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Abstract

We show that given a priori knowledge of the messages to be routed for a specific parallel
application, efficient algorithms can be designed to generate low message traffic congestion
and deadlock free routings at compile-time. The problem can be formulated as a graph
theoretic problem. Since the problem of finding a deadlock free routing with minimal max-
imum message traffic congestion is shown to be NP-hard, an efficient heuristic is proposed.
Performance of the heuristic for both random message distribution and for several specific
applications on hypercube and torus topologies is evaluated by simulations. We show that,
compared with the E-cube and XY fixed routings, the heuristic has significant improvement
with respect to maximum congestion for the specific applications as well as for the nonuniform
message distribution case which models communication locality. For the uniform message
distribution case, the heuristic has moderate improvement.

1 Introduction

Wormhole routing has been widely used in many advanced multicomputers such as Symult 2010,
nCUBE-2, iWarp, and Intel’s Touchstone project. This routing scheme has been shown to be
more efficient than routing schemes such as store-forward and virtual cut-through. However,
wormhole routing introduces a new problem: deadlock can occur because blocked messages
remain in the communication channels [DS87]. One way to prevent deadlock is to provide a
fixed (oblivious) routing scheme which guarantees freedom from deadlock. For example, in a
hypercube system, the E-cube routing scheme always routes a message in the order of decreas-
ing dimensions. Another way is to partition the whole physical network into several virtual
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networks [DS87, LH91, LN91, IMY89] such that routings on the individual virtual networks are
guaranteed to be free from deadlock. This approach provides more connectivity than the fixed
routing scheme and hence is more adaptive. The disadvantage of this approach is that it is too
expensive to implement for many network topologies. For example, it has been suggested in
[LH91] that to attain all possible shortest paths for a pair of nodes in a k-ary n-dimensional
hypercube, 2*~! virtual networks should be provided. In addition, the overhead of multiplexing
may degrade performance.

The above approaches are designed specifically to optimize the overall network performance
such as network latency [Dal90]. While this approach has been successful for general purpose
multicomputers, it may have some shortcomings for high performance applications. In par-
ticular, since the above routing schemes are oblivious to the message passing requirements of
specific applications, such routings may cause serious traffic congestion and thus affect total
execution time and system throughput. This is especially undesirable for real time applica-
tions [SA91]. Fortunately, for many practical applications, the task structure can be known a
priori at compile time and therefore, application specific routings can be generated after
tasks are assigned to processors [LRG90, BS87a). The objective of our research is to design
algorithms to generate routings with low maximum message congestion based on knowledge of
the message passing structure at compile time. In addition to minimizing maximum message

congestion, the challenging problem here is to guarantee that the generated routes are deadlock
free.

In this paper, the problem of finding low maximum message congestion and deadlock free
paths for a given set of messages is first formulated as a graph theoretic optimization problem on
a graph which we call the generic physical channel dependency graph (GPCDG). The GPCDG
captures all possible channel dependencies for the physical network. With the GPCDG, this
problem can be formulated as that of finding paths for messages in the GPCDG such that the
subgraph formed by these paths is acyclic and the maximum congestion is minimal. Based
on a result given in [KS90], it is shown that the problem of finding a deadlock free, minimal
maximum message congestion routing is NP-hard for an arbitrary network. We propose an
efficient heuristic which iteratively decreases the maximum congestion while still preserving
freedom from deadlock. Performance of the heuristic is studied for both hypercube and torus
topologies. Three kinds of simulations are performed. In the first set of simulations, messages are
uniformly distributed on the network. In the second set, messages are nonuniformly distributed
on the network to model the communication locality. The third set of simulations consists of
two specific parallel applications. The performance of the heuristic is compared with that of the
E-cube and XY fixed routing schemes respectively.

