Automatic Mode Analysis For
Concurrent Logic Programs:

Implementation and Evaluation
B. Massey and L. Tick

CIS-TR-42-09
Apnl 1992

Abstract

Mode analysis of logic programs is a fundamental tool for increasing the offi-
ciency of compiled code. Dataflow analysis and abstract interpretation have heen
the traditional mode analysis technigues. but Ueda and Morita recently introduced
an mnovative method based on paths. Intuitively, moding the paths of a program
involves statically finding all subterms that are of interest. during exceution and
determining the modes of these subteris. This paper deseribes the fiest huple
mentation of an algorithm for automatic mode analysis based on paths, along with
empirical measurements of its practicality. Qur implementation differs stgnilicant |y
from the graph propagation method originally suggested. and we show that ons
complexity is potentially guite low. making the method practical.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON






1 Introduction

Mode information has been shown to be quite useful in the efficient compilation of logic
programming languages. Primarily, mode information facilitates the strength reduction
of unification operators into matches and assignments. There are numerous methods
for automatic derivation of mode information from logic programs, e.g., [3, , 1, G].
In committed-choice logic programs [7], the logic variable is overloaded to perform
synchronization. Mode information can thus be used to optimize code generated for
argument matching. We are particularly interested in mode analysis because it enables
us to do static “sequentialization” analysis [5]. This analysis determines if automatic
sequentialization of body goals is safe, t.e., cannot result in deadlock. The potential
advantage of such a scheme is vastly improved efficiency in register allocation and
procedure call protocol.

In Prolog and Parlog, though not in FCP or FGHC, the programmer may supply
“argument modes.” Intuitively, an input or output argument mode indicates whether
a data value is required as input or will be produced as output. Automatic mode
generation has the advantage of avoiding programmer error in declaring modes, and
can lead (as in the algorithm presented here) to a much richer set of derived information.
For example we may wish to derive the mode of each variable in the syntactic program.
or perhaps modes of objects that are not explicitly mentioned.

Ueda and Morita [8] outlined a mode analysis technique that showed great clegance
and potential for efficiently deriving rich mode information. Essentially they suggested
propagating a set of mode constraints around a control-flow graph representing the
program. The analysis was restricted to “moded” flat committed-choice logic programs,
although we do not regard this as a major drawback. Our work is a clarification of their
method, a description of an algorithm and its implementation, and evaluation of the
method’s performance. This paper is the first reported implementation of this kind of
mode analysis technique, although we do not use graph propagation. We also present
empirical results concerning the mode characteristics of a set of FGHC benchmarks.

The paper is organized as follows. Section 2 reviews the path concept and de-
scribes the procedure by which interesting paths are generated. Section 3 describes
the fundamental data representation used in mode analysis. Section 4 describes the
mode analysis axioms and their incorporation inte an algorithm. and discusses the al-
gorithm’s complexity, correctness, and completeness. The relationship to other work
is summarized in Section 5. Section 6 presents empirical measurements characterizing
the performance of the algorithm. We summmarize our conclusions and future rescarch

in Section 7.



2 Path Generation

The first stage of our algorithm generates a finite set of paths whose modes are to
be considered. We adopt Ueda and Morita’s notion ol “path™ as [follows: A path p
“derives” a subterm s within a term ¢ (written p(#) + s) iff for some predicate [ and
some functors a,b,... the subterm denoted by descending into ¢ along the sequence
{< fii>, < a,j><bk>,..} (where < f,i > is the #** argument of the functor f)
is 8. A path thus corresponds to a descent through the structure of some object being
passed as an argument to a function call. We reler to f as the “principal functor” of p.
A program is “moded” if the modes of all possible paths in the program are cousistent,

where each path may have one of two modes:

Definition: If a path has outpul mode, any variable derived by that path
may (but need not) be bound only within the body of the path’s principal
functor. The path will never derive a constant or a variable which is bound

in a caller of the principal functor, O

Definition: If a path has inpul mode, any variable derived by that path
may (but need not) be bound only by callers of the path’s principal [unctor.
The path will never derive a constant or a variable which is bound by the

principal functor itsell. O

Only “interesting” paths are generated in the first stage of the algorithm. There are
three classes of interesting paths. The first class consisis of paths that directly derive
a named variable in the head, guard, or body of some clause. All such paths can
be generated by a simple sequential scan of all heads, guards, and body goals of the
program.

