Supporting the Design of
Manageable Network Applications:
a Proposal

Stephen Fickas

Oregon CIS-TR-92-08
April 8, 1992

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

1.0 Introduction

We are interested in Software Development Environments (SDE) for building networked applica-
tons. We have built and experimented with several versions of an SDE based on interactive,
incremental design. The results of this work, for the most part, have been encouraging. However,
a major deficiency emerged as we began to tackle more complex network applications: we were
not addressing the manageability of the systems we were constructing. In particular, modern net-
work applications must be designed for a high degree of robustness and adaptability. One way to
provide these traits is to remotely monitor, control, and manage each application using network
management resources such as SNMP [Rose, 1991). The current practice, and the one employed
by us until now, is to build management components into applications as an afterthought. In this
proposal, we argue for a more principled approach - consider management needs from the earliest
points in design.

Our approach will be to use a knowledge-based design tool called Critter to assist in the design of
manageable network applications. Critter is an outgrowth of our research in the design of compos-
ite systems [Feather, 1987]. Starting from a statement of a problem, Critter helps a designer derive
a distributed architecture of users, processes, and communication protocols to solve the problem.
Critter also helps determine what network management support the architecture needs, during the
design process. We thus make management a first-class concern during network application
design.

To date, we have tested Critter by reconstructing existing designs in network protocols and related
areas. In [Fickas and Helm, 1992a] we describe the results of two such reconstructions. The
results suggest that Critter could help network application designers create designs which are
more robust and maintainable. We propose to apply Critter to the design of two realistic network
applications that have a key management component: The applications are taken from two broad
areas:

1. Distributed document control systems. This is a broad class of applications that involve two or
more users collaborating on the completion of a common artifact. We will concentrate on a dis-
tributed assignment control system for a new undergraduate electronic teaching lab that we are
setting up; the artifact in this case is a collection of completed homeworks that meet some
assignment specification. Related applications that are a natural follow on to this work include
version control systems (for both code and documents), CSCW applications such as groupware
editors, and distributed CAD systems.

2. Distributed decision systems. The application that we have chosen as a first problem in this
area is a distributed group meeting system. Here the decision is when to meet. Other areas that
we consider related are distributed decision support systems for grad school applications (who
to accept), equipment purchases (what to buy), and course scheduling (what to teach and
when).

We propose designing manageable versions of both applications, implementing our designs, and
testing the implementations we produce in our department networking environment. Results will
be disseminated in the networking community.

In the remainder of this proposal, we describe Critter in more detail, and our program for evaluat-
ing it. We will use the distributed assignment control system as an example.

2.0 Background

In this section, we describe Critter, our model for designing composite systems. We follow Critier
through a simple example, the design of an information server for student assignments. We
present Critter informally in this proposal. The interested reader can find additional details in [Fic-
kas and Helm, 1992a] and [Fickas and Helm, 1992b].

2.1 The design model

Critter helps a human designer design network applications using the state-space search para-
digm. State-space search was initially applied to puzzle-solving and game-playing. A search algo-
rithm for solving chess problems, for instance, starts from an initial statement of the board
configuration and of the problem, such as “checkmate for white in four moves”. The algorithm
generates new possible board configurations or states by trying legal chess moves. The moves are
modelled as search operators or transformations. The algorithm uses a yolution state or leaf-node
checker 1o see if any of the states generated satisfy the problem statement. In chess, this amounts
to looking for checkmates. Most praciical chess playing programs also apply a heuristic evalua-
tion function to each state. This function returns a score indicating how promising that state is for
future play, and is used to make decisions on which transformation (move) to apply nexl.

Critter uses the state-space search paradigm to produce high-level network application designs
(Figure 1).

Figure 1. Critter state-based search model of composite system design
Design State 1
Constriants System)
Transformation 1 Transformation 2
Design State 2 Design State 3

(Constraints

System)

Evaluation Function (Consu'uinls | Sysiem

I Design State N

(Constraints |

satisfies(b,c)?

Syslem

=

Leaf Checker

The components of state-space search are used as follows:

States

Each state in Critter’s search contains 1) a high-level network application design, and 2) a
statement of constraints on the application.

Figure 2 shows the initial state of the example we use to illustrate our approach, the design of a
student assignment server. The constraints part of the state indicates the goals of the design.
The system part of the state is an incomplete initial design, divided into agents. An agent repre-
sents an active component of the design, be it a human user, a hardware sensor, or a software
process. Here, the system portion includes two agent classes: instructor agents, which can gen-
erate assignments for a class, and student agents, which can generate and hand in work. Note
that in the initial system design, instructors can generate any kind of assignment and students
can hand in any kind of work, right or wrong.