The rest of the paper is organized as follows. In Section 2, we review previous work for
other routing schemes such as store-forward and virtual cut-through. We show that routing
algorithms developed for these routing schemes are not applicable to wormhole routing. In
Section 3, we introduce the metrics used for message congestion and formulate the problem as
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an optimization problem on the GPCDG. In Section 4, we describe the heuristic in detail. In
Section 5, we discuss the performance of the heuristic. In Section 6, we summarize the results
and discuss future work along this direction.

2 Related Work

The problem of choosing paths for a given set of messages has been studied for various routing
schemes. In [BS87b], Bianchini and Shen propose a scheduling algorithm for message traffic in
a multiprocessor network. The problem is formulated as a network flow problem based on the
assumption that a message can be split into several small flows at a node. This assumption is not
applicable to current tightly coupled, high speed multiprocessor networks since the overhead to
manage message splitting and combining may well exceed that of the whole message transmission
through the network.

In [SA91], a scheduled routing framework is proposed by Shukla and Agrawal for real-time
periodical pipelining applications. In their scheme, the router of a processor sets up channel
connections based on switch setting commands received from the application running in that
processor. The switch setting commands are generated statically at compile time based on a
priori knowledge of the task structure in a way that guarantees there will be an unobstructed
path for each message during the whole message transmission period. Since messages are routed
through the network without collision, the generated routing is always deadlock free. The
scheme can only be used for an architecture which has specialized communication modules.
Furthermore, it is not always possible to find paths such that messages do not collide. In this
case, it is not clear how the deadlock is avoided.

The previous work which is most closely related to ours is the traffic routing scheme proposed
by Kandlur and Shin in [K590]. They study the problem of choosing paths for an arbitrary set of
messages to be routed in a network with virtual cut-through routing capability. They show that
the problem of choosing pairwise edge-disjoint paths for a given set of messages is NP-complete
and an efficient heuristic algorithm is presented. The heuristic first randomly chooses a path for
every message and then, tries to reroute one message at a time to decrease the total cost, which
is defined as the summation over all links of the squares of the total message volume passing
through each link. If the total cost can not be improved for all messages, the algorithm stops.
It has been shown that the algorithm performs very well by simulation.

Wormhole routing, however, differs from virtual cut-through in that once the head of a
message packet is blocked due to channel contention, the whole packet remains in the net-
work, occupying all the channels it is traversing. It is possible that a wormhole routing can be
deadlocked due to circular waiting for communication channels [DS87). In virtual cut-through
routing, blocked packets are buffered at a processor, thus releasing occupied channels; therefore,
deadlock is not a concern. In Fig. 1, the final routing of Kandlur and Shin’~ algorithm is optimal
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Figure 1: An example where Kandlur and Shin’s algorithm generates a deadlocked wormhole
routing '

with respect to the cost function they define. However, the routing is deadlocked since in the
example, both sets of paths for m;, ma, ma, my and My, My, M3, M4 create channel dependency
cycles.

3 Problem formulation

By application-specific routing, we mean a routing designed specifically for the messages used
in an application. This contrasts with the fixed (oblivious) schemes such as E-cube and XY
routings which are independent of the messages to be routed. More precisely, we assume that
tasks of the application have been assigned to processors and we also assume that the weights of
interprocess commaunications are known. Such weights can be the total volume of the messages
sent between processors [LRM™] or the frequencies of message passing between two processors
obtained by methods such as program profiling [Sar89]. In graph-theoretic terms, we formally
define the problem as follows.

Definition 1 Let A = (P, E) be a directed graph where nodes correspond to processors and
edges to communication channels in the physical network. Let a set of messages be represented
as § = (M, W) where M is a set of pairs of nodes in P where (s,d) € M represents the source
processor and the destination processor for a single message respectively, and W is the weight
function which maps pairs in M to nonnegative integers.

A routing is a function R which maps every pair (s, d) € M to a simple path (po, 1), (21, p2),
e+ vy (Pk-1,P%) in A such that py = s,p; = d.