The second class consists of paths which derive a variable » in some clause. where
a proper path through the opposite side of a unification with v derives a variable v'.
More formally, consider a unification operator v = { where v is a variable and ¢ is some
term other than a variable or ground term. Let o' be a variable appearing in £ at path
q,i.e., g(t) F v'. Then if pis a path deriving v (by which condition p is also interesting).
then the concatenated path p- ¢ is also an interesting path. All paths in this second
class may be generated by repeated sequential scanning of all unification goals until no
new interesting paths are discovered. The necessity for repeated scans is illustrated by
such clauses as

a(X,Z) =Y =e(X). Z=0Y).

where the interesting path {< a,2 >.< b.1>.<¢,1 >} given by the lirst unification
body goal will not be generated until the interesting path {< «.2 >, < b,1 >} in the sec-
ond unification body goal is generated. Such repeated scans should occur infrequently



q( 0, Yo, Zo) - true | Yo =0 Zy.
q( (X1 ] Xs1], Y1, 71) == frue |
s(Xsy, Xy, L1, Gy),
(L, Y1, [Ny | V1)),
4Gy, Ve, Zy).

s([, -, Lo, Gn) = true | La =1 [}, Go =2 [].
s( [ N3 | .\’53], ¥, Ly, G3) =~ Xz < ¥ |

G:g =3 [.\-3 I Ws;; ],

s(.\'s;;, }"3, L;;, ”783).
S( { .\'.1 | .\'3.1 ], }:1, L.1, G-;) Hog 4\'.1 2 }".1 |

Ly =1 [ Xa]| Wsq],

s(XNsq, Y, Way, Gi).

Figure 1: Quicksort FGHC Program: Weak Canonical Form (Clauses 0-1)

in practice. In any case not more than a few scans are necessary — no greater number
than the syntactic nesting depth of expressions containing unification operators.

The third class of interesting paths is generated by noting that if a path starting
on the right-hand side of a unification body goal (i.e., a path of the form {<=.2 >}-s)
is interesting, then so is the corresponding path starting on the left-hand side of that
unification (i.e., {<=,1 >}-3).

As an example of path generation, consider a Quicksort program! written in FGIIC,
shown in Figure 1. The program shown is the result of applying some syntactic trans-
formations to produce a weak canonical form required by the subsequent algorithms.
The left-hand side of every unification operator = /2 has been made a variable. No “cx-
tra” variables appear in unification body goals: all variables appearing in a unification
body goal must also appear in some non-unification body position or in the head. All
variables are qualified by the clause number in which they appear, in order 1o retain
scoping information for subsequent passes. In addition, each unification operator is
labeled with a unique integer.

In general, all interesting paths of a program are generated in a few sequential
passes. The 39 interesting paths of Quicksort. as shown in Table 1, are generated in two
passes. In this example the unification body goals provide four additional interesting

paths during the first pass, and no additional interesting paths during the second pass.

"We use this program as an example throughout the paper.



input output

user builtin user builtin
{<s/4,1>}) {<<f2,2>) [<q/3,2>) {<=0, | >}
{< s/4,2>}) {<<’/2,1>) [<s/4,3 >} {<=1,1>}
{<q¢/3,1>} {<>'12,2 >} {< s/4,4 >} {<=u,1>)
{< /3,3 >} {<2>'/2,1>) [<s/4,3>,<.,1>) | {<=3,1>})
{<qf3,1>,<.,1>} | {<=0,2>} {<s/4,3>,<.,2>} | {<=a,1 >}
{<q/3,1>,<.,2>} | {<=1,2 >} {<sfd, 4> <., 1>} ]| {<=a. 1>, <., 1>}
{<¢/3,3>,<.,1>} | {<=22>} {<s5/4,4>,<.,2>) | {g=3,1 >,<.,2>}
{<q/3,3>,<.,2>} | {<=3,2 >} {<=1,1 >, <., 1>}
{<s/4,1>,<.,1>} | {<=4,2 >} {<=a.1>,<.,2>)
{<s/4,1>,<.,2>} | {<=3,2>,<.,1>)}

{<=3,2>,<.,2>)

{<=4,2>,<.,1>]

{<=4,2>,<.,2>)

Table 1: Interesting Paths of Quicksort (23 input, 16 output)

An important question is whether this set of paths represents a minimal and com-
plete set of paths for the mode analysis. The answer to this may depend upon the use
to which the mode analysis is put nonetheless, as discussed in Section 1.6, there
is good reason to believe that some fundamentally important paths are currently not
generated. However, in the benchmarks examined here the paths generated by the

above algorithm prove to be almost entirely sufficient (see Section G).