Figure 2. Initial design state for the assignment server problem

Constraints System
1. “Students turn Students

in assigned work™
2. Instructors
Assignmenis =
P

=5, i
A A ') QJ

== _
complete
work

Leaf-node checkers

The goal of Critter’s search is to reach a design state which is consistent: all of the behavior
generated by the system part satisfies the constraints. Critter’s automated specification analysis
tools help the designer determine whether a design state is consistent. They include a planner
[Anderson and Fickas, 1989], a reachability set generator {Huber et al., 1986], and a design
simulator [Fickas and Nagarajan, 1988].

The initial design state shown in Figure 2 is not consistent. Among other things, the sysiem
allows students to turn in assignments which are different from those assigned, or to never turn
in any assignment at all. Both of these problems are detected by running Critter’s analysis tools
on the design state. Both must be correcied by employing further search.

Transformations

Critter includes a library of design transformations that drive search. The analyst applies trans-
formations to a design state and generates new design states that may be closer to consistency.
Critter keeps track of the transformations applied and the design states generated. Each trans-
formation in the library also includes a list of drawbacks or potential failures associated with
its use. The latter will allow us to reason about management issues.

In our example (Figure 2), the designer applies a simple transformation which makes student
agents responsible for tuming in only the assignments given. This generates a new design state
(Figure 2); the gray line indicates that an agent class (students) has been made responsible for a
consiraint (constraint 1),

The transformation also raises a design issue: how will the responsible agent (the student)
know which assignments have been given? The designer will apply additional transformations
to resolve this issue,

Figure 3. New design state with students responsible for constraint.

Constraints Sysiem
1. “Students rn I_

in assigned work™ e
2 Instructors T .
Assignments :

o - ' *
_". 1

[e B e
] &]

' '

. feteduiatotd E .JI

completed
work

Students

» Heuristic Evaluation Function

Evaluating high-level network application designs requires expertise we have not tried to cap-
ture in Critter. We rely on the human designer to decide which design states are most promising
for continuing design.

With the exception of heuristic evaluation, all of the components of Critter described above use
formal notations as described in [Fickas and Helm, 1992a]. We will employ informal diagrams
here to simplify presentation.

2.2 Designing in management: recovering from failures.

We believe that network applications can be made more robust and maintainable by choosing a
strategy for managing an application during the early design of the application itself. We next
illustrate how Critter supports this process.

In the student assignment problem we discussed above, we applied a transformation which
required students to turn assignments given by the instructor, i.e., it “assigned responsibility” con-
straint 1 to the agent class Student. This raised a design issue: how will students know which
assignments have been given?

The designer applies a Query Server transformation to resolve this issue. The query server trans-
formation generates a new design state represented by Figure 4. This transformation introduces a
new agent (a server) into the design. The server will 1) accept assignments from the instructors,
and 2) relay those assignments to students who query it.

Figure 4. Adding a query server

Constraints System

1. “Swdents turn} Students
in assigned work'E Insiructors g

2.

assignments

Vi
A

)
'
'
1
!
compleicd

work

\:\E'

=i i ¥ A |
d —
— '

assignments

Server

The Query Server transformation also has attached failure scenarios, representing known prob-
lems or errors that crop up in systems with query servers. Figure 5 shows these scenarios. Each
scenario can be fed into one of Critter’s analysis tools. The analysis tools will then try to run the
scenario against the design. [f successful, they will report the problem to the designer. We will
look at Scenario 1 in this section, and Scenario 2 in the next section.

Figure 5. Two failure scenarios attached to the Query Server transtormation.

Scenario 1: QUETICS o

-

Server down 12,3 ._,-_:‘,‘/

up down gccnurio ?.:] J l o2 IR
. = L

el crver overloa _®_2, .

: g i I ..1'?_,__0’5! ! D]

A I~ S

_____]

replies

Scenario 1 shows one failure scenario Critter reports on the query server. If the server crashes,
students will not be able to get their assignments. Fixing this problem leads the designer to insert
network management components into the application.

First, the designer applies a Dynamic Backup transformation to the query server agent. The result
is shown in Figure 6. There will now be multiple server agents, with only one active at any one
time. When the active server goes down, a new server will become active and take its place.

Figure 6. Adding dynamic backup to the query server.

Constraints System
1. “Students turn} e, Students
in assigned work'| Instructors -
2. assignments

- e wt m -

?ﬂ

L
'
'
'
'
d

[
..... f
poslcd 1 : y
assignments ::@ %1—::?, : L. J
e] gl replies
machve down
Servers

This strategy has its own design issues: How will we know when the active server goes down, and
how will we select the backup to take its place? The designer resolves these issues by adding a
network management function to the application. Specifically, the designer applies transforma-
tions which:

« Introduce a proxy agent which will monitor the status of the active server.

