Scare Tactics: Evaluating Problem
Decompositions Using Failure Scenarios

B. Robert Helm
Stephen Fickas

Oregon CIS-TR-92-06
February 28, 1992

Abstract

Our group is interested in the design of composite systems, ones that encompass multiple agents involved in
ongoing, interactive activities. We have begun to formalize an approach to composite system design by
decomposing problem statements. This involves (1) identifying and formalizing general tactics for decomposing
problem statements, and (2) identifying knowledge which we could use to critique problem decompositions.

This paper focuses on the latter problem, that of critiquing problem decompositions. We describe a method for
generating critiques using knowledge encoded as failure scenarios. We illustrate the method by showing how it
rationalizes specific steps in a published development example. We then discuss the research issues raised by this
example.

Submitted to the Workshop on Problem Reformulation and Representation Change,
Asilomar, CA, April 1992,

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

1.0 Introduction

Qur group is interested in the design of composite sys-
tems, ones that encompass multiple agents involved in
ongoing, interactive activities [Fickas and Helm, 1992].
We arrived at this interest while studying the processes
of software development. Systems analysts in the
domains we studicd [Fickas and Nagarajan, 1988]
focused on policies and concerns which cut across
human, hardware and softwarc compenents. In compos-
ite system design, software agenis are treated the same
as human and physical agents, as components to be inte-
grated together to solve larger system constraints.

We have begun to formalize an approach 1o composite
system design by decomposing problem statements. The
designer begins with a statement of the global goals or
constraints which the design should meet. The designer
then incrementally decomposes the global constraints in
the initial problem statement into the conjunction of
more manageable subconstraints, Finally, the designer
assigns responsibility for these constraints to particular
agents. [Feather, 1987] illustrates the approach by an
informal example.

For example, in designing a library circulation system,
we start with constraints such as “Library patrons get
the books they request” and “Every book is accounted
for”. We then decompose these constraints into a design
of the system, including the responsibilities of sysiems
agents. The decomposition gives pieces of the global
constraints to human agents such as library patrons
(*Look in the onlinc catalog if the bock title is known™),
1o mechanical systems such as antitheft devices (*“Sound
alarm when magnetized book passes through the gate™),
and to software such as the catalog server (“Report cata-
log entry if book title found™).

Elsewhere [Fickas and Helm, 1992] we have argued for
the benefits of composite system design, and for an
incremental approach to it. We have developed a design
model, called Critter, 10 help a human designer create a
composite system design. Critter includes a library of
formally-represented composite system design taclics,
and a suite of tools for automated evaluation and critiqu-
ing of the designs generated. We have begun Lo incorpo-
rate the problem decomposition method into Critter.
This involves (1} identifying and formalizing general
tactics for decomposing problem statements, and (2)
identifying knowledge which Critter could use to cri-
tique problem decompositions,

This paper focuses on the latter problem, that of critiqu-
ing problem decompositions. We illustrate a method for
generaling critiques, by showing how it rationalizes spe-
cific steps in a published development example [Feather,
1987]. In that example, Feather informally derived an
elevator system design from the global constraints of
never unnecessarily delaying passengers, and never
moving passengers further from their destination. The
development was guided by Feather's intuitions of the
problem, and his domain knowledge. We show how we
can capture some of this knowledge, in the form of a
library of failure scenarios, We then discuss the research
issues raised by this example.

Our work addresses the workshop in lwo respects:

1. We propose gencral techniques for evaluating prob-
lem decompositions in multi-agent systems. These
techniques may find use beyond our interests, in for-
mulating problems for multi-agent planning or for
distributed Al systems.

2. The evaluation approach we propose in this paper
requires lechniques for storing and using compiled
abstractions, specifically abstract plans. This work-
shop may identify research we can apply to our
approach.

2.0 Searching for decompositions

We are interested in designing composite systems, sys-
tems of human, software, and hardware agents which
interact to satisfy some global constraints. In this sec-
tion, we outline the Critter composite system design
model, and its support for generating problem decompo-
sitions.

