the definition in terms
of separators. The notion of separator in a graph is obviously relevant. If
we could rephrase our lemma as sufficient (if not necessary} conditions on
the relationship between elements of the template set T and separators of a
graph, we would have some principles to guide our search for feasible designs.

As noted above, when templated failures are isolated there is a buffer
of operative sites between them . As we imbed one failure, we guarantee
that certain other vertices can not be covered by other failures when failures
are isolated. We will say that a given templated failure immunizes those
other vertices in the network’s graph. If the graph consisting of a single
vertex is included in the set of templates, then a templated failure is only
guaranteed to immunize neighboring vertices. In cases where no template
is a single vertex, vertices other than neighbors may be immunized by a
given templated failure (i.e., there might not be “space left” to imbed a
minimum diameter template). The immunization of nearby vertices suggests
the following design principle, which is a sufficient condition for isolated
immunity to a set of templates:

Given a set of templates T, a graph in which any element of
T that covers a vertex of a minimal separator also immunizes

another vertex of the separator is immune to isolated failures
from T.

One way to implement this principle is to consider network topologies in
which every separator is a connected graph having more vertices than any
template in T". By the following lemma, such graphs are in Isolmmune(T).

Lemma 2.3 If every separator in a graph G is a connected subgraph hav-
ing more vertices than any element of a set of templates T, then G is in
Isolmmune(T).

Proof: (By contradiction.) Assume there exists an isolated imbedding of
elements of T that disconnects G. This implies that some separator S is
completely covered by the imbedding. Yet, no single templated failure can
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cover S, as S has more vertices than any template in T. Furthermore, a
template that covers part of § must immunize at least one other vertex of S,
as S is a connected subgraph of G. Thus, any imbedding of templates that
disconnects G can not be isolated, contradicting our assumption. =

This principle should guide us in designing classes of efficient networks
that are immune to isolated imbeddings of certain sets of templates. There
is a number of ways to define efficiency. One is to choose a suitable “bench-
mark” class, an infinite family of graphs immune to such failures, and then
define sparser, immune families. Then, we can measure efficiency in terms of
the improvement in the size-to-order ratios between the sparse and bench-
mark graphs.

We will consider the family of graphs known as k-trees to be reasonable
benchmarks for our designs. A k-tree can be defined recursively as either
a k-complete graph (i.e., a graph on k vertices, such that every vertex has
every other vertex as neighbor), or as a k-tree to which a new vertex has
been added by connecting it to every vertex of a k-complete subgraph. Later
in this paper, we will use the known property of k-trees which is that they do
not have a subgraph homeomorphic to the complete graph with k42 vertices,
i.e., Ky (see, for instance, [7]). Another known property of k-trees is that
every minimal separator in a k-tree induces a k-complete graph ([7]). For a
given set of templates T in which the maximum number of vertices is k—1,
a k-tree is immune to isolated imbeddings of elements of T, by Lemma 2.3.
A k-tree has size-to-order ratio equal to k. That ratio will provide us with a
target to improve upon in our search for efficient designs.

That a network’s topology is template immune is necessary, but not suf-
ficient, for the network to be template immune to a given set of templates.
For a network to be template immune, its communication protocol also must
guarantee that every pair of operative sites can still communicate.

In the remainder of the paper, we present results on network topologies
that are isolated template immune to a series of template sets. After that, we
will complete the network designs by presentation of operational protocols
that realize the immune performance in those topologies.



3 Isolated Template Immune Topologies

In this section, we will define classes of graphs that are isolated immune
to template sets containing paths of bounded lengths. How can we define
an infinite class of graphs that have a certain, desired structure in their
separators? A general technique we employ is that of “growing” the desired
graphs from a base graph, successively adding one or more vertices in a
particular configuration and connecting them to certain subsets of vertices
in the current graph [5,6]. We will require that the base graph be isolated
template immune and that each addition operation maintain the immunity.
The recursive definition of k-trees above is an instance of a definition of this
form.

A related technique will be to take two instances of immune graphs and
“glue” them together by identifying a certain subset of vertices from one
graph with a subset in the other. For example, a 2-tree can be defined as
being either a triangle {completely connected set of 3 vertices) or two 2-
trees glued together by identifying a P, from each graph. The identified end
vertices of the composite edge become a separator in the resultant graph.
That separator must satisfy certain constraints if we are to maintain isolated
immunity.

3.1 Isolmmune({P})

We have previously described a class of networks that is immune to isolated
imbeddings of single vertex P, failures. In that case, we were able to match
the efficiency of our benchmark graphs, 2-trees, but could not better it. In
[2], we establish that any 2-tree is in Isolmmune({P,}) and define routing
tables and calling procedures sufficient to realize immune performance in the
corresponding network. We will propose an alternative approache to defining
routing tables later in the paper. It is easy to understand the immunity
of 2-trees to isolated vertex failures. In a 2-tree, every minimal separator
induces a P,; any single vertex failure immunizes the other vertex of any
separator of which it is part. Therefore, such graphs are in Isolmmune({P,; })
by Lemma. 2.3.

In [2], we also note that the prism (see Figure 1(a)), consisting of two
triangles (i.e., 3-complete graphs) interconnected in a one-to-one fashion,
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Figure 1: The prism graph (a) and a prismatic 2-tree (b)

is in Isolmmune({P,}), as well. Let us define an extended class of graphs
immune to isolated vertex failures by using the P,-gluing operation discussed
above in the context of 2-trees. A prismatic 2-treeis either a triangle, a prism,
or the result of gluing two prismatic 2-trees together by identifying a P, from
each graph (see Figure 1(b)). It is straightforward to see that a prismatic
2-tree is a topology that is immune to isolated failures of single vertices, as
all minimal separators again contain a pair of neighbors. Prismatic 2-trees
preserve the benchmark size-to-order ratio of 2-trees. It remains an open
question whether they are in the class of minimum Isolmmune({P, }) graphs
(i.e., those with fewest edges for given number of vertices) and, if the answer
is afirmative, whether there are other graphs in the class of such graphs.

3.2 IsoImmune({P;})

We will call P; a dipole. A graph G that is immune to isolated dipole failures
(i.e., in Isolmmune({P,})} we call an IDFI graph. The minimum number of
vertices in a separator of an IDFI graph is 2. If a two-vertex separator
induces an edge in G, then G can be disconnected by a single dipole failure.
Thus, we must consider graphs in which any two-vertex separator consists of
non-adjacent vertices. The cycle graphs C, for n > 2 are minimum graphs
satisfying this property. While they guarantee immunity to single P, failures,



more structure will be needed in networks that insure immunity to isolated
instances of such failures.

Our benchmark class of IDFI graphs are 3-trees, which have minimal
separators such that at least one vertex is immunized by any dipole failure.
3-trees have size-to-order ratio of 3.

Two (non-adjacent) vertices with identical neighborhoods we call twins.
A minimal separator that is a pair of twins is useful in the following sense:

Lemma 3.1 Only one vertex of a pair of twins can fail, given isolated Py
failures.

Proof: Any P, failure that fails one element of a pair of twins can not fail
the other twin, since it fails one of the pair’s common neighbors. Failure of
such a vertex immunizes the other vertex of the pair. »

This lemma provides a basis for construction of a class of efficient IDFI
graphs. By Lemma 2.2, if we can construct graphs whose minimal separators
always contain a pair of twins, they will be in Isolmmune({P;}).

We start with the simplest graph containing a pair of twin vertices, the
cycle Cs. The two minimal separators of C, are pairs of twins. We continue
by adding vertices in a manner preserving immunity, connecting each new
vertex to both vertices of a pair of twins. We will call such graphs twin
graphs (an example of a twin graph is shown in Figure 2(a)). We remark
that twin graphs are partial 3-trees, i.e., subgraphs of 3-trees, but in general
they are not partial 2-trees (see, for instance [1]).

Theorem 3.1 A twin graph is an IDFI graph.

Proof: By induction on the number of new vertices added to the initial C,
in a construction process, we show that every minimal separator contains
a twin pair. Our condition is true initially, as the two separators of the
C4 are twin pairs. As we add a new vertex, all existing separators remain
intact, except for those that separate vertices of the twin pair to which we
connected the new vertex. The new vertex simply augments those separators
which, by inductive assumption, contain twin pairs. The only new separator
created consists of the two vertices to which we connected the new vertex;
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Figure 2: A twin graph (a) and its representative tree (b)

by construction, these are twins. Thus, by Lemmas 2.2 and 3.1, any twin
graph is an IDFJI graph. =

The recursive construction of twin graphs implies that they exhibit a
tree-like structure. We call a twin pair of vertices to which a new vertex is
connected during the construction process a committed twin pair. Thus when
a new vertex is added, it is either connected to an existing, or committed
twin pair or creates a new such pair.