3 The Partition Table

The mode information for paths is derived from knowledge of the relationships hetween
paths. Thus, a systematic and efficient means of keeping track of these relationships
as analysis proceeds is required. The computation of path relations is optimized by
partitioning the paths such that all the paths in each partition have the same mode.
First, each path is placed in a unique partition. indicating that its mode is nnknown
and that its relationship with the modes of other paths is unknown. There are also two
special partitions which are initially empty: the input and oufput partitions. Various
relationships between the partitions are then asserted by predicates as we proceed

through the analysis.? In order of decreasing precedence, the predicates are:

First, il the

partition S containing p is the output partition, the assertion is reported as con-

o Predicate in(p) asserts that the path p must have input mode.

2This does not imply that we use an assert builtin in a logic programing implementation!



tradictory and ignored. If S is the input partition, the assertion is a tantology,
and is ignored. Otherwise, the partition containing p is merged with the inpui
partition, and this information is propagated across all lower precedence rela-
tions belween paths previously asserted. Il a contradiction is discovered al any
point during propagation, the assertion is reported as contradictory and ignored.
Predicate oul(p) asserts that the path p must have output mode — this case is

analogous to, and identical in precedence to, the in(p) case.

o Predicate same(p,p’) asserts that p and p' must have the same mode. Let the
partitions S and S’ contain p and p' respectively.  § and 5’ are identical, the
assertion is a tautology and is ignored. Otherwise, the two partitions are merged,
and the result is propagated across all lower precedence relations previously as-
serted. If a contradiction is discovered. an error is reported awd the assertion is

ignored.

o Predicate opposite(p,p') asserts that p and p' must have inverse modes, Let par-
titions S and S’ contain p and p' respectively. If both paths are in the same
partition, an error is reported and the assertion is ignored. Otherwise, the rela-

tionship between the partitions is recorded.

The data structure used to record these relationships is known as the partition tuble,
and the mode analysis is merely a sequence of partition-table updates. Note that the
partition table may be partially pre-initialized. Sources of such information include
user mode declarations and previous made analysis of modules related to the module

being analyzed.

4 Mode Analysis

The second stage in the algorithm is to derive the modes of paths gencrated by the first
stage. This is accomplished by finding absolute modes for a small mumber of paths and
then examining relationships between the modes of paths. This mocde analysis exploits
the rules outlined by Ueda and Morita. Their axioms are clarified and reformulated in
Figure 2 3 [5]. Again the algorithm repeatedly scans sequentially through the program.
this time deriving modes of paths. The critical insight is that given a variable ¢, the
modes of all paths deriving v must be related via the mode axioms, The mode analysis

algorithm proceeds in four steps:

1. Assert absolute modes for some paths (Section -.1).

*In Figure 2, m(p) means the mode of path p



§1. For some path p in a clause, m(p) = in, if cither

1. p leads to a non-variable in the head or body, or
2. p leads to a variable which occurs more than once in the head, or
3. p leads to a variable which also occurs in the guard at path py and m(py)
=in
§2. Two arguments of a unification body goal have opposite modes, lor all possible
p, or more formally: {Vp m(<=,1> p} # m{<=,2 > p)}.

83. If there are exactly two “occurrences,” we have two possibilities:

1. If both occurrences are in the body, the modes of their paths are inverted.

2. If there is one (or more) occurrence in the head and one in the body, the
modes of their paths are the satne.

§4. If there are more than two “occurrences” of a shared variable (i.e.. at least. two
occurrences in the body), the situation is even more comples:

1. If the body contains more than two occurrences of the shared variable and
the head has no occurrences, then one of the modes is ‘out,” and the others
are ‘in.*

2. If the head contains one (or more) occurrences of Lthe shared variable (so
the body has two or more occurrences), then the modes are as follows:
(a) If the mode of the head occurrence is “in.” the inodes of all hady oc-
currences are ‘in’ as well.
(b) If the mode of the head occurrence is ‘out,” then ene of the body

occurrences is ‘out,” and the other body occurrences are ‘in.’

“*This means that one of the occurrences is designated as the producer of this variable.

Figure 2: Ueda and Morita’s Mode Derivation Axioