An Efficient Heuristic for Application-
Specific Routing On Mesh Connected
Multiprocessors

Xiaoxiong Zhong and Virginia Lo

CIS-TR-92-04
January 1992

Depariment of Computer and Information Science
University of Oregon

An Efficient Heuristic for Application-Specific Routing On Mesh
Connected Multiprocessors *

Xiaoxiong Zhong and Virginia M. Lo
Computer Science Department
University of Oregon
Eugene, Oregon 97403-1202
lastname@cs.uoregon.edu

Key Words: routing, multicomputer networks, deadlock avoidance, mesh,'
mapping.

Abstract

Wormbhole routing has been widely used in practical systems such as iWarp and Ncube-
2. To avoid potential deadlock, a physical network can be partitioned into several virtual
networks to break possible cyclic dependencies. An n-dimensional mesh can be partitioned
into 2"~! virtual networks and, if messages are always routed through paths with shortest
Manhattan distance, deadlock can be avoided. This paper studies the problem of finding low
congestion deadlock free routing on mesh connected multiprocessors which support virtual
networks. We show that finding such a minimal maximum congestion routing for an arbitrary
set of messages is NP-hard for an n dimensional mesh (n > 2). An efficient heuristic is
proposed and performance of the heuristic is evaluated.

"1 Introduction

Wormbhole routing has been widely used in many advanced multicomputers such as Symult
2010, nCUBE-2, iWarp, and Intel’s Touchstone project. This routing scheme has been shown
to be more efficient than routing schemes such as store-forward and virtual cut-through in a
multicomputer network [Sei90]. However, wormhole routing introduces a new problem: deadlock
can occur because blocked messages remain in the communication channels [DS87]. One way
to prevent deadlock is to provide a fixed (oblivious) routing scheme which guarantees freedom
from deadlock. For example, in a mesh-connected multiprocessor system, the XY-routing scheme

“Supported by Oregon Advanced Computing Institute (OACIS) and NSF-grant CCR-8808532

always routes a message through the X (horizontal) direction and then the Y (vertical) direction.
Another way is to provide an adaptive routing algorithm to reduce message traffic congestion
dynamically while still preserving deadlock freedom {NS89].

The above approaches are designed specifically to optimize the overall network performance
such as network latency [Dal90]. While this approach has been successful for general purpose
multicomputers, it may have some shortcomings for high performance applications. In particu-
lar, since the above routing schemes are oblivious to the message passing requirements of specific
applications, such routings may cause serious traffic congestion and thus affect total execution
time for a specific application. This is especially undesirable for real time applications [SA91].
Fortunately, for many practical applications, the message requirements can be known a priori
at compile time and therefore, application specific routings can be generated after tasks are
assigned to processors [LRG+90, BS87a].

A way to avoid deadlock is to partition the physical network into virtual networks [DS87,
LH91, LN91, JMY89] such that routings on the individual virtual networks are guaranteed to be
free from deadlock. In particular, an n-dimensional mesh can be partitioned into 27~! virtual
networks and, a message, depending on its source and destination addresses, is injected to a
virtual network and is routed through a path of shortest Manhattan distance. However, there is
still considerable freedom to choose which shortest path to route a message. In this paper, we

show that, given the message passing structure at compile time, message routes can be chosen
to considerably reduce message traffic congestion .

2 Related Work

The problem of choosing paths for a given set of messages has been studied for various routing
schemes. In [BS87b], Bianchini and Shen propose a scheduling algorithm for message traffic in
a multiprocessor network. The problem is formulated as a network flow problem based on the
assumption that a message can be split into several small flows at a node. This assumption is not
applicable to current tightly coupled, high speed multiprocessor networks since the overhead to

manage message splitting and combining may well exceed that of the whole message transmission
through the network.

In {[SA91], a scheduled routing framework is proposed by Shukla and Agrawal for real-time
periodical pipelining applications. In their scheme, the router of a processor sets up channel
connections based on switch setting commands received from the application running in that
processor. The switch setting commands are generated statically at compile time based on a
priori knowledge of the task structure in a way that guarantees there will be an unobstructed
path for each message during the whole message transmission period. Since messages are routed

through the network without collision, the generated routing is always deadlock free. The
scheme can only be used for an architecture which has specialized communication modules.
Furthermore, it is not always possible to find paths such that messages do not collide. In this
case, it is not clear how the deadlock is avoided.

The previous work which is most closely related to ours is the traffic routing scheme proposed
by Kandlur and Shin in [KS90]. They study the problem of choosing paths for an arbitrary set of
messages to be routed in a network with virtual cut-through routing capability. They show that
the problem of choosing pairwise edge-disjoint paths for a given set of messages is NP-complete
and an efficient heuristic algorithm is presented. The heuristic first randomly chooses a path for
every message and then, tries to reroute one message at a time to decrease the total cost, which
is defined as the summation over all links of the squares of the total message volume passing
through each link. If the total cost can not be improved for all messages, the algorithm stops.
It has been shown that the algorithm performs very well by simulation.

Wormhole routing, however, differs from virtual cut-through in that once the head of a
message packet is blocked due to channel contention, the whole packet remains in the net-
work, occupying all the channels it is traversing. It is possible that a wormhole routing can be
deadlocked due to circular waiting for communication channels {[DS87]. In virtual cut-through
routing, blocked packets are buffered at a processor, thus releasing occupied channels; therefore,
deadlock is not a concern. In Fig. 1, the final routing of Kandlur and Shin's algorithm is optimal
with respect to the cost function they define. However, the routing is deadlocked since in the

example, both sets of paths for my, my, m3, my and My, My, M3, M, create channel dependency
cycles.

3 Virtual Network Partitioning on a Mesh

A way to determine whether a wormhole routing has a potential deadlock or not is to test
whether its channel dependency graph is acyclic or not (see [DS$87] for more detail). If the
channel dependency graph has a cycle, a deadlock potentially exists. There have been many
suggested methods for deadlock-{ree routing design [DS87, L1191, LN91, JMY89). One effective
method is to partition the physical network into several virtual networks such that a channel
dependency cycle is split across several virtual networks and each virtual network is deadlock
free. Since the virtual networks are multiplexed over time, the whole routing is also deadlock
free. This provides more connectivity for a router than a fixed routing scheme such as XY-

routing. The disadvantage of this approach is that it increases the complexity and cost of a
router.

In [JMY89], a simple way is suggested to partition an n-dimensional mesh into 2™ virtual

M1 > M

M3

M4

Figure 1: An example where Kandlur and Shin’s algerithm generates a deadlocked wormhole
routing

networks such that all Manhattan shortest paths = are captured. More precisely, suppose that
G is a n dimensional mesh with nodes labeled with standard Cartesian coordinates. Clearly, a
given channel lies in a single dimension. The direction of each channel in G has two possibilities,
specified as 1 or -1. G is partitioned into 2 virtual networks where each virtual network N
is specified uniquely by a vector (dy,...,d,) where d; € {1,-1} . N(d,,...,dy) consists of all
channels whose orientation is d; in dimension i foreachi=1,...,n.

Fact 1 It is easy to shown that the above partition covers all possible Manhattan shortest paths
in an n dimensional mesh.

Fact 2 If a routing routes message through a Manhattan shortest path in one of the virtual
networks, then it is deadlock-free. This is because the virtual networks themselves are acyclic
and hence its corresponding channel dependency graph is also acyclic.

Furthermore, since channels in virtual network N1(dy,...,d,) and virtual network No(—d,,..
are disjoint, combining N, and N3 does not create any channel dependency cycles. Thus, we
can further combine N; and N, into one single virtual network. This results in a total of 271
virtual networks. For example, The four virtual networks for a 2-D mesh are shown in Fig. 2.
(2) and (b), (c) and (d) can be further combined to form two virtual networks.

*A Manhattan shortest path has a shortest rectilinear distance between the source and the destination.

L) _'dn.)

1 '1) N(1"1)

N(1,1) % N({-1,1) BB
(c)

(b) | (d)

Figure 2: Partitioning of a 2-D Mesh into Four Virtual Networks

The drawback of the above partition scheme is that, as the number of dimensions grows,
the number of virtual networks grows exponentially. The scheme is best for a low dimensional
mesh. For example, for a two dimensional mesh, the number of virtual networks is only two,
which can be implemented practically. In fact, in the newly released Intel iWarp system, two
virtual networks are supported for a two dimensional torus, which is the physical configuration
of the system [BCC*90, Gro89].

In next section, we formulate the main problem.

4 Application-specific Routing on a Partitioned Mesh

In many practical applications, task structures can be known a priori. This gives us an oppor-
tunity to fine tune the performance. For message routing, instead of using a system-supported
default routing scheme such as XY-routing, we can design a routing based on knowledge of
the message passing requirements off line to reduce message traffic congestion. For exam-
ple, consider a matrix transpose application where processor (i,7) needs to exchange data
with processor (7,i). If we use XY-routing, it will cause some unnecessary congestion. On
the other hand, an off line routing can reduce the congestion dramatically. Fig. 3 shows

(LD | {1,3)
J (2.2)
(3.1) ____J (3.3

Figure 3: XY-routing for 3 x 3 matrix transpose

the XY-routing of 2 3 x 3 matrix transpose. In fact, we can route the message from (1,3)
to (3,1) through (1,3),(1,2),(2,2),(2,1),(3,1) and the message from (3,1) to (1,3) through
(3,1),(3,2),(2,2),(1,2),(1,3). This gives a congestion-free routing,

By application-specific routing, we mean a routing designed specifically for the messages
used in an application. This contrasts with the fixed (oblivious) schemes such as E-cube and
XY routings which are independent, of the messages to be routed. More precisely, we assume
that tasks of the application have been assigned to processors. For the purpose of this paper,
we consider our target architecture to be an n dimensional mesh which is partitioned as above.
Formally, we define a routing on a partitioned mesh as follows.

Definition 1 Let A = (P, E') be a directed graph representing an n dimensional mesh where
nodes correspond to processors and edges to communication channels in the physical network
and it is partitioned into 2"~1 virtual networks as discussed in Section 3 . Let a set of messages
be represented as Af which is a multiset of pairs of nodes in P where (s,d) € M represents the
source processor and the destination processor respectively for a single message . A routing
on A is a function R which maps every pair (s,d) € M (s = (s1,...,5,) and d = (dy,...,dy))
to a simple path P = (po, p1,p2,...,) in A such that pp = s,pr = d and the length of P is

k =3 izi(lsi — di]). Such a routing is called a minimal routing in [BH85] and is abbreviated as
m-routing,

It is possible that A{ is not a permutation. Furthermore, two messages with the same source
and same destination addresses may be present in M (i.e., M is a multiset).

For a minimal routing, message collision is the predominant factor for performance. This is
because all messages are routed through one of shortest paths and the effect of distance for the
routing performance is minimized.

Definition 2 For routing R, the congestion of a channel is defined as the number of the mes-
sages passing through it. The maximum congestion of R, C(R), is the maximum congestion
over all channels *. In particular, if the number of messages passing through a link 4 is C(R),
we call h a hot spot. If C(T) = 1, we say R is congestion-free.

Intuitively, each channel whose congestion equals C(R) is one of the hottest traffic spots
in the network. Hot spots are especially undesirable in a real-time application since the delay
of messages may slow down the whole application and the deadlines may not be met. Qur
objective, in this paper, is to find a routing which has minimal maximum congestion.

Definition 3 Optimization Problem: Given an n-dimensional mesh A, of size m; x m, X
... XMy, and a set of messages M to be routed, find a m-routing R such that C(R) is minimal.

The Congestion-Free Decision Problem (CFD) is to decide whether there exists a
m-routing R such that C(R) = 1 for a given set of messages M.

We show, in the following, that this problem is NP-hard for an n-dimensional mesh when
n > 2. In particular, we show that the decision problem can be polynomially reduced to the
3-5at problem [GJ79]. The proof is based on the method used in [KS90] where the problem of
finding a congestion-free routing (not necessarily minimal) on an arbitrary network (graph) is
proved to be NP-complete.

Theorem 1 The congestion-free decision (CFD) problem is NP-complete for n > 2.

Proof: We show that the problem is NP-complete for three-dimensional meshes. The con-
clusion for higher dimension can be deduced easily.

The problem is clearly in NP since given a guess of a possible routing, we can casily
verify whether the routing is congestion-free or not in polynomial time. We show that
3-Sat(isfiability) problem {GJ79] is polynomially reducible to CFD.

Let © be a proposition which is a conjunction of k disjunctive clauses with a total of m
variables z,,..., 2., in a 3-Sat problem. We construct a routing problem instance Rp on a
three dimensional mesh A4 such that Rp has a congestion-free m-routing iff © is satisfiable.

We construct, in A, a subgraph A; which is crucial for the construction of Rp.

Figure 4 shows the construction of 4;. We denote 2 node in A by its coordinate (z,y,2)
where the first node is (1,1,1). Corresponding to the m variables, we construct m rect-
angles in plane z = k + 1. Each rectangle represents the occurrences of one variable

*In this paper, we assume the mesh has two directional channels for each edge and there is no traffic conflict
between them. This assumption can be modified properly.

in ©. The size of the i-th rectangles is 2L; x 2 where L; is the number of occurrences
of both literal z; and ;. Two corner nodes in the i-th rectangle are denoted as 01,6'2
respectively where, in the rectangle, Cl,Cz are the closest and farthest points to origin
(1,1,1) respectively. We call nodes with smaller y coordinates lower trail nodes and nodes
with larger y coordinate upper trail nodes in a rectangle. We further use Ui to denote
the node whose z-coordinate is the j-th smallest among all possible z coordinates in the
upper trail of the i-th rectangle. In the same way, we label the j-th lower node as V'
Notice that Ci = V{,C} = UZEi, We intend to relate the jth-occurrence of z; in O to
edge (U‘m(_;—l)-l-l‘ Uzi-(;-l)+2) or edge (V3. (- 1)+1’V2'-(J-1)+2)’ depending on whether z; or
&; occurs. These rectangles are connected by a horizontal edge which connects C§ and
C-""'1 I'urthermore, we designate two special nodes Sr and Dg which will be used as the
source and destination nodes for a message. We connect Sg to C} and, C§* to node D
horizontally. Figure 4 shows the coordinates of all of nodes we have defined in A;.

For the z-th clause (i = 1,...,k), we designate two nodes §;, D; which are intended to be
source and destination nodes for a message. S; is placed in plane z = i which is under
plane z = & + 1. D; is placed in plane z = k + i + 1, which is over plane z = k 4+ 1. Their
coordinates are shown in Figure 4. Furthermore, we connect S; and D; by paths which
pass through rectangles as follows. If the j-th occurrence of literal , or &, is in the i-th
clause C, then we construct a path from §; to D; by joining the follow path segments: 5;
to =2+ Ly +2+(5-1),1 ,) in plane y = 1, notice that the z-coordinate of I,
is the same as the z-coordinate of U} 2a(j=1)+1 OF V2-{J-1)+1’ I, to Jp = I 4+ (0, 6+p,0)
where § = 1 if this occurrence is z, otherwise § = 2; J, to K, = J, + (0 0, L —i4 1), K, to

I' = Kp +(1,0,0); Here, K, and K are Uz-(, 1)+1’U2—(J -1)+2 or V,, w(i=1)417 2.(1_1)_'_2,

dependmg oné. K to Qp = K, +(0, 0 i); @p to R,, =Qp+(0,m+3-6—p,0); R, to D;.
Here, 6§ is chosen such that, whcn the occurrence is zp, the path passes through an edge

in the lower trail of the rectangle and when the occurrence is Tp, the path passes through
an edge in the upper trail.

It can be verified that paths from §; to D; are disjoint from paths from §; to D; in A,
for any i # ;.

The largest coordinates in Ay are from Dy = (2+ %, L;,m + 3,2k 4+ 1). We choose the
sizeofl A as (24312, L) x (m+3) x (2k + 1).

The routing problem Rp is constructed as follows: the message set M consists of a message
from S¢ to D, a message from S; to D; for i = 1,...,k and messages {rom a to b for any

edge (a,b) in A but not in A; (we consider A to be a d:rected graph and every edge in a
mesh corresponds to two directed edges in A).

We claim that the 3-Sat problem has a true assignment iff Rp has a congestion-free m-
routing in A.

(=) If the 3-Sat problem has a true assignment, the i-th clause (for any i = 1,...,%)
has at least one literal, say, z, or &, for the smallest index p which is true under the

assignment. By the construction of 4,, there is a path in A, from §; to D; which passes
a path segment from K, to K}, in rectangle p. We choose this path as the route for the
message from 5; to D;. Since we choose K, and I(;, consistently: if z, occurs, we choose
lower nodes; if £, we choose upper nodes, either upper or lower nodes in a rectangle are
chosen, but not both. Therefore, we can choose the spare upper trail or lower trail as
one of path segments for message from Sr to Dp. For other messages whose source and
destination nodes form an edge not in Az, we simply choose this edge as the route for the
message. This routing is a congestion-free m-routing.