Lemma 3.2 Given a twin graph G, any vertez of degree larger than 2 is in
a unique, committed twin pair.

Proof: Consider a vertex u of G such that deg(u)>2. Let G’ be a subgraph
of G corresponding to the time instant in the recursive construction of G
immediately after the third neighbor w of u has been added. By definition,
w was then made adjacent to another vertex v of G’ such that, in G, N(u) =
N(v). Since no vertex in V(G') other than u and v is adjacent to w, no other
vertex is a twin of u in G’. Since u has degree 3 in G’, no vertex added later
(i.e., in V(G —G")) can be made adjacent to all neighbors of u, as only two of
them could be the twin pair to which a new vertex is made adjacent. Thus,
{u,v} is the unique twin pair containing v in G. =

Given the uniqueness of committed twin pairs, we can define the repre-
sentative tree of a twin graph with internal vertices representing committed
twin pairs of G, external vertices (leaves) representing the degree 2 vertices
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of G, and edges reflecting the definitional relation between added vertices
and their adjacent twin pairs. Since both vertices of a committed twin pair
were either in the original Cy4 or connected to the same twin pair in the con-
struction process, the above defines the edges between committed twin pairs,
as well. The representative tree of a twin graph is given in Figure 2(b), with
nodes representing committed pairs shown as circles. We will exploit the
notion of representative tree in Section 4 when defining an immune protocol
for twin graphs.

The number of edges in a twin graph having n vertices is 2n, for the
size-to-order ratio of 2, which is an improvement over our benchmark class of
3-trees. By relaxing our condition on neighborhoods of vertices in a separator,
we will be able to construct IDFI graphs with even fewer edges for a given
number of vertices.

Lemma 3.3 Let © and y be two vertices in a graph G. If the sets X =
N(z)—N(y) and Y =N(y)—~N(z) are such that either both are empty, only
one is emply, or every verlez in X is connected to every vertex in Y and
vice versa, then = and y can not both fail by the introduction of isolated P,
failures in G.

Proof: If both X and Y are empty, we have the situation that exists in twin
graphs. When only one set is empty, we can assume without loss of generality
that X contains a vertex u. If the dipole (z, u) fails, this immunizes all other
neighbors of z, which (since we assume Y = N(y) — N(z) = 0) includes all
neighbors of y. Therefore, y can not fail by introduction of isolated dipole
failures in G, as a dipole failure involving y must involve one of its neighbors.
A third case remains. Let u be an element of X and v an element of Y. A
failure of the dipole (z,u) would immunize all vertices in Y (since they are
adjacent to u) and also all other vertices in N(y) (since they are adjacent
to z), thus protecting y from failure, as above. Similarly, a failure of dipole
(v,v) immunizes all vertices in N(z), indirectly protecting z. So, there would
be no way to fail both elements of {z,y} when dipole failures are isolated. =

The above result can be used to construct IDFI graphs with fewer edges
than twin graphs. We again start with a C;. We add 3 new vertices to a
current graph, connecting them to a twin pair, z and y, as follows: one new
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Figure 3: An augmentation in a wing graph

vertex, u, is connected to y, and two other new vertices, v and w, to =; u
is connected to both v and w. This construction operation is illustrated in
Figure 3. We call such graphs wing graphs. Wing graphs have the asymp-
totic size-to-order ratio of 5/3, as each vertex addition operation adds 3 new
vertices and 5 new edges. We will prove that wing graphs are IDFT graphs,
thus improving upon the size-to-order ratio of 2 associated with twin graphs.

Theorem 3.2 A wing graph is an IDFI graph.

Proof: We show that every separator of a wing graph contains two non-
adjacent vertices that satisfy the condition on neighborhoods presented in
Lemma 3.3. If the condition on neighborhoods is met, then the graph is in
IDFI graph, by Lemma 2.2.