Crilter treats composite system design as search in a
state space (Figure 1). Each staie in the space represents
a complete composite system design for the problem at
hand. The “search operators™ which move from state to
state are design transformations. The solution staics in
the search are accepiable composite system designs.

Critter’s scarch is interaclive -- a human designer selects
which state 1o expand next, and which operator to apply.
The designer also decides when a solution state has been
reached. Critter assists by applying operators, and by
criliquing states proposed as solutions.

Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

Oregon CIS-TR-92-06

Figure 1 Composite design search.

solution checker/
critiquer

2.1 Deslgn states

Figure 2 informally represents an initial state for the cle-
vator design problem we use 10 illustrate our design
approach. A state (hercafter “design state™) in Critier’s
design search space has two parts:

1. System. The system postion defines the space of pos-
sible behaviors of the current composite sysiem
design.

2. Constraints. The conslraint portion of a design slate
defines the subsel of possible behaviors which are
viewed as Iegal or desirable,

The system portion of a design state specifies a set of
objects, a set of primitive relations, and a set of actions
which can add or delete object tuples from the relaticns.
The system is thus similar to a planning domain for a
STRIPS-like planner.

Relations and actions in the system portion are also
labelled by agents. Agenis in our model are simple reac-
live componenis. A relation labelled by an agent can be
sensed by that agent; an action labelled by an agent can
be controlled by that agent.

A behavior is a sequence of actions, cach action labelled
by its controlling agent. A prefix of a behavior repre-
sents the intermediate state of the composite system dur-
ing its operation; to avoid confusion with design states,
we will refer to execution states of the composite system
as “points.” As with planning domains, the system por-
tion is non-deterministic; more than one action may be
possible at a given point.

The system portion in Figure 2 includes two classes of
agenls, an elevator and set of passengers. Each passen-
ger controls its own actions of entering and exiting ele-
vators. A passenger can sense which lloor it is on, and

whether or not it is in a given elevator. Passengers also

have a destination (not shown in the figure}, which they
know. The unique elevator controls its action of moving
from floor to floor. It also can wait at a floor (not shown
in the figure). The elevator can sense whether it is on a
given floor.

Figure 2 Initial state of the elevator problem.

Constraints
;; Passengers do not move further from their destination
NeverFurther:
{AK[,) & Dest(p, f3) & *At(fy) = Between(fy, f5, f3)).

;; The elevator do not unnecessarily delay
NoDelays:

(Bp. f Onlp, ©) v Ip In(p)) =

3f,, £; move(f,, f3) v 3p enter(p) v Ip exit(p)).

System
Elevalo\r e alf f)
Passenger “}
, p:in(p)
p: onfp.]) p: enter p: exit
—> <" =
e move

The constraint portion of a design state is composed of a
set of constraints. Each constraint is a predicate which is
true or false for cach behavior generaled by the system
portion, A constraint may refer o either relations or
actions in the system portion.

The constraint portion of Figure 2 includes two con-
straints:

1. NeverFurther: Elevator passengers should not move
further from their destinations.

2. NoDelays: Passengers should not be unnecessarily
delayed. This means that at each point in the eleva-
tor’s behavior, it must either move, take on, or drop
off passengers, unless no passengers exist.

Agenls in the syslem portion can be assigned responsi-
bility for constraints. If an agent has been assigned
responsibility for a constraint, that agent must act to sat-
isfy the constraint. The agent must control ils actions so

Scare Taclics: Evaluating Problem Decompesitions Using Failure Scengrios

Orepon CIS-TR-92-06

that all of the behaviors it generates satisfy the con-
straint, regardless of the actions of other agents. We call
a constraint which is the responsibility of some agenLan
“assigned constraint.”

The legal behaviors of a composite system design are all
sequences of actions which can be generated by the
agents in its sysiem portion, and which satisfy all of the
constraints and responsibility assignments of the con-
straint portion.