(«) Supposed that Rp has a congestion-free m-routing. First of all, notice that messages
from §; to D; and message from Sp to Dr must be routed through edges in A, since
for every edge (a,d) not in A;, there is a message to be routed from a to b, which makes
(a,b) the only possible route for a m-routing. This constrains the routes for the remaining
messages to edges in A;. For message from Sr to Dr to be unobstructed, only one trail
(either lower part or upper part but not both) in any rectangle in plane z = k + 1 can be
routed for messages from §; to D;. We construct a truth assignment as follows: for any
p=1,...,m, il message from Sr to D is routed through upper trail in rectangle p, Tp is
assigned True, otherwise, z, is assigned False. Since there exists at least one unobstructed
path P for message from §; to D; and P; contains at least one edge in a rectangle, say, p,
this means that clause ¢ has an occurrence of literal z, or Zp. Furthermore, if P; contains
a lower edge in rectangle p, we know clause i has an occurrence of zp, which has been
assigned True. If P; contains an upper edge in the rectangle, we know clause 7 has an
occurrence of #,. However, in this case, z, is assigned False. In both cases, the truth
value of clause ¢ is True. This concludes that the 3-Sat problem is satisfiable.

Since the above construction can be finished in polynomial time, we prove the theorem. |

The case for a two dimensional mesh is unknown. We conjecture that it is still NP-complete
for the congestion-free decision problem.

Therefore, the Optimization Problem is NP-hard.

5 A Heuristic Algorithm

It is therefore justified to design an efficient heuristic algorithm for the optimization problem.
We present a simple and efficient heuristic algorithm BLOCK.

The idea behind heuristic BLOCK is that, in an n dimensional mesh, given a message to
be routed from source node s = (sy,...,3,) to destination node d = (d, ... »n), we know that
it is going to be routed in a shortest Manhattan path from s to d. This means that it can
only pass through the directed edges in the rectangle {(zy, .. S Za)|8i € z; < d;}. We call the
rectangle “an affected rectangle”. Here, the direction of an edge in the rectangle is of the same

9

¥

Let W =250, L
Cl_(22k+1) Sl=(1,1,1) Dy =(24+W,m+3,k+2)
C"=(1+2L1,3 k+1) §2=(1,1,2) Dz= (24 W,m+3,k+3)

CP=(+Wm+e2,k+1) Spi=(1,1,k) Dp=(2+W,m+3, 2k + 1)
Sk =(1,2,k+1)
Dp=(2+W,m+2,k+1)

Figure 4: Tllustration of The Proof of Theorem 1

10

direction from s to d. For example, if s; < d;, then only edges whose i-th component is increased
will be considered. We can therefore associate a weight label for a directed edge in the mesh.
The labeling scheme initially labels all edges as zero and then examines each message. When
a directed edge is in the affected rectangle of the message, its label is increased by one. These
labels represent the potential congestion resulting from routing of the messages. Fig. 6 shows
the labeling of a 6 X 5 mesh. We also observe that, for a2 message to be routed from s to d, the
number of shortest Manhattan paths can be calculated easily. This number is called Freedom
for the message and is determined by the absolute differences of all components of s,d. Let
z; = |si=di|,i = 1,...,n, we denote the freedom function as F(z,,.. .yZn). F can be calculated
recursively as shown in Fig. 5.

F(z1,...,22) = Flz-1,...,2)+ ...+ F(zy,...,2, ~ 1)
F(U,Ig,...,xn) F(O.,:I:g—1,...,:!7,,)-1—...+F(0,$2,...,Iﬂ— 1)

F(.’B],O,...,O) = 1

F(0,0,...,0,z,) = 1

Figure 5: Calculating freedom function

In particular, when n = 2, F(z,,2;) = (11::1:2)
1

For a message, the smaller its Freedom value, the fewer paths are eligible for its routing.
To route messages on a labeled mesh, BLOCK first sorts messages based on their Freedom
values in an increasing order and then routes messages with lowest Freedom: first. Routing an
individual message is done by seeking a shortest Manhattan path such that maximum weight
among all edges in the path is minimized. Such a path is called a shortest minimum path. We
can use standard techniques for shortest paths such as Dijkstra’s algorithm to find such a path
(here, the distance of a path is defined as the maximum weight (label) of edges in the path)
among all paths with shortest Manhattan distance. In fact, a more careful examination reveals
that the subgraph formed by all shortest Manhattan paths for a message is an acyclic graph

and hence, a more efficient shortest path algorithm for acyclic graphs can be used to find such
a minimum path.

11

Sender Receiver 2.__, , Q]

1 2 1 0

message1: 0O -> H 1 3 2 41

3 3 1 0

message2: O -> @B 1l 174 . IR 0

? L 2 5

: 1 0

message3: O -> @ | gﬂ) N
0

IC RN

Figure 6: Dlustration of the Labeling Scheme in BLOCK

After finding such a path P, labels of edges which are in the affected rectangle but not in
P are decreased by one. The new labels serve for finding shortest minimum paths for the next
message.

The outline of the algorithm BLOCK is shown in Fig. 7.

The time complexity of BLOCK can be analyzed as follows. Let A be an n dimensional
mesh with N nodes. The number of edges it has is denoted as K. The number of messages
is |M|. Step 1 takes K time. The worst time for Step 2 is O(|M|K). The time to calculate
freedom for each message is also no more than O(|M|)N since we can compute F(zy,...,z,) in
Z1¥2...Tn time steps based on the recursive relation in Fig. 5. For a fixed-size Ny X ... x N,
mesh, we can even calculate the freedom function off-line for all values F(z1,...,z5),2; < N;
by the recursive relation in Fig. 5. The sorting step takes |Af]log(|M|) steps. Finally, Step 5
takes at most |Af|X" time to complete since we can use the shortest path algorithm for acyclic
graphs (see, page 203 in [Man89}) whose complexity is only | E| where | E| is the number of edges
of the graph). This gives us the total complexity O(|M|(X + log(IM]))). But since K < nN,
the time complexity is O(|M|(aN + log(|M|))).

6 Performance

Two test suites are used to evaluate BLOCK. In both tests, performance is evaluated with
respect to the maximum congestion. The performance of BLOCK is compared with that of XY
fixed routing scheme, which has been used as a default routing scheme in many systems.

12

/* Input: Set of Messages M, n dimensional mesh A */
/* Output: A m-routing */

/* initialization */
1: for edge e € A {label(e)=0;}
/* labeling */
2: for message m € M {
for edge € in the affected rectangle of m {label(e)++;} }
/* Freedom calculation */
3: for message m € M { F(m)=calculate-freedom(m);}
/* sorting based on freedom F */
4: M=sort(M);
/* routing a message */
5: for message m € M {
find a shortest minimum path P for m in 4;
for edge e in the affected rectangle of m but not in P {label(e) — -} }

Figure 7: Outline of Heuristic BLOCK

13

18] I I | 1 I i 1 t
XY-routing for 15 %X 15 mesh —

16 - BLOCK routing for 15 X 15 mesh
XY-routing for 20 X 2
14 BLOCK routing for 20 »2 Esh
12 il
avg 10 N
max
congestiorg -

0 | 1 ! 1 1 | 1 | 1

50 100 150 200 250 300 350 400 450 500
numbers of messages

Figure 8: Average Maximum Congestion for 2-D 15 x 15 and 20 x 20 Meshes under Uniform
Message Distribution

In the first test suite, messages are randomly distributed using a uniform distribution. Two
independent uniform random number generators are used to generate source nodes and desti-
nation nodes respectively. The number of messages ranges from 10 to 500. The topologies used
are 2-D 15 x 15 and 2-D 20 x 20 meshes. For a given number of messages, maximum congestion
is averaged over 100 runs of BLOCK. It is observed that the standard deviation of the mean
maximum congestion for all data point is less than 3%.

Fig. 8 shows the maximum congestions of the XY-routing and the routing generated by
BLOCK. Fig. 9 shows the percentage improvement over XY-routing for maximum congestion
in the two meshes. It can be seen that as the number of messages grows, the percentage
improvement drops. This is because when more and more messages are injected to the network,
the network is more and more saturated and it is harder for BLOCK to reduce the congestion.

The second test suite includes five benchmark applications representing a variety of task
structures. The first is 16 node perfect broadcasting on a 2-D 4 x 4 mesh where processes (tasks)
exchange information (such as identities) to achieve a consensus [Fin87). The second is Gaussian
elimination of a 32 x 32 matrix on a 2-D 8 x 4 mesh where a process is responsible for an entry of
the matrix . The third one is the 15-body problem on a 2-D 5x 3 mesh which was designed for the
computation of planetary gravitational forces for the Caltech Cosmic Cube [ASS8]. The fourth
is an 18 node program called AVHTST on a 2-D 4 x 4 mesh which is used to determine cloud

14

50 - Maximum congestion for 15 X 15 mesh — _|
Maximum congestion for 20 X 20 mesh —

40
percent 30
(%)

20

10

0 | i 1 ! ! | | | {

50 100 150 200 250 300 350 400 450 500
number of messages

Figure 9: Percentage Improvement of Maximum Congestion for 2-D 15 x 15 and 20 x 20 Meshes
Under Uniform Message Distribution

properties from satellite imagery data [RL90, JR90] and finally, matrix transpose for various
sizes. The task structures of the above problems but the last are first assigned to the processors
of meshes by a simple, greedy heuristic. For the matrix transpose problem, a 2-D mesh which
has the same size of the matrix is used and a natural one-to-one processor assignment is used
(i.e., the (7, j)-entry of the matrix is assigned to processor (i, 7).

Table 1 shows the simulation data for the first four applications. In all cases, there is
significant improvement with respect to maximum congestion. Fig. 10 shows the percentage
improvement of the maximum congestion of the routing produced by BLOCK over that of XY-
routing for matrix transpose. The sizes of matrices range from 10 x 10 to 19 x 19. It can be seen
that an improvement of approximately 40% is achieved in all data points. It is also interesting
to note that, in applications like Gaussian elimination and matrix transpose, message congestion
is very heavy. In fact, in the 32 Gaussian elimination benchmark, the maximum congestion of
XY-routing is 60 and, in 19 x 19 matrix transpose, the maximum congestion of XY-routing is 29.
However, BLOCK is still able to reduce the maximum congestion considerably (40 for Gaussian
elimination and 20 for the matrix transpose). This is because in such applications, unlike in the

case where messages are distributed uniformly, there exists communication locality for further
improvement,

15

Applications

Maximum Congestion

XY-routing | BLOCK | Percentage
168 Perfect Broadcasting on 4 X 4 mesh 8 7 12.5% |
32 Gaussian Elimination on 8 X 4 mesh 60 40 33.3%
15-body on 5 x 3 mesh 5 3 40%
18 node AVHTST on 4 X 4 mesh 7 6 14.3%

percent 30 -

Table 1: Performance for the Applications

50

40

(%)

20 |-

10

0

1 1

Maximum congestion matrix transpose ——

10

11

12 .13 14 15

16 17

number of rows (columns) of a matrix

18 19

Figure 10: Percentage Improvement of Maximum Congestion for Matrix Transpose

16

7 Applications

The results presented here have several potential applications. First of all, the heuristic can
be applied to the hypercube, torus and other interconnection structures. For example, it has
been also pointed out in [LH91] that, to avoid deadlock, an n-dimensional binary cube can be
partitioned into 2* virtual networks (using the similar technique presented in Section 3). Al
possible shortest paths are captured in these virtual networks. A similar “affected area” concept
can be used to label communication channels in the cube. Furthermore, although our original
motivation is for a partitioned mesh using wormhole routing, the heuristic can be applied to
other routing schemes such as virtual cut-through or store-forward, provided that we are seeking
a minimal routing.

The above heuristic was developed within a project called OREGAMTI which aims at pro-
viding a software environment and algorithms for mapping parallel computations to distributed
memory machines. After tasks (processes) have been assigned to processors, for a target archi-
tecture whose routings can be controlled by the user, the heuristic can be used to find routes
for messages. Architectures supporting user-controlled routing schemes include iWarp systems
and Transputers. For example, in an iWarp system, pathways can be set up based on the routes
generated [Gro89] and whenever a message need to be transmitted, it is injected to the proper
virtual network and is routed through a pathway set up previously,

8 Conclusions

We have presented an efficient heuristic for application-specific wormhole routing in a partitioned
mesh-connected multiprocessor system. Such a heuristic can also be used for other routing
schemes such as virtual cut-through and store forward and for the hypercube and other well
known topologies. The performance of the heuristic is studied for various benchmarks and
uniformly distributed messages on the network. For all performance suites, the heuristic achieves
very good performance. Such an application-specific routing technique can be used in many
architectures and is especially useful for real-time applications which require high performance.

Future research includes applying the technique to practical applications in practical ma-
chines, improving the heuristic and analyzing its theoretical behavior. Finally, we are trying to
prove that even for 2-I) meshes, the congestion-free decision problem is still NP-complete. This

seems to require a very different approach than the one we presented for n-dimensional meshes
for n > 2.

17

References

[AS88)

[BCC+90]

[BHS5)

[BS87a]

[BS87b]

[Dalg0]

[DS87)

[Fin87]

[GI79]

[Gro89]

[IMY89]

[JR90]

W.C. Athas and C.L. Seitz. Multicomputers:Message-passing Concurrent Computers.
IEEE Computer, pages 9-23, August 1988.

S. Borkar, R. Cohn, G. Cox, T. Gross, H.T, Kung, M. Lam, M. Levine, B. Moore,
W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting
systolic and memory communication in iWarp. In Proceedings of the 17th Annual
International Symposium on Computer Architecutre,, pages 70-81, May 1990.

A. Borodin and J. Hopcroft. Routing,Merging, and Sorting on Parallel Models of
Computation. Journal of Computer and System Sciences, 30:130-145, 1985.

F. Berman and L. Snyder. On mapping parallel algorithms into parallel architectures.
Journal of Parallel and Distributed Computing, 4(5):439-458, Oct. 1987.

B.P. Bianchini and J.P. Shen. Interprocessor traffic scheduling algorithm for multi-
processor networks. IEEE Trans. Comput., C-36(4):396-409, Apr. 1987.

W.J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE
Trans. Comput., C-39(6):775-785, June 1990.

W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor inter-

_connection networks,. /EEE Trans. Comput., C-36(5):547-553, May 1987.

R.A. Finkel. Large-grain parallelism - Three case studies. In Leah Jamieson, Den-
nis B. Gannon, and Robert J. Douglass, editors, The Characteristics of Parallel
Algorithms, pages 21-64, Cambridge, Massachusetts, 1987. The MIT Press.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.Freeman and
Company, 1979.

T. Gross. Communication in iWarp systems. In Proceedings of Supercomputing’89,,
pages 436-445, November 1989.

C.R. Jesshope, P.R. Miller, and J.T. Yantchev. High performance communications
in processor networks,. In Proceedings of the 16th Annual International Symposium
on Computer Architecutre,, pages 150-157, June 1989.

D.V. Judge and W.G. Rudd. A test case for the parallel programming support
environment: parallelizing the analysis of satellite imagery data,. Technical Report,
Dept. of CS, Oregon State University,, 1990.

18

[KS90]

[LHY1]

[LN91]

[LRG*90]

(Man89]

[NS89)

[RL90]

[SA91]

[Seig0]

D.D. Kandlur and K.G. Shin. Traffic routing for multi-computer networks with
virtual cut-through capability,. In Preceedings of the 10th International Conference
on Distributed Computer Systems,, pages 398-405, May 1990.

D.H. Linder and J.C. Harden. An adaptive and fault tolerant wormhole routing
strategy for k-ary n-cubes. IEEE Trans. Comput., C-40(1):2-12, January 1991,

X. Lin and L.M. Ni. Deadlock free multicast wormhole routings in multicomputer
networks,. In Proceedings of the 18th Annual International Symposium on Computer
Architecutre,, pages 116-125, May 1991,

V.M. Lo, S. Rajopadhye, S. Gupta, D. Kelsen, M.A. Mohamed, and J. Telle.
OREGAMLI: software tools for mapping parallel computations to parallel architec-
tures. In Proceedings of International Conference on Parallel Processing, pages I1:88-
92, August 1990.

Udi Manber. Introduction to Algorithms, A Creative Approach. Addison-Wesley
Publishing Company, 1989.

J.N. Ngai and C.L. Seitz. A Framework for Adaptive Routing in Multicomputer
Networks. In Proc. of the 1989 ACM Symposium of Parallel Algorithms and Archi-
tectures, pages 1-9, 1989,

W. Rudd and T.G. Lewis. Architecture of the parallel programming support envi-
ronment,. In Proceedings of CompCon’90,, pages 589-594, Feb. 1990.

S.B. Shukla and D.P. Agrawal. Scheduling pipelined communication in distributed
memory multiprocessors for real-time applications,. In Proceedings of the 18th Annual
International Symposium on Computer Architecutre,, pages 222-231, May 1991.

C.L. Seitz. Concurrent Architectures. In Robert Suaya and Graham Birtwistle, edi-
tors, VLST and Parallel Computation, Chapter 1, pages 1-84, San Mateo, California,
1990. Morgan Kaufmann Publishers, Inc.

19