In the wormhole routing scheme, message collision has more impact on routing performance
than the distance (hops) a message has to travel. In wormhole routing, a message is divided into
smaller units called flits which are continuously transmitted along the path. Thus, a pipelining
effect occurs so that latency without considering message collision is

LiD/B+L|B

where Ly is the length of a flit, D is the distance of the path, L is the length of the message and
B is the bandwidth of a channel. Since in most cases, Ly << L, the contribution of distance
D to the latency can be considered to be negligible. I two messages collide in a channel,
one message has to wait until the other message passes through the channel completely. Thus
message congestion in the wormhole routing is the predominant factor for performance.

Below, we define two metrics which reflect the degree of message collision occurring in a
routing,.

Definition 2 For routing R, the congestion of a channel is defined as the number of the mes-
sages passing through it. The maximum congestion of R, C(R), is the maximum congestion
over all channels. In particular, if the number of messages passing through a link A is C(R), we
call i a hot spot. If C(R) = 1, we say R is congestion-free,

Intuitively, each channel whose congestion equals C(R) is one of the hottest traffic spots
in the network. Hot spots are especially undesirable in a real-time application since the delay
of messages may slow down the whole application and the deadlines may not be met. OQur
objective, in this paper, is to find a routing which has minimal maximum congestion.

Definition 3 The T-Cost of R, TC(R), is defined as
TCR)=3( 3. Wm)

eEE meM,.eR(m)

T'C was first defined and used as a cost metric in {KS90]. It reflects both the congestion
and dilation of the routing. In the heuristic we propose here, we use this cost function as a
secondary metric to control the algorithm so that it does not detour messages too far to reduce
the maximum congestion.

In addition to the minimal maximum congestion objective, the routing generated must be
deadlock free in a wormhole routing. Deadlocks occur in a wormhole routing scheme when a
circular channel waiting state is reached. A well known condition for a deadlock free wormhole
routing is given by Dally in [DS87] based on the concept of the channel dependency graph. The
channel dependency graph CDGx for a routing R is a directed graph whose nodes are channels
used in the routing. If there is a path in R such that ¢, co are two successive channels in this



path, then there is an edge in CDGr from node ¢; to ¢ (also called ¢, depends on ¢;). 1t is
clear that a channel dependency graph depends on a specific routing.

Property 1 [D587] Routing R is deadlock free for wormhole routing mechanism iff the channel
dependency graph CDGr is acyclic.

Our optimization problem is to find a deadlock free routing which has the minimal maximum
congestion. Based on a result given in [KS90], we have

Theorem 1 The problem of deciding whether there exists a deadlock free congestion-free rout-
ing for an arbitrary set of messages and an arbitrary network is NP-Complete.

Proof: In [KS90], Kandlur and Shin prove that the decision problem of whether there exists
a congestion-free routing for an arbitrary set of messages and an arbitrary network is
NP-Complete. Since in a congestion-free routing R all messages are routed through edge-
disjoint paths, its channel dependency graph CDGzr is acyclic. Thus, based on Property 1,
R is deadlock free. Therefore, testing the existence of a deadlock free congestion-free
routing is equivalent to testing the existence of a congestion-free routing. |

Hence, it is unlikely that a polynomial time algorithm for the optimization problem can be
designed and efficient heuristics must be developed.

Since the deadlock free condition requires to check links in the original network A, it is
useful to have a structure to represent link relationships explicitly. We define a graph called the
Generic Physical Channel Dependency Graph(GPCDG) for this purpose.

Definition 4 For a given network (directed graph) A = (P, E), its GPCDG is a directed graph
D4 = (V, D) where its node set VV is EU P and its edge set D is defined as follows, for all
e; = (a,b),e2 = (b,c) € E, (e1,e2) € D. Furthermore, for every edge e = (p,p2) € E,
(p1.€),(e, p2) € D also. We call 2 node [ € E a link node and a node p € P a processor node.

Intuitively,a GPCDG D4 captures all possible dependencies among the physical channels of
A and also retains the original network topology. A key difference between a channel dependency
graph and a GPCDG is that the former corresponds to a specific routing and the latter is
independent of any routing. Figure 2 shows an example for a 2 x 2 mesh. Note the GPCDG is
analogous to the total graph in graph theory [Har72] which is defined for an undirected graph.