Our proof will be by induction on the number of vertex additions per-
formed in the construction process. The initial C; meets our condition, as
discussed above. Assume a wing graph satisfies our condition on neighbor-
hoods after k addition operations. Let us consider the graph produced by
the (k4 1)th operation. Adding the new vertices, u, v, w to a twin pair {z,y}
(as in Figure 2(b)), creates several new separators in the graph. Consider
the new separator (u,z). N(u)— N(z) = {y}, while N(z) — N(u) consists
of the neighbors of z other than v and w. As z and y were twins in the prior
graph, y is adjacent to all of those other neighbors of x. Thus, our condition
on neighborhoods is met for that separator. The set {y,v,w} separates u
from the rest of the graph. Since v and w form a twin pair, our condition is
met again. The two new separators, separating = and y, respectively, from
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the rest of the graph, extend (by inclusion of u or v and w) former separators
already satisfying the condition. Finally, the previous twin pair {z,y} itself,
which may have been a separator, satisfies the conditions of Lemma 3.3, as
our construction directly reflects the condition. Thus, all of the new separa-
tors, and so the new graph, satisfy our condition. w

3.3 Isolmmune({P,, P;}) Networks

We have defined prismatic 2-trees and twin graphs, which are immune to
isolated instances of isolated single vertex (P,) and dipole (P,) failures, re-
spectively. Here, we consider networks in which both of these failures may
occur. Let the wheel graph W, on n vertices be the graph having n — 1
vertices connected in a cycle Cn_y, called the rim, and a single vertex, called
the hub, made adjacent to all vertices on the rim (¢f. Figure 4(a)). By defi-
nition, W, has 2n—2 edges, its size-to-order ratio of 2 being better than the
ratio of 3 associated with our benchmark 3-tree graphs.

Theorem 3.3 The class of wheel graphs is exactly the class of minimum size
graphs in Isolmmune({P,, P;}).

Proof: It is easy to see that W, is in Isolmmune({P;, P,}). No single
failure can disconnect the graph. If the hub is involved in a failure, only
that one (isolated) failure can occur; failure of the hub vertex immunizes all
other vertices. If the hub is not involved, any failure immunizes the hub; all
operative vertices remain connected to each other through the hub.

To prove that the wheel graphs constitute exactly the class of minimum
size Isolmmune({FP;, ;}) graphs, we first establish that the minimum size
for a graph in this class is 2n—2, for graphs of order n. We see that W, is
isomorphic with the complete graph on 4 vertices and is the unique minimum
size immune graph of order 4. Assume that G has the minimum order among
all immune graphs on n >4 vertices with fewer than 2n—2 edges. G can have
no vertex of degree 2 since adjacent neighbors of such a vertex can fail in
a P, failure and non-adjacent neighbors can fail in two isolated P, failures.
Thus G must have a vertex u of degree 3 since, if all vertices were of degree
at least 4, G would have at least 2n edges. The neighborhood of u in G
contains a path, lest two isolated P, and P, failures disconnect u from G.
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Without loss of generality, assume the path is (z,y,z). We claim that the
graph G' formed by removing vertex u from G and adding the edge (z,2)
is also in Isolmmune( P, ;). This is so because any isolated imbedding of
templates in G’ that would disconnect G’ would also disconnect G (if (z, z) is
not an edge in G, then its failure in G' can be simulated by isolated failures
of z and z in G). Thus, G’ is in Isolmmune( P}, P;). G’ has n—1 vertices and
fewer than 2n—-2—2 = 2(n—1)—2 edges, as 3 edges were deleted from G and
at most one added. Therefore, n is not the minimum order for an immune
graph having few edges. By contradiction, no such graph exists.

Now we show that no other graphs are minimum Isolmmune({P;, P,}).
Our argument is similar to that above. By inspection, Wy is the only graph
on 4 vertices that is in the class. Let k be the least k (k>4), such that W} is
not the only graph with £ vertices and 2k —2 edges in Isolmmune({P;, P,}).
Let G be one of these other graphs having k vertices. G must contain at
least one vertex u of degree 3, as argued above. The neighborhood of u
contains a Ps, call it (z,y, 2), as above. We remove vertex u and add an edge
between the two non-adjacent vertices z and z of the P;. This reduces the
number of vertices by 1 and number of edges by 2. The resultant graph G’
is in Isolmmune({F;, P,}), as argued above. By our assumption, G' must be
Wi_1, as k is the least number of vertices for which a minimum size member
of Isolmmune({P;, P.}) is not a wheel.

There are two cases to consider for the position of the added edge (z, z)
in G'. The triangle (z,y,2) resulting from the reduction must involve the
hub of Wj_, (since & >4) and two adjacent vertices of degree 3. However, for
k>35, the added edge (z, z) could not be incident to the hub, as the original
graph G would not be immune (isolated failures of = and a dipole involving
z would disconnect G). Thus, the removed vertex u was a rim vertex of the
wheel graph W, (by inspection, this is also true for k=35). Therefore, G was
a wheel graph. This contradicts our assumption that there exists a minimum
order Isolmmune({P,, P;}) graph that is not a wheel. u

3.4 Isolmmune({P, B, ..., B})

We can generalize our notion of wheel graphs to provide a class of graphs
that are immune to isolated imbeddings of longer path failures. We define the
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Figure 4: The wheel W7 (a} and the 3-centered wheel graph 3Wyq (b)

class of multi-centered wheels, as follows. A k-centered wheel on n vertices
kW, (n> k1) consists of a hub, being a set of k independent (i.e., mutually
non-adjacent) vertices, and a rim, being all other n—k vertices connected in
a cycle, such that each vertex on the rim is also adjacent to every vertex of
the hub. Figure 4(b) presents a ;W;, graph.

Theorem 3.4 The W, graph is in Isolmmune({P,, Py, ..., Pax_2}), for n>
3k -2 and k>2.

Proof: We have % vertices in the hub and more than 2k —2 vertices on the
rim. To disconnect a vertex on the rim, we must fail all hub vertices plus
at least two vertices on the rim, all in one failure. To disconnect a vertex in
the hub requires that all vertices on the rim fail, also in one failure. Either
of these situations would require a path of length 2k—1. If a failure involves
any vertex of the hub, all remaining vertices on the rim are immunized. If
a failure involves a vertex on the rim, then all remaining vertices of the hub
plus neighbors of the failure on the rim are immunized. As such, we see
that a single failure from the set of available templates cannot disconnect
the graph and immunizes other elements sufficient to guarantee immunity
for the graph. =

The number of edges in a W, graph is n — k on the rim, plus (n — k)&
connecting the rim to the hub, for a total of (k + 1)(r — k). This indicates
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Figure 5: A 3-sibling graph (a) and its tree representation (b)

a size-to-order ratio of k -+ 1 for networks in IsoImmune({P,, P;, ..., Psx_1}),
for k > 2. This is significantly less than the size-to-order ratio of 2k — 1
associated with our benchmark (2k—1)-trees, for paths of length 2k —2.

3.5 IsoImmune({P;,..., P}) Networks

In this section, we discuss networks that are immune to isolated path failures
up to some length limit &, this time without the possibility of single vertex
failures. Without single vertex failures, immunization can reach beyond di-
rect neighbors, as we have seen before. The notion of twin pair used in
Section 4.2 can be generalized to that of an s-sibling set: a set of s indepen-
dent (i.e., mutually non-adjacent) vertices having identical neighborhoods of
order at least s. By an iterative construction procedure, we can form tree-like
graph structures, having s-sibling sets as separators.

An s-sibling tree on n vertices (for n >2s) is either the complete bipartite
graph on 2s vertices (n = 2s) or is formed by connecting a new vertex v
to an s-sibling set of an s-sibling tree having n—1 vertices (n > 2s). Each
s-sibling tree on n vertices has s(n—s) edges. Figure 5 presents an example
of a 3-sibling tree together with a tree representation reflecting the structure
of such a graph (committed 3-sibling sets are represented by open vertices).
The recursive definition leads to an easy inductive proof of the following
lemma.
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Lemma 3.4 Every separator of an s-sibling tree contains an s-sibling set. m

If we are to provide immunity to failures of paths up to length &, all vertices
of a sibling set separator must not be covered by a single failure. Thus, the
number of siblings in a separator must be greater than (k+1)/2.

Theorem 3.5 An s-sibling tree on n vertices is in Isolmmune({P,, ..., P;}),
for any s greater than (k+1)/2.

Proof: By Lemma 4.3, every separator contains an s-sibling set and thus
has more than (k+1)/2 independent vertices. Hence, no separator can be
covered by a single Py failure. Each failure immunizes at least one vertex
of any sibling set involved in the failure. Thus, at least one vertex of every
separator is operational in any set of isolated P, failures. m

The s-sibling trees are efficient designs for Isolmmune({?,, ..., P}) in that
they only require a size-to-order ratio of (k+1)/2, while our benchmark class
of (k+1)-trees would require a ratio of k1.