We have represented the system portion informally,
which is adequate for the purposes of this paper. Critier
represents the system portion of design states are
expressed in a Numerical Petri Net [Wilbur-Ham, 1985]
notation, extended to include agents.

The constraints are written in a linear-time, quantified
temporal logic extended 1o include constructs for
responsibility assignment [Dubois, 1990). For the most
part, the constraint notation used in this paper is simply
the predicate calculus, except on the following points:

» Variables appearing in a constraint are universally
quantified unless otherwise indicated.

« Aclions appear as predicates in constraints. The
expression move(f}, f,) in the NoDelays constraint,
for instance, states that “The elevator moves from f;
1o f, at the current point of the sysiem’s behavior.”
Ordinary predicates are capitalized to distinguish
them from actions.

» Temporal logic operators reference future and past
points in the system'’s behavior. The only construct
we use in this paper is the * operator, which denoles
the next point. Thus, the expression A(f,) & Dest(p,
f3} & *At(fy) can be read “The elevator is at [; and
passenger p has destination 3 and at the next point
the elevator is at f5."

+ Constraints can include responsibility assignment
operators. [Feather, 1987] and [Dubois, 1990] give a
formal semantics for this construct; we use it infor-
mally throughout.

» The notation C[1/t'] denotes the constraint C with ail
occurrences of t replaced by . Thus, the expression
NeverFurther[p/p;] denotes the NeverFurther con-
straint with all occurrences of p replaced by p;.

2.2 Design transformations

Critter has a library of design transformations that func-
tion as operators in the search for an acceplable compos-
ite system design. Each design transformation has a

pattern which matches against parts of an existing
design state, a result which generates in a new design
state, and a list of conditions called domain assumptions
which must hold for the transformation to apply (we do
not discuss domain assumptions in this paper). We will
represent the pattern and result of transformations as
Prolog-like clauses.

Transformations are applied interactively. The human
designer selects a transformation to apply, and matches
the patiern of the transformation to components of the
current design state. The system then generates a new
design state incorporating the result of the transforma-
tion.

In design by problem decomposition, most of the trans-
formations applied are of the following form:

pattern: constraint(C).
result: constraini(C; & ..., & C,).

C in the pattern is a constraint, The transformation gen-
erales a new state where C is replaced by a new con-
straint Cy & ... & C, that entails C. ‘This in turn may be
decomposed into subconstraints,

When the designer judges that the constraints have been
decomposed into sufficiently simple subconstraints, she
assigns responsibility for each of the subconsirainis toa
single agent. As described above, assigning responsibil-
ity for a constraint C to an agent requires that agent o
limit its actions so that C is met, regardless of the
actions of other agenis in the system.

Finally, the designer applics transformations to unfold
the assigned constraints onto the preconditions of
actions in the system portion. The designer may also
have 10 use low-level design editing transformations to
change the details of actions and relations in the sysiem.

Our main interest is in the transformations for decompo-
sition of constraints and assignment of responsibility. As
an example, one class of decomposition transformation
used in this paper is Zone Defense, Intuitively, Zone
Defense decomposes a constraint by

1. Selecting an object.
2. Dividing the object’s lifetime into *“zones”, and

3. Spliting the consiraint into subconstraints based on
the *“zone” the object is in.

Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

Orepgon CIS-TR-92-06

More formally, given a constraint C and a universally
quantified variable v of C, we decompose C into sub-
constraints based on possible states of objects to which
v can be bound. The application of Zone Defense to the
NeverFurther constraint of the elevator problem is as
follows:

pattern: constraini(NeverFurther), uv(p, NeverFurther).
result: constraint((p)

3f enter(p,,) = NeverFurther[p/p]

&

3, f, move(fy, f3) = NeverFurthet{p/p}

&

3f exit(p,, [) = NeverFurther[p/p]

&

3f enter(py, [) v 3}, [; move(fy, [2)

v 3l exil(py,))).

Iniuitively, Lo ensure that passengers never move further
from their destination, we can ensure that the constraint
holds when the passenger cnters an elevator, when an
elevator moves, and when the passenger exiis the cleva-
tor.

Having broken NeverFurther into more manageable
subconstraints, the designer can next assign responsibil-
ity for one of the subgoals Lo the elevator. The only
action the elevator controls are “move” and “wail”, so
we separale these subconstraints of the decomposition,
and assign them to the elevator with the Limit Each
Action transformation, The instantiation of this transfor-
mation on the move action reads as follows:

pattern; constraint((p;)
af,, £, move(fy, f;) = NeverFurther[p/p;]
agent{clevator)).

result; constraini{(py)
responsible{cl,
31y, [move(f, f3) = NeverFurther[p/p1),
ageni(elevator)).

This transformation requires that the clevator control
each move action so that NeverFurther holds, regardless
of the actions of the passengers. Unforunately, there is
no way for both NeverFurther and NoDelays to be met
if NeverFurther is assigned to the elevator as shown
here. Two passengers going in different directions can
enter the elevator and leave the elevator no choice bul to
either violate NeverFurther or NoDelays. We discuss
this example further below.

2.3 Detecting solution siates

A solution slate in Critter’s search is a design state
where the system portion does not generate any behav-
iors which violate the constraints in the constraint por-
tion. Critter includes analysis tools to help the analyst
identify solution states. In [Fickas and Helm, 1992], we
discuss several of these analysis tools and trade-offs
between them. In this paper, we will discuss mainly the
OPIE planning ool [Anderson and Fickas, 1989]. The
sysiem portion of a design slalc is cffectively a planning
domain. OPIE is a planner which shows that a design
state is not a solution by producing a plan incorporating
actions from the system portion for violating one or
more constraints. We refer to such a plan as a failure
scenario.

For example, to show that the initial elevaior design
staie in Figure 2 is not a solution state, OPIE can gener-
ate a plan for violating the NeverFurther constraint from
an initial point supplicd by the analyst (+ indicates a
relation added, - indicates a relation deleted):

Initial. On(p, 1), At(1), D(p, 2);
1. enter(p, 1): -On{p, 1) +In(p);
2. move(l, 3): -At(1) + At(3);

>>Violation of NeverFurther <<

At(1) & In(p) & D(p, 2) & *A3)
& —Between(l, 3, 2)

This illustrates the general style of solution lesting in
Critter; we [ocus on identifying classes of behaviors or
scenarios which violate the constraints, rather than veri-
fying that the constraints are met. In the next section, we
discuss some of the benefits of this approach. We also
identify some of its limitations, and suggest how to
address those limitations in design by decomposition.

3.0 Critiquing with attached failure scenarios

Critiquing composile system design states by failure
scenarios offers two benefits for design:

1. Diagnosis. A scenario is a specific behavior of the
sysitem which violates a constraint. The designer can
use this behavior Lo diagnose the problems of the
current design state and identify potential solutions.

2, Validation. The system portion of a design state is
effectively a model of what is possible in the design

Scarc Tactics: Evaluating Problem Decompositions Using Failure Scenarios

Orcgon CIS-TR-92-06

domain. If a scenario generated from that model is
counterintuitive or unlikely in the domain, this is a
hint that the model is oo weak.

Our goal is to gain these benefits for design by problem
decomposition, In this section, we suggest an approach
to critiquing problem decompositions, and demonsirate
the approach by showing how it could reproduce steps
taken in a published composite system design deriva-
tion,

3.1 Synthesizing an approach

Planning over the system portion is not necessarily the
best way lo generate failure scenarios for decomposi-
tions, or for composite sysiem designs in general. The
planner cannot tell how likely, or how important a fail-
ure scenario it generates is. Conscquently, it generates
many scenarios with marginal value for design. More
seriously, a designer can miss important failure scenar-
ios in a design problem by “naive specification” of the
problem. The planner relics entirely on the information
in the design slate 1o generate critiques. The designer
can exclude a particular failure, even a common one, by
not including actions in the system portion which allow
the planner Lo gencrate that failure. For example, the
designer of a library can miss the possibility of books
being stolen, by not encoding a “steal book™ action in
the initial design state.

A critic with domain knowledge can focus more quickly
on serious problems, and can recognize problems even
in naive specifications. We describe a domain-specific
critic called SKATE for library design in [Fickas and
Nagarajan, 1988). SKATE has a case basc of 1) library
designs, 2) constraints they meet or violate, and 3) fail-
urc scenarios for thosc designs. Given a proposed design
and a set of constraints, SKATE retrieves designs from
its case base that match features of the proposed design,
and that violate the proposed constraints, It then runs
failure scenarios from the retrieved designs to demon-
strate the problems. Given a library design including
unrestricted checkout of books, for inslance, and a con-
straint “users have a large selection of books to choose
from”, SKATE relrieves a design case with unrestricted
checkout. It then exccules a stored failure scenario of a
“run” on the library, in which unrestricted checkout is
used to strip the shelves bare.

SKATE's case base points it direcily o well-known
library failure scenarios, avoiding the problem of gener-
aling marginally uscful scenarios. SKATE also avoids

the problem of naive specifications. The failure scenar-
ios SKATE generatcs are not restricted to using the
actions and relations specified in the proposed library
design. They can also include “environment” actions
such stealing or destroying books, which a designer
might not specify but which are known to cause prob-
lems in the library domain.

SKATE, however, suffers from a limited ability to
match designs against cascs. In general, it is hard to
maich the features of one arbitrary specification o
another [Robinson, 1990]. SKATE requires the user 1o
manually map features of the proposed library design
into features used in SKATE's case base. This task is
onerous and error-prone; important critiques can be
missed by user mistakes in the mapping process.

One solution proposed by Fickas and Nagarajan is (o
integrate matching more closely with the process of pro-
ducing designs. They suggested that the proposed
design be generated by domain-specific editor, equipped
with a collection of library components appearing in the
case base. In effect, this limits the designer to producing
designs SKATE knows how to critique.

Based on these considerations, we propose the follow-
ing approach which integrates the approaches of OPIE
and SKATE:

1. We will use Critter’s transformation library in place
of the case base of SKATE. Each decomposition
transformation has an attached set of failure scenar-
ios representing its typical defects. Critter thus plays
the role of the domain-specific editor proposed by
Fickas and Nagarajan.

2. Critter matches failure scenarios when it applies a
transformation. Maiching is simpler, compared to
SKATE, because the instantiation of the transforma-
tion itself guides the maiching process.

3. Critter critiques a design state using the OPIE plan-
ner. OPIE produces plans by specializing and refin-
ing previously matched failure scenarios.

This approach addresses the problem of marginally use-
ful scenarios by storing a library of typically useful sce-
narios on transformations, and using these scenarios 0
focus the planner. Our swdy of failures in multi-agent
systems [Fickas et al., 1991] suggests that we can find
such characteristic failure scenarios for problem decom-
positions. The approach also addresses the naive model-
ling problem by allowing failure scenarios (0 introduce
new relations and actions into the design state being cri-

Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

Orcgon CIS-TR-92-06

tiqued. As in SKATE, these “environment” components
represent knowledge of well-known problems that crop
up in multiagenlt systems.

To illustrate this approach, we next show how critiques
generated this way could anticipate two design steps
which occurred in the composite system design devel-
opment described in [Feather, 1987].

3.2 Focusing on a decomposition failure

Recall that Feather’s elevalor design problem had two
initial constrainis:

1. Passengers should never move further from their
destination (NeverFurther),

2. Passengers should not be unnecessarily delayed
(NoDelays).

From the constraint that passengers never move further
from their destination, the designer in Feather's exampie
“chooses the implication” that passengers in the same
clevator must be travelling in the same dircction. We
show how a Failure scenario can focus the planner Lo
reproduce this design step.

In section 2.2 we showed a development siep which
assigned the NeverFurther goal to the elevator. This step
used a transformation called Limit Each Action. As
noted above, this assignment requires the elevator to sat-
isly NeverFurther for all combinations of passengers
and Noors, regardless of prior actions of the passengers
involved. Critter can generale an interesting counlerex-
ample 1o this constraint using a scenario attached (o the
Limit Each Action transformation. The attached sce-
nario is calied “incompatibility conspiracy”. The
abstract incompatibility conspiracy scenario requires
that:

1. There are two agents in the system portion whose
stale can affect the truth of the constraint assigned by
the transformation,

2. These two agents can act to reach a state S where an
application of the action A will fail to satisfy the con-
straint for either one agent, or for the other. For the
assigned constraint C and limited action A, we can
compute the conditions on the staie S the conspiring
agents musl rcach. Specifically, we regress Jal, a2 —
(Cla1] & Cl[a2]) through the action A,

Instantiating the scenario on the application of Limit
Each Action, we get a goal of gencrating a state where:

» There are two passengers in an elevator on a floor fj
« The two passengers have destinations fy, fy

= No floor f; exists such that Between(fy, f5, f3) &
Between(fy, f5, £4)

It remains for the planner, OPIE, (o try to extend this
minimal “scenaric” into a plan. This requires a consider-
able effort on OPIE’s part. If such a plan can be found,
however, it provides a motivation for the requirement
that passengers only cnter the elevator with compatible
passengers -- passengers travelling in the same direc-
tion.

Using an abstract failure scenario thus allowed the plan-
ner to recognize a critical deficiency, one which Feather
deduced informally in his example.

3.3 Critiquing a naive communication model

In another step of Feather's development of the elevator
problem, passengers have been assigned 1o enter the ele-
valor when a suitable one arrives at the passenger’s
floor. The clevator has been assigned to take passengers
(o their destination when they enter, From this, the
designer in Feather's example derives the constraint that
the passengers communicale their presence on entering
the elevator, We show how an abstract failure scenario
could lead a designer to this communication protocol,
by introducing environment actions and relations which
cause a siereotypical breakdown of communication.

The starting point for this development is the NoDelays
goal, which requires that the elevator must either move
or load and unload passengers when any passenger is
present. The designer applics a macro-transformation
called Sequential Spiit 1o the NoDelays goal. This trans-
formation combines a Zone Defense operator with
responsibility assignment. It subdivides the task of mov-
ing passengers into sequential zones, based on the status
of the passenger. In particular, the designer uses Sequen-
tial Split to make passengers responsible for NoDelays
when the elevator arrives at a lloor, Responsibility
passes sequentially to the elevator once the passenger
cnlers. The instantiated version of Sequential Split
expresses this formally:

pattern; constraint(
On(p,) & At(f) = NoDelays),
agent(p}, agent(clcvator).
result; constraint(
On(p, f) & Aile,) = Responsible(p, enter(p, f))
&

Scarc Tactics: Evaluating Problem Decompositions Using Failure Scenarios

COregon CIS-TR-92-06

(In(p) & Ai(f;) =
Responsible(elevator, 3 f; move(fy, £2)})))
agent(p), agent{clevator).

Note that the requirement that the elevator moves, cou-
pled with the NeverFurther constraint, ensures that the
passenger will eventually arrive at the destination.

Our studies of transportation system failures suggest
that sequential decompositions, while common, fre-
quently fail due to “hand-off errors”. In one hand-off
failure scenario, for instance, the agent responsible for
the second half of a sequential decomposition fails to
pick up where the first agent leaves off, because it does
not recognize it has become responsible. Translating this
to the current problem, the elevator may fail to move,
because it does nol recognize that the passenger has
entered and thus handed off responsibility for NoDe-
lays.

‘This sequence of events is encoded as an abstract sce-
nario attached to Sequential Split. Instantiated with the
Sequential Split transformation above, it asks the plan-
ner 10 expand a sequence of states where:

1. 3p, fOn(p, £) & Ai(f);
2. In(p) & Au(f) & ~ElevatorResponsibleForMove

Note that the abstract scenario introduces a new relation
ElevatorResponsibleForMove. This relation represents
the elevator’s internal model of the condition that acti-
vales its responsibilities. The failure scenario also intro-
duces actions for asserting and deleting this relation. As
with SKATE scenarios, abstract scenarios in Critler can
add actions and relations Lo the design state for use in
generating critiques. In this example, the new compo-
nents allow OPIE (o gencrate a plan in which a passen-
ger enters the clevator, but the elevator does not
recognize this (ElevalorResponsibleForMove is false),
and so docs not move.

Environment components introduced by attached sce-
narios allow OPIE 1o avoid the naive modelling prob-
lem, They force the designer to consider behavior which
is typical for a class of problem decompositions, even if
the designer has neglected 1o include components which
support such behavior in the initial design state.

Returning 10 our example, the designer acknowledges
the scenario, and designs a communication protocol to
prevent it. The passenger becomes responsible for noti-
fying the clevator when it enters the elevator. The cleva-

tor will acknowledge the handolf, This can be
implemented by a familiar interface: passengers hit a
button on eniry to the ¢levator, and the button lights in
response.

The handoff failure scenario thus produces and rational-
izes an interface component developed in the Feather
example. This step also shows how a failure scenarios
incorporating environment components can exposc
naive assumpticns about inter-agent communication,
and lead to more realistic agent interfaces as a result.

4.0 Conclusions and Issues

We have proposed an approach (o composite system
design based on problem decomposition. To evaluate
designs generated by the approach, we have proposed a
method of scenario-based critiquing using compiled
knowledge of typical failures of problem decomposi-
tions. Qur method combines the approaches of earlier
plan-based and case-based design crilics we have devel-
oped. It addresses the problem of matching cases which
stymied the case-based critic. It also helps solve the
problems of unfocused search and naive modelling
which were the principle drawbacks of the plan-based
crilic.

There remain numerous open rescarch issues for the
approach. Two issues in particular may be of interest to
this workshop.

First, can we can store scenarios on transformations
which are specific enough o be more usclul than simply
running the planner? For example, the incompatibility
conspiracy scenario was extremely general, and costly
to instantiate. OPIE could possibly find the associated
plan just as quickly by directly analyzing the design
state. One rejoinder is that the transformation associated
with the incompatibilily conspiracy scenario, responsi-
bility assignment, is-too general o have useful scenarios
associated with it. Increasing the grain size of transfor-
mations, and placing scenarios only on the large-grained
transformations, might give better results on evaluation,
but at a cost of increasing the size of Critter’s transfor-
mations and complicating their application. The
research issue: how can we evaluate the rade-off
between more effective evaluation knowledge, versus
more general problem decomposition methods?

Relaied to the issue of transformalion versus scenario
grain size is the question of combining multiple failure
scenarios. For example, consider the NoDelays slep in
section 3.3. In that step, we applied Sequential Split,

Scarc Tactics: Evaluating Problem Decompositions Using Failure Scenarios

Oregon CIS-TR-92-06

which combined three smaller transformations (Zone
Defense and twoe responsibilily assignments). The result
was lested by scenarios stored on Sequential Split. Sup-
pose instead we had applied the three primitive transfor-
mations. How should we merge the scparate siored
failure scenarios into a combined scenaric? Allerna-
tively, how can we decide which of the scenarios is the
most important to run?

50 Related Work

Our work extends and formalizes that of Feather [1987],
who proposed the concept of responsibility assignment
and informally demonstrated a development methedol-
ogy based on decomposition and assignment of con-
straints. [Dubois, 1990] developed a constraint
formalism, and a development methodology incorporat-
ing responsibility assignment, which has influenced our
own work.

The decomposition design process we propose can be
viewed as a multi-agent extension of “opcrationaliza-
tion” [Mostow, 1983)]. Mostow's FOO and BAR. sys-
tems designed problem-solving programs by
decomposing and weakening constraints until they were
expressible in terms of easily computable functions. The
problem-solving systems we are designing, however,
incorporate a broad range of social, hardware, and soft-
ware systems. Consequently, it is difficult to state a
compacl operationality criterion for a given design
problem. We rely on the human analyst to judge opera-
tionality, Similarly, constraint violations in our design
problems may have consequences ranging [rom trivial
to life-threatening. Weakening and approximating con-
straints therefore is much more problematic; we do not
attempt to address it with our current research.

[Steier and Kant, 1985] argue for the importance of exe-
cution in designing algorithms. Our style of critiquing is
motivated by similar considerations, The approach we
propose grows out of our previous work on case-based
[Fickas and Nagarajan, 1988] and planner-based
[Anderson and Fickas, 1989] critics. [Dubois and
Hagelstein, 1988] propose a slightly different approach
1o critiquing: derive implications by forward inference
over Lhe constraints, and present them to the user for
validation. A critic using this approach requires knowl-
cdge 10 decide which deductions to make; abstract fail-
ure scenarios provide our method with this guidance.

6.0 References

[Anderson and Fickas, 19891 J. S. Anderson and S. Fic-
kas, “A proposed perspective shifi: viewing specifica-
tion design as a planning problem,” in Proc. 5th
International Workshop on Software Specification and
Design (Pittsburgh, PA, USA). Los Alamitos, CA: [EEE
Computer Society, 1989, p. p. 177-184.

[Dubois, 1990] E. Dubois, “Supporting an incremental
elaboration of requirements for multi-agent systems,” in
Proceedings: International Conference on Cooperating
Knowledge-based Systems (Keele, UK), 1990. Springer-
Verlag: 1990, p. p. 130-134.

[Dubois and Hagelstein, 1988] E. Dubois and J. Hagel-
stein, "A logic of action for goal-orienied elaboration of
requirements,” in Proc. Sth International Workshop on
Software Specification and Design (Pittsburgh, PA).
Published as ACM SIGSOFT Engineering Notes, Vol.
14, No. 3, p. p. 160-168, May 1988.

(Feather, 1987] M. S. Feather, “Language support for
the specification and development of composile sys-
tems,” ACM Trans. Programming Languages and Sys-
tems, Vol. 9, No. 2, p. p. 198-234, November 1987.

[Fickas and Helm, 1992} S. Fickas, B. R. Helm,
“Knowledge representation and reasoning for the design
of composite systems,” IEEE Transactions on Sofovare
Engineering, in press,

[Fickas et al., 1991] S. Fickas, B. R, Helm, and M. S.
Feather, “When things go wrong: predicting failure in
multi-agent systems,” Dept. of Comp. and Info. Sci.,
Univ. of Oregon, Tech. Report CIS-TR-91-15, 1991
(Presented at the Niagara Workshop on Intelligent Infor-
malion Systems, Niagara, NY, July 1991).

[Fickas and Nagarajan, 1988] S. Fickas, P. Nagarajan,
“Being suspicious: critiquing problem specifications,”
in Proceedings: AAAI-88 The Seventh National Confer-
ence on Artificial Intelligence (St. Paul, Minn), 1988.
AAAI Press, 1988, p. p. 19-24.

[Mostow, 1983] J. Mostow, “A problem solver for mak-
ing advice operational,” in Proceedings: AAAT -83.
Morgan Kaufman, 1983, p. p. 279-283.

[Robinson, 19901 W, Robinson, *“A mulli-agent view of
requircments,” in Proc, 12th International Conference

Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

Orcgon CIS-TR-92-06

on Software Engineering (Nice, France), 1990, p. p.
268-276.

[Steier and Kant, 1985] D. Steier, E. Kant, “The roles of
execution and analysis in algorithm design,” IEEE
Transactions on Software Engineering, Vol. 11, No. 11,
Nov, 1985.

[Wilbur-Ham, 1985] M. C. Wilbur-Ham, “Numerical
petri nets -- & guide”, Telecom Australia Research Labo-
ratories, Report 7791, 1985.

Scare Tactics: Evaluating Problem Decompositions Using Failure Scenanos Orcgon CIS-TR-92-06