We now reformulate the optimization problem for a deadlock free routing based on the
GPCDG.

Problem Definition: Given a GPCDG D for a network A = (P, E) and a set of messages
§ = (M,W), a routing R is a function which maps each pair (s, d) € M to a simple path in
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Figure 2: The GPCDG of 2 x 2 mesh

D4 whose endpoints are s and d respectively and whose interior points are link nodes in D 4.
Furthermore, a routing R is deadlock free iff the subgraph formed by message paths in GPCDG
D, is acyclic. The maximum congestion becomes the maximum number of messages passing
through a link node of the GPCDG. The objective of our optimization problem is to find a
deadlock free routing which minimizes the maximum congestion over all link nodes in D 4.

4 Deadlock Free Low Maximum Congestion Routing

Our deadlock free heuristic (DFH) for the wormhole routing scheme is straightforward. It starts
from an initially preselected deadlock free routing, iteratively tries to reduce the congestion of
hot spots (there might be several such spots) by rerouting messages through other channels with
less congestion such that the new routing is also deadlock free and its T-Cost TC(R) decreases.

The algorithm stops if no further improvement can be achieved. Figure 3 shows the outline of
DFH.

DFH has two major procedures, initialize and reroute. initialize selects an initial
deadlock free routing. reroute tries to reroute a message through other channels other than
the hot spot so that the T-Cost is decreased and does not create other hot spots through the
rerouting. To efficiently find hottest spots, a priority queue [Tar83] is used to manage link nodes
with priorities being their congestions. The following two subsections describe the two routines
in more detail.

=]



/*DFH */

R = initialize(D,);
R =TR;
repeat {
for {every hottest spot h in R){
if (there exists a message m passing through A which
can be rerouted through channels other than A and
the T-Cost decreases) {
R=reroute(m); }}}
until {R/ ==R};

Figure 3: Outline of the deadlock free heuristic DFH

4.1 Initialization

Finding a deadlock free routing as the initial routing for DFH is straightforward for many
regular networks such as hypercubes,meshes and tori. For a hypercube, we can use E-cube
routing which always routes a message in the order of decreasing dimensions. This routing has
been proved to be deadlock free for wormhole routing. For a 2D mesh or torus, we can use
XY routing which always routes a message first along the X-direction and then along the Y-
direction. This is also known to be deadlock free. Some applications, however, may use irregular
interconnections and there may be no known deadlock free fixed routing for such networks. For
example, the iWarp system allows the user to configure an irregular network by setting up so
called pathways [BCC*90, Gro89]. We propose a simple method to find an initial deadlock free
routing for an irregular network topology. The method uses a spanning tree of the network to
find such a routing.

Property 2 Let A = (P, E) be an arbitrary bidirectional network which, when treated as an
undirected graph, is connected and § = (M, W) be a set of messages to be routed, it is always
possible to find a deadlock free wormhole routing R for S in A.

Proof: Let ST be a spanning tree of A. ST can be found efficiently (for example, by using
a depth first search). Let DST be the directed graph generated from ST by replacing
a single edge (p1,p2) in ST with two directed edges (py,ps) and (p2,p1). We define a
routing R as follows. Since for any two nodes (s,d) € M, there exists a unique simple
path P = (p1,p2,...,pn) from s to d (s = p;,d = p,) in DST, we designate the directed
path of P (which exists in A since A is bidirectional) as the routing path for (s, d).