4 Isolated Template Immune Protocols

In the preceding sections, we have defined topologies that are immune to iso-
lated failures drawn from several different template sets. To complete defini-
tion of an immune network, we must specify a protocol that realizes message
transfers among the remaining operative sets. Communication protocols will
be defined in terms of routing tables and calling procedures associated with
sites of the network. We assume that each site can perform a primitive oper-
ation call(z,m), sending a message m to a neighboring site z. This operation
can succeed, with the effect of ¢ receiving message m, or fail due to failure
of z or the line to z, with = receiving no message.

To realize immunity to possible failures, each site must have more than
one call it can place for each possible destination of the message. When it is
sufficient to make at most one alternate call, we can define two routing table
entries, preferred(z,y) and alternate(z, y), each indicating a neighboring site
that z is to call given y as ultimate destination. Qur basic calling protocol
P for site z given message m and site y as destination (assuming z is not y)
is defined then simply as follows:
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if call(preferred(z,y), m) fails then call(alternate(z,y), m).

We will create the necessary preferred and alternate routing tables dur-
ing the iterative construction process of the immune 2-tree and twin graph
topologies, for which protocol P applies without modification. We then pro-
vide immune protocols for the other classes of immune graphs defined above.

4.1 Routing Tables for 2-Trees

We now consider immunity to isolated P, failures. In Section 3.1, we defined
two schemes for constructing efficient Isolmmune({P,}) graphs. Here, we
define routing tables for 2-trees that are sufficient for immunity under the
basic protocol P. A similar protocol can be defined for prismatic 2-trees, but
is more complex, requiring two alternate calls in some situations.

In [2], we discuss the creation of preferred and alternate routing tables
when converting a spanning tree of sites into a 2-tree. Here, we define the
routing tables in terms of the construction process for a 2-tree. Although a
particular 2-tree can be realized by many different vertex addition sequences,
we will consider here an arbitrarily chosen sequence as defining the iterative
construction referred to below. The routing tables for sites of the network
are created during the iterative construction of the 2-tree as follows:

In the base case of a 2-tree on two vertices, the corresponding sites are
direct neighbors of each other. The preferred and alternate calls from each
site for the other as destination are both to the other site. This will be the
case for every pair of neighbors as we build the 2-tree and its routing tables.
By this paradigm, a neighbor of a failed destination will call that site twice
and the protocol will halt, albeit unsuccessfully.

As we add a new vertex w to a 2-tree network graph G, connecting it to
two neighboring vertices = and y, we set w’s preferred and alternate calls to be
z and y, respectively, for all sites other than = and y as destination. Thus, for
avertex s ¢ {z,y,w}, preferred(w,s) = z and alternate(w,s) = y. As noted
above, the preferred and alternate calls from w for = or y as destination will
be both to the destination site. Similarly, z and y will place both preferred
and alternate calls to w for w as destination.

We must now route calls from sites other than 2z and y with w as des-
tination. First we consider the routing of all other sites s (if any) having
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both z and y as neighbors. These sites will call = as preferred and y as
alternate for w as message destination. Formally, for vertex s € N(x)N
N(y), preferred(s,w) = z and alternate(s,w) = y.

To route calls to w from vertices of G adjacent only to one of its neigh-
bors, z or y, we need to consider the iterative construction process of G.
Without loss of generality, let us assume that in this process, when the
vertex y was added it was made adjacent to z and its neighbor z. In
any 2-tree G, neighbors of any vertex z induce an acyclic subgraph of @
(otherwise, the cycle and three edges incident with z would induce a sub-
graph homeomorphic with K,;). Therefore, z together with vertices of G
adjacent to z but not to y induce a tree. For such a vertex s, we set
preferred(s,w) = z and alternate(s,w) = s', where s’ is the neighbor of s
on the path to z in the induced tree. Similarly, for a vertex s of G that
is adjacent to y but not to z, preferred(s,w) = y and alternate(s, w) = s”,
where s" is the neighbor of s on the path to z in the induced tree.