+» Introduce a console, which will receive reports from the proxy agent on the status of the active
server and awaken a new server if the active one has gone down.

Part of the resulting design state is shown in Figure 7. To implement this design state using
SNMP, for example, we need to create a proxy agent along with the server application. The proxy
agent will maintain a management database giving the status of all of the assignment servers
(Active, Inactive, Down). We will also have to program an event report request for the manage-
ment console. The request will require the proxy agent to report when the current server is down.
Finally, the console will also be able to generate a set request to the proxy, to bring up a new
server if none is currently active.

Figure 7. Managemeni strategy for server recovery.

. _achve - j tmcru:sl//

=l

- -

c 1 assignments : RN
onsole T == s Tic
e —— : -~ il replies

£l macuve down :

<ih
. _‘“"I;' : Proxy

2.3 Designing in management: monitoring performance

The preceding example shows how Critter can help design network management strategies to
recover from application failures. The next example shows how Critter can introduce network
management to help resolve uncertainties about the performance of an application’s design.

Scenario 2 in Figure 5 gives another failure associated with Query Server transformation. The
server may become overloaded if too many students query it at a time. This may cause it to post-
pone answering a given query beyond any reasonable time bound. It may also cause the server to
use too many resources on its host system. The overload scenario is run in the design state in Fig-
ure 4 and generates a problem report.

The designer could choose to ignore this report, arguing that the load on the server will be too low
to cause problems in the server’s implementation environment. Or the designer could back up to
the design state in Figure 4, and try a different design alternative. Instead of designing a system
with a single server with backups, the designer could create a system with multiple running serv-
ers, more similar to the Internet Domain Name System [Mockapetris, 1987]).

The designer chooses a third option. There will be a single server, but network management com-
ponents will monitor usage statistics, to help detect performance problems. The designer applies a
transformation called /nstrument Load 1o the design. This generates a new design which will keep
a running count of the number of outstanding queries in the server. The designer then assigns the
proxy agent for the server to report this count to the management console on request.

Figure 8 shows part of the design state which results from these transformations. To implement
this new design state, we add a variable to the proxy management database. This variable will
contain the current length of the query queue. The management console can issue a data report
request to the proxy to compute load statistics.

Figure 8. Adding load monitoring to the management strategy.

SEIVEDS

1 rq- res L

L G2
R i
! ; !._-.-; ! cries L--'-- :
T\D : f \ qquucrut-';/ ;
...... N length

B et ‘_‘

posted | o 1 Py W e

assignments :_éﬂ-; re ! P2,

Console [} S ti=v) it
[=] Inacivi down

3.0 Proposed Research

The examples in the previous section suggest several potential benefits of the Critter design model
for network application design:

» Reuse. The transformations of Critter give the designer a set of building blocks for generating
application designs. The Query Server transformation used in the homework assignment server
problem can also be used to generate other kinds of servers, such as an e-mail based archive
server.

 Analysis. Using failure scenarios and analysis tools, Critter can help the designer identify
potential weak points in a design. The server failure scenario, for instance, reminded the
designer to consider the consequences of a crash of the assignment server.

» Recording and Rationalization. Critter keeps track of all of the design states generated. This
serves as a record of the designs considered, including alternatives which were rejected. The
designer in our example could back up to the state in Figure 4 and try a different redundancy
scheme if the single-server+backups design seemed untenable. The design record might also
be useful for explaining the features of the assignment server to other designers, or to imple-
menters, who need to know what decisions lay behind its design.

 First-class Management. Components for managing an application are designed along with the
application. The makes it easier to ensure that the application is not under-managed (managers
have too little control over the application) or over-managed (too many unused management
hooks are provided). For instance, we can trace the variable for queue length in the proxy man-
agement database to a specific problem (the overloading scenario) reported during design, and
to the designer’s decision to monitor this potential problem.

We propose research to test whether Critter can actually provide these benefits to designers of net-
work applications. We will look at two problems initially. First, we will fully design and imple-
ment the example started in section 2. The goal is an “assignment server” that we can test in our
new beginning computer science lab, funded by the National Science Foundation Instructional
Lab Instrumentation program, or ILI for short. As described earlier, the assignment server will be
the first component of what we see as a distributed classroom. It provides an ideal field seuting in
which to test our designs.

The second problem we will tackle is that of distributed group scheduling. We have used Critter to
design a non-managed version of a group scheduler. During this design, it became clear that we 1)
needed to add in management capability, and 2) it was best to start from scratch as opposed to
tacking on management pieces afier the fact. We plan to design, implement and field test the new,
managed version, within our department. We discuss the group scheduling problem in more detail
in [Fickas and Helm, 1992b]|.