To prove R is deadlock free, assume the opposite, then by Property 1, the channel depen-
dency graph CDGR has a simple cycle ¢;, ¢3,. .., ¢, where ¢; corresponds to edge (s;, d;)
in DSF fori=1,...,n, Thus d; = s;4y fori=1,...,n -1 and d, = 5; and Slyeeey8n
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form a c¢ycle C in DST. But the only cycles in ST are those which are formed by cycles
(p1,p2) and (p2,p1). Therefore, there exists an 1 € i < n such that e = (s;,8:41) and
e’ = (8;41, 8i) are two successive edges in €. But this implies that e depends on €’ and ¢’

depends on e, which is not correct since R always routes messages through a simple path
in ST. |

The importance of the above property is that it indicates there is always a deadlock free
routing for any bidirectional network. Furthermore, the spanning tree approach efficiently finds
an initial deadlock free routing (linear time complexity in the number of edges of A). The
drawback of the algorithm is that the message traffic congestion of the resultant routing is high
because of the tree structure. Thus, when a network is regular, we use the fixed fixed routing
as its initial routing.

4.2 Reroute a Message away from a Hot Spot

reroute takes a routing R, a hot spot & in GPCDG D, and a message m passing through
link h as its inputs and returns a new routing. Assume the nodes immediately before h and
immediately after h in the path for message m are a and b respectively (note, a,b may be
processor nodes). It then tries to reroute m from a to b by trying to avoid passing through A.

It should be noted that we can not simply reroute m through any path from a to b even
though such rerouting can decreases maximum congestion and the T-Cost. This is because such
a path may create a deadlock. To simplify the discussion, we need the following definitions.

Definition 5

¢ For a routing R, R is also used to denote the channel dependency relation induced by R
on link nodes in Dy,

e A path is said to be deadlock free with respect to a routing R if adding the depen-
dencies in the path to R still preserves the acyclic condition in Dy4.

Let R correspond to the channel dependency relation after the removal of message m from
path a,h,b. Note that R; may still retain dependency @ — h or A — b since there might be
other messages routed through these links. Also note if R is deadlock free, R, is deadlock free
too, since removal of dependencies can not introduce deadlock. The goal of reroute is to find
a deadlock free path from e to b to replace a, &, b such that the T-Cost is decreased.

The algorithm uses depth first search to find such a path. It starts with an initial partial
path containing only a and examines the unsearched link nodes adjacent to the most recently
added node of P. If adding an unsearched node does not cause deadlock and the new partial
T-Cost does not exceed the old T-Cost, then the node is marked as searched and is added to P.



[*reroute(R,m,a,h,b) */

P = {a}; mark(a);
Ocost =cost(R);
Pcost=cost(remove-m-from-h(R, m,h));
while (P not empty and last(P) # b) {
if (there is a deadlock free unmarked node u adjacent to last(P)
and update(Pcost,u) < Ocost){
P = P {u};
mark(u);
Pcost=update(Pcost,u) }
else
{P = P-{last(P)};
unmark(last(P);
recover{Pcost);}}

Figure 4: reroute function

The procedure continues until it either reaches b or no new node can be found which satisfies
the deadlock free condition and decreases T-Cost. In the former case, a new route from a to b
has been found. In the latter case, the algorithm unmarks the current node and backtracks to
the previous node in P. If no new deadlock free path is found (i.e., if a is examined again), then
m is still routed through a, &, b.

Figure 4 shows the algorithm. Ocost is the T-Cost of the initial routing R and Peost is the
T-Cost of the current partial routing,.

reroute requires testing whether adding a node causes deadlock in P{UR. To efficiently
accomplish this, the transitive closure of the channel dependency relation induced by R is
maintained. Let R" be the transitive closure of % and R} be the corresponding transitive
closure of R;. Since computing the transitive closure [AHU74] is relatively expensive (O(N?)
where N is the number of link nodes), we want to avoid recomputing the entire new transitive
closure every time we find a new path to replace path a, k,b. This can be achieved by maintaining
the transitive closure as a matrix whose ij entry represents the number of directed paths from
a link node ¢ to another link node j instead of simply a binary entry to indicate whether there
is a path from i to j. Each time a new path is found to replace a, h, b, only some entries of the
transitive closure are changed. The time it takes to compute the number of paths for all pairs
of link nodes after the initial routing has been chosen is the same as to compute the standard
binary transitive closure. Figure 5 shows the algorithm to compute the initial transitive closure
and the algorithm to update the transitive closure once a new path has been found. The time
complexity to update the transitive closure is reduced to N2|P|, where |P] is the length of P.
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/*transitive-closure(R), N
returns a matrix "representing the number of paths for all pairs */
R*=R;
for {i=2..N}{
for {{im=1...N}
R*(l,m) = R*(I,m)+ R(l,7) X R(i,m);
return R*

/* update-transitive-closure(R", P,a, h,b)
returns a update Ry by replacing a, h,b with P in R™ */
Ri=R%
/* removal of @ — h (if any) */
if {removing m from path a, h,b causes a 4 h}
for {all ! such that l = aorl=a}
for {all k such that k waork=h}
Ri(l, k) = Ri(l, ) - 1;
/* similar code for the removal of h — b, omitted*/
/* adding P = (ay,...,a;) (a; = @, a; = b) */
for {i=2,...,k}
if {thereisno ¢;_y — a; in R }
for {all ! such that { — a;_; or ! = a;_; }
for {all & such that £ — a; or k = q; }
Ri(LEY=RI(LE)+ 1;

Figure 5: Computing and Updating Functions for a Transitive Closure
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%deadlock-iree-test(u, P, R",b)

if  {there is no p € P such that ¥R*p and not(bR*u) }
return true;
else return false

I'igure 6: deadlock-free-test function

The algorithm to test whether a node is deadlock free or not when P is added to R, is shown
in Figure 6. Since it is possible that no new path other than a, i, b can be found, we would like
to retain R and not update it until a new path is found. The algorithm in Figure 6 uses R
instead of R, to accomplish the deadlock testing. This is justified in Property 3.

Property 3 Path P, as chosen by algorithm reroute is deadlock free with respect to Ry.

Proof: We first prove that P is deadlock free with respect to R.

First notice P defines a total order <. If adding P to R causes a simple cycle C, C
must contain some subpaths in P. Otherwise, C is a cycle in R, which is a contradiction.
Figure 7 shows the structure of C where P; (i = 1,...,m) are subpaths of P in C. Let A;
and ¢; are head and tail of P; respectively.

If there exists an i such that t; < hy, 13 < h3,...,tie; < h; and &; £ hjyq, we have hig1 <
t;. From the structure of C, we notice that there exists a path L in R (refer to Figure 7)

from {; to h;yy. But this is a contradiction since the algorithm deadlock-free-test
guarantees that there is no such a path in R.

If there is no such 7, then k) < t; < t,;, and there exists a path in R from ,, to hi. Based
on the similar argument, this is impossible.

Since R, is contained in R. P must be deadlock free with respect to 72;. ]

Since deadlock-free-test is based on R rather than R;, a natural question is whether it
eliminates some paths which are deadlock free with respect to R, but not with respect to & (it
is possible since R contains R,). The following property answers this question.

Property 4 A deadlock free path P = ay,...,a; where a = ag with respect to Ry is also
deadlock free with respect to R.

Proof: If adding P to R causes a simple cycle C, then R must have more dependencies than
Ry. It is safe to assume that R has both a — h,h — b. Based on the similar argument

in the proof of Property 3, there exists a situation where there are a1,as € P such that
a1 <p az and there is a path L in R from a3 to a;.

12
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Iigure 7: Nllustration of the cycle C

If there isno a — h and h — b in L, then, C is a cycle in the channe] dependency graph
R U P, which is a contradiction.

Therefore, there exists @ — h or &~ — bin L. If there exists a — h, then the path segment
from a3 to a does not have any ¢ — h and h — b since C is simple. Based on the previous
argument, we know this is impossible.