Finally, for sites outside neighborhoods of both z and y, we let the pre-
ferred and alternate calls for w as destination be the same as their pre-
ferred and alternate calls for = as destination. Thus, for vertex s ¢ N(z)U
N(y), preferred(s,w) = preferred(s,z} and alternate(s,w) = alternate(s, z).

Lemma 4.1 Protocol P, in conjunction with the routing tables defined above,
are sufficient to provide immunity to isolated P, failures in 2-irees.

Proof: Our proof is by induction on the number of vertices added during
the iterative construction of a 2-tree. Let G be the 2-tree existing after k
vertex additions. When k=0 (G is a 2-tree of 2 vertices) the protocol is
trivially sufficient. We assume that it is sufficient in G for some positive k,
and consider additions to the routing tables for the (k+1)th vertex addition
of w adjacent to end vertices z and y of an edge in G. Any message from w
will be able to reach either z or y when failures are isolated. By inductive
assumption, these vertises can communicate with all other operative vertices.
Also by inductive assumption, a message from any site s of G routed through
T can get to an operational site in the neighborhood of z. If z is operational,
the message will be routed through that vertex to w. Let us assume that z is
no longer operational; thus, all of its neighbors, including y are immunized.
If a call intended for w arrives at a neighbor of both z and y, our routing
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tables provide an immune call path through y. If it arrives at a vertex that is
a neighbor of z but not of y, the routing table will direct the message along
a path in the tree of neighbors of = toward a site that is also a neighbor of
y; this provides the necessary call path through y to w.

Thus, using protocol P, our routing tables are sufficient to realize immune
performance. u

A vertex of a prismatic 2-tree might require three calls to realize immune
communication when two of its neighbors in a prism fail. The two alternate
call directions for each of the four vertices of a “glued” prism can be defined
easily when the prism is used in the iterative construction process.

4.2 Routing Tables for Twin Graphs

We now consider the case of immunity to isolated P, failures. In Section 3.2,
we have defined two schemes for constructing efficient IDFI graphs. Here,
we will define routing tables for twin graphs. A protocol similar to the basic
protocol P can be defined for wing graphs, but it will be more complex.

As with the 2-trees above, we will create routing tables such that our
basic calling procedure P can complete message transfers in twin graphs
successfully in the presence of isolated P; failures. We will update routing
tables as we add each vertex to a twin graph, as done above for 2-trees.

For neighbors z and y, we will have preferred(z,y) = alternate(z,y) = y.
Thus, if a site has failed and the message reaches an operative neighbor, that
neighbor will try to call the site twice (failing both times) and the protocol
will halt in failure.

In the initial C, a vertex with a message for its only non-neighbor as des-
tination calls one neighbor as preferred and the other as alternate. Consider
adding a new vertex w to the twin pair {z,y}; we must determine routing
table information with w as originator of a message for existing sites as des-
tination (other than {z,y}, since they are neighbors of w, with calls defined
as above} and with all other existing sites as originator of a message for w as
destination. For site s other than z and y, we define preferred(w, s) = x and
alternate(w, s) = y. For a neighbor s of z and y (other than w), we define
preferred(s, w) = z and alternate(s,w) = y. For site s not a neighbor of z, we
define preferred(s, w) = preferred(s, z) and alternate(s, w) = alternate(s, z).
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Lemma 4.2 Protocol P, in conjunction with the routing tables defined above,
are sufficient to provide immunity to isolated P, failures in twin graphs.

Proof: Our proof is by induction on the number k of vertices added to
the twin graph beyond the base Cy. Let G be a twin graph after k vertex
additions. When k=0, we see that P and the routing tables are sufficient.
Let k& be some positive integer, and consider the results after addition of
the (k+1)th vertex w to a twin pair {z,y} of G. If the message transfer is
between w,z,y, or another neighbor of that twin pair, obviously the transfer
is immune. Any message from w will reach either z or y from where, by
inductive assumption, all other operative vertices can be reached.

By our inductive assumption, the protocol and routing tables of G provide
that a message from any other vertex of G through z can reach the neighbor-
hood of z in the presence of isolated P, failures. By Lemma 3.2, once a twin
pair becomes committed by addition of a third common neighbor, the pair
will always have identical neighborhoods. Since, by Lemma 3.1, vertices of a
twin pair can not fail simultaneously when P, failures are isolated, immunity
is guaranteed for any message transfer in the augmented graph G. Construc-
tion of the routing tables implies that a message transfer in a twin graph G
is reflected by a progress along the corresponding path in the representative
tree of G, ensuring termination of the process. »

4.3 Immune Protocol in Wheels

When we considered a set of templates that consists of both single vertex and
dipole failures, {P;, P;}, we found that wheel graphs are the minimum-size
immune topology (Section 3.3). To complete our definition of an immune
network, it remains to specify an immune communication protocol for sites
of such a network.

There are two classes of sites to consider in a wheel graph, the hub site
and rim sites. The hub site will have a different protocol than rim sites. Since
it is adjacent to every other site, the hub site simply calls the destination as
its preferred and alternate call.

For every rim site, its preferred call is to the hub site, for any other site
as destination. As alternate routing for rim sites, there are two possible call
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if originating the message
then if call(hub,m) fails
then if call(alternatel,m) fails
then call(alternate2,m)
else {forwarding the message}
if received message from alternatel
then if call(alternate2,m) fails
then call(alternatel,m)
else if call(alternatel,m) fails
then call(alternate2,m)

Figure 6: Protocol P’ for rim sites of a wheel graph.

directions. Since a P failure may have affected the hub and one of its rim
neighbors, two alternate calls, alternatel and alternate2, must be available
for every rim site. The alternate calls are to the site’s two neighbors on the
rim.

We define a new protocol P’ for rim sites of a wheel graph in Figure 6.
When a rim site originates a message transfer, it first calls its preferred
destination, the hub (preferred(z,y) = z for rim vertices z,y and a hub z).
If the hub site is down, then the originator places a call to a neighbor on the
rim. If that call fails and the receiver was not the destination, the rim site
places a third call to its other neighbor on the rim. This third site must be
operational since the hub site has failed.

When forwarding a message, a rim site must have received the message
from a neighbor on the rim (the hub must be down). As its alternate action,
the site calls its other neighbor on the rim. If that site is down and is not the
destination, the forwarding site calls the neighbor on the rim from which the
message was received, thereby returning the message to traverse the cycle
(now reduced to a path of operational sites) in the opposite direction to the
destination.

This new protocol provides the immune communication behavior made
possible by the wheel graph topology.



4.4 Immune Protocols in Other Classes of Graphs

When we add paths of length up to 2k—2 (k > 2) to our set of templates,
we find that k-centered wheels W, provide a class of immune topologies.
Immune communication protocols for the W, -based networks are straight-
forward generalizations of the protocol defined above for wheels. Each site
on the rim now has a list of k hub sites to call (instead of only one). A site
on the rim, when originating a message, calls the message destination first,
if it is a neighbor. Otherwise, it starts calling hub vertices until it succeeds
(as it must by our proof Theorem 3.4). That hub site forwards any message
directly to its final destination on the rim, as all hub sites can not fail when
failures are isolated. The only difficulty remaining for the protocol is a hub
site originating a message for another hub site. The originator will have to
call at most 2k—1 sites on the rim before finding one that is operative, which
site can then forward the message directly to the hub site destination. This
generalized protocol produces the immune communication behavior desired.

It remains to define immune communication protocols for k-sibling trees
which provide immunity to sets of paths of length at most 2k—2, not including
the single vertex template. Consider a vertex z in an k-sibling tree trying to
send a message to a vertex y. Either the two sites are neighbors and z can
call y directly, or the neighborhood of x contains a unique k-sibling set in
its neighborhood separating z from y. This is due to the tree-like structure
of the sibling-set separators of the graphs (see Figure 5). Therefore, the
following protocol provides the immune behavior desired: a site calls the
destination of a message if it is a neighbor; otherwise, the site calls members
of the unique, k-sibling set neighborhood lying between it and the ultimate
recipient, until a call is successful. One call is guaranteed to be successful if
failures are isolated in the network.

5 Conclusion

In this paper we have described efficient designs for networks that are im-
mune to isolated occurrences of path failures of bounded lengths. Our de-
signs include not only specifications of topology but also specifications of
communication protocols that are sufficient to realize immune communica-
tion performance. While efficient, most of our designs are not known to be
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minimum. Open questions remain as to the determination of minimum de-
signs for the cases considered here, other than the wheel graphs which are
shown to be the minimum elements of Isolmmune({#;, P;}).
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