Both of these applications will initially be designed to run over the TCP/IP suite of protocols, and
will be implemented with these protocols. However, we will also begin work on generating com-
parable designs over the OSI application layer. We believe this will be a useful test of the general-
ity of our approach.

In summary, we will use the Critter model to design network applications for use within our
department research and instructional environment. As in the example problem of section 2, we
will design these applications to be remotely managed, using standard network management pro-
tocols. We will produce implementations of our designs, and use these implementations to help
evaluate the Critter model and the designs it produces.

3.1 Disseminating the results
We will deliver the following:

« Standard description of design. We will document our designs in a recognized network spec-
ification language. Currently we use a form of Numerical Petri Nets, but we have begun to
seriously consider others, e.g., SDL [Belina and Hogrefe, 1988].

« The design history of our systems. We will produce our design history in a form that can be
disseminated in both hardcopy (e.g., RFCs) and electronically (e.g., it-1BIS [Yakemovic and
Conklin, 1990]).

« An implementation. We will implement our designs. Each implementation will run under
systems supporting TCP/IP (via BSD sockets), X Window output devices, and SNMP. Our
distribution will include source code for user agents, scheduler agents, or other agents our
protocol requires. It will also include ASN.1 data definitions and associated C code for infor-
mation exchanged between agents. Finally, it will include operating and maintenance docu-
mentation, The code of the implementation will be produced manually, or generated by the
tools in the ISODE (ISO Development Environment) [Rose, 1989},

« Evaluation of results. We will test our implementations both in our lab, and in the field. The
results of our testing will be published.

We have a particular interest in generating reproducible results. Hence our interest in using stan-
dard implementation components, and producing well-documented designs.

4.0 Acknowledgments

Our early work on SDEs for networked applications was sponsored by a National Science Foun-
dation grant #CCR-880485. This support allowed us to 1) build a theoretical foundation for the
more applied work we propose here, 2) experiment with different prototypes of the Critter tool.
We thank the NSF for this key and timely support.

We also thank Keicho, Ltd in Tokyo and NEC in Tokyo for preliminary funding of our work on
application of Critter to distributed group scheduling.

5.0 References

{Anderson and Fickas, 1989] J. S. Anderson and S. Fickas, “*A proposed perspective shift: viewing
specification design as a planning problem,” in Proc. 5th International Workshop on Sofi-
ware Specification and Design (Pittsburgh, PA, USA). Los Alamitos, CA: IEEE Computer
Society, 1989, p. p. 177-184.

[Belina and Hogrefe, 1988] Belina, F., Hogrefe, D., “The CCITT specification and description lan-
guage SDL,” Computer Networks and ISDN Systems Vol. 16, 1988/89, p. p. 311-341.

[Feather, 19871 M. S. Feather, “Language support for the specification and development of com-

posite systems,” ACM Transactions on Programming Languages and Systems, Vol. 9, No.
2, p. p. 198-234, November 1987.

[Fickas and Helm, 1992a] Fickas, S. Helm, B. R., “Knowledge representation and reasoning in the
design of composite systems,” IEEE Transactions on Software Engineering, Special Issue
on Knowledge Representation and Reasoning, June, 1992, Also available as Technical Re-
port 92-07, Department of Computer and Information Science, University of Oregon, Eu-
gene, OR, 97403.

[Fickas and Helm, 1992b] Fickas, S., Helm, B. R., “Automating Specification of Network Appli-
cations,” In Proceedings of IFIP International Conference on Upper Layer Protocols, Ar-
chitectures and Applications (Vancouver, B.C., May, 1992). North-Holland, 1992,

[Fickas and Nagarajan, 1988] S. Fickas and P. Nagarajan, “Critiquing software specifications: a
knowledge based approach,” /EEE Software, November 1988.

[Huber et al., 1986] P. Huber, A. Jensen, L. Jepsen, K. Jensen, “Reachability trees for high-level
Petri nets,” Theoretical Computer Science, Vol. 45, p. p. 262-292, 1986.

[Mockapetris, 1987] Mockapetris, P. V., “Domain names: concepts and facilities,” Request For
Comments 1033, November 1987.

[Rose, 1989] Rose, M. T., The Open Book: A Practical Perspective on OSI. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1989.

[Rose, 1991] Rose, M. T., The Simple Book: An Introduction to Management of TCPIIP-based In-
ternets. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.

[Yakemovic and Conklin, 1990] Burgess Yiakemovic, K. C., Conklin, J., “Report on a development
project use of an issue-based information system,” CSCW 90 Proceedings, October 1990.