The only remaining case is when thereis only an A — bin L, in addition to other dependen-
cies in R;. But since for a; to be in P, deadlock-free-test must have guaranteed that
there is no path from b to a; in R, which includes h — b. This is clearly a contradiction.
Hence, we prove the property. |

5 Performance

Two test suites are used to evaluate DFH. Each is evaluated on the torus and binary cube
topologies. In both tests, performance is evaluated using both maximum congestion and T-Cast.
The performance of DFH is compared with those of the E-cube and XY fixed routing schemes
respectively. These fixed routing schemes are also used as the initial deadlock free routings.

The first test suite includes two types of randomly generated message distribution. In the first
case, messages are uniformly distributed. Three independent uniform random number generators
are used to generate source nodes, destination nodes and message weights respectively. Message
weights range from 1 to 50. The number of messages ranges from 10 to 200. The topologies are
a 6 x 6 torus and a 5-dimensional binary cube.

In the second case, messages are nonuniformly distributed on the network in a way to capture
communication locality which is usually exhibited after the assignment of tasks to processors
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Figure 8: Average Maximum Congestion for a 5-dimensional Cube for Both Uniform and Nonuni-
form Message Distribution

for an application. This is modeled by dividing the network into four equal parts and messages
are distributed uniformly in two quadrants and no messages exist in the other two quadrants.
For the topologies considered in this study, a 5-dimensional cube is divided into four subcubes
labeled as 00zzz,01lzzx,10z22, 11222 where = represents a don’t care bit and zzx represents a
subcube of dimension 3. Messages are uniformly distributed in subcubes 00zzz and 1lzzz. No
messages exist in subcubes 0lzzz and 10zzx. A 6 X6 torus is divided into four 3 x 3 meshes with
some additional wrap around links. In the upper left and the lower right quadrants, messages
are uniformly distributed and no messages exist in the upper right and lower left quadrants.
The same message weight range and number of messages, as in the first case, are used.

For both cases, performance metrics are averaged over 25 runs of DFH for a given number
of messages. It is observed that the standard deviation of the mean maximum congestion for all
data is less than 6

Fig. 8 compares the maximum congestion of the routing generated by DFH with that of
E-cube routing. Fig. 9 shows the percentage improvement of DF H over E-cube for both max-
imum congestion and the T-Cost. For nonuniform case, DFH consistently reduces maximum
congestion by 30% to 40% and for the uniform case, by 15% to 25% compared with E-cube
routing. The T-Cost has much less percentage improvement than maximum congestion. This is
because DFH takes the maximum congestion as its primary optimization goal.

Fig. 10 and Fig. 11 show the maximum congestions for DFH routing and XY routing and
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Figure 9: Percentage Improvement of Maximum Congestion and T-Cost for a 5-dimensional
Cube for Both Uniform and Nonuniform Message Distribution

the percentage improvement for both maximum congestion and the T-Cost on a 6 X 6 torus.
Again, for the percentage improvement, we see a fairly good gain for maximum congestion and
a moderate gain for T-cost. It can be seen also that the improvement is less than that in the
binary cube case for the same number of messages. This is because the binary cube has more
connectivity than the torus.

The second test suite includes two specific applications. For both applications, a simple
greedy embedding algorithm is used to assign tasks to target topologies. The first application
is the n-body algorithm which is designed for the Caltech Cosmic Cube [AS88]. Fig 12 gives
a description of the problem. In the simulation for 15-body problem both 5 x 3 torus and
4-dimensional cube topologies are used.

The second application is a program called AVHTST which is used to determine cloud
properties from satellite imagery data [RL90, JR90). Fig 13 gives a description of the problem
and its task structure. In the simulation, an 18 nodes AVIITST program is routed on a 4 x 4
torus and a 4-dimensional cube respectively.

Table 1 shows the simulation data for the two applications. In all cases, there is significant
improvement with respect to max congestion. In addition, all percentage improvements for
T-Cost are above 10%.

We observe that in the simulations, the number of hot spots is usually much greater than 1
and as the number of contending messages decreases, the number of links which have that number
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Figure 10: Average Maximum Congestion for a 6 x 6 Torus for Both Uniform and Nonuniform
Message Distribution
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Figure 11: Percentage Improvement of Maximum Congestion and T-Cost for a 6 x 6 Torus for
Both Uniform and Nonuniform Message Distribution
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The n-body problem requires determining the equilibrium of n bodies in space (where
n is odd) under the action of a (gravitational, electrostatic, etc.) field. This is done
iteratively by computing the net force exerted on each body by the others (given their
“current” position), updating its location based on this force, and repeating this until
the forces are as close to zero as desired. The parallel algorithm presented by Seitz uses
Newton's third law of motion to avoid duplication of effort in the force computation. It
consists of n identical tasks, each one responsible for one body. The tasks are arranged
in a ring and pass information about their accumulated forces to its neighbor around the
ring. After (n — 1)/2 steps, each task will have received information from half of its
predecessors around the ring, Each task then acquires information about the remaining
bodies by receiving a message from its chordal neighbor halfway around the ring. This
is repeated to the desired degree of accuracy. In the above is the task graph of 7-body
problem..

Figure 12: The Description of n-body Problem and Its Task Graph
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AVHTST s part of a program for the study of cloud properties based on satellite imagery
data. It is responsible for data analysis and reduction. Input to AVHTST consists of
¢ channels of data, , where each channel is represented by a pixel array corresponding
to a scene of data at a distinct wavelength. Furthermore, each array is divided into
f x f frames. Each frame is first processed independently and then the results for the
corresponding frames in all ¢ channels are combined. Finally, the combined results for
J x f physical frames are broadcast to all other frames for an adjustment of local results.
In the last step, the results are aggregated. Above is the task graph for AVHTST with
2 channels of data each with 2 by 2 frames per scene. Nodes are labeled with a triple
where the first component represents the channel number and the remaining components
are the frame coordinates. All edges have unit weight.

Figure 13: The Description of AVHTST Benchmark and Its Task Graph
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Applications Max. Congestion T-Cost
[ Fixed | DFH | Percentage | Fixed | DFH | Percentage

15-body on 5 X 3 torus ] 3 40% | 27800 | 20800 25.2%
15-body on 4-dim cube 3 2 33.3% | 23400 | 19000 18.8%
AVHTST on 4 x 4 torus 7 5 28.6% 410 367 10.5%
AVHTST on 4-dim cube 5 3 40% 198 166 | 16.2%

Table 1: Performance for the Applications

of contending messages increases. This explains the fact that when the maximum congestion is
small, it is extremely hard to further reduce it.

The performance results conform with our intuition. When messages are uniformly dis-
tributed on the network, commonly used fixed routings may evenly vioad network links. As a
result, it is difficult for DFH to improve the T-Cost. For the cases where messages are nonuni-
form distributed or for specific applications, since message distribution often exhibits spatial
locality, the fixed routing schemes are more likely to yield higher congestion. Thus, DFH can
have more improvement in both maximum congestion and T-Cost.

6 Conclusions

The deadlock avoidance problem, which arises from wormhole routing, poses some challenging
problems in the design of application specific routings. More sophisticated techniques need to
be developed. Since channel dependencies cause deadlock, we formulate the problem of finding
a low maximum congestion deadlock free routing as a graph theoretic problem on the Generic
Physical Channel Dependency Graph of the original network. A simple heuristic is proposed. To
avoid expensive updating of the channel dependencies, a modified transitive closure algorithm
is used. The performance of the heuristic is studied. The algorithm converges very fast in all
the testing sets. The heuristic has significant improvement for nonuniform message distribution
as well as two specific applications and has moderate improvement for uniformly distributed
messages over well known fixed routing schemes.

The application-specific wormhole routing generated by our heuristic can be used in advanced
multicomputers. An example is Intel’s iWarp multiprocessor system [BCC*+90, Gro89]. In an
iWarp system, the physical interconnection network is a torus. However, the interconnection
can be logically reconfigured by setting up pathweys. A default routing called street sign routing,
which is essentially the XY routing scheme, is supported by the system. However, applications
can change routes by generating necessary routing information in the header of a message.
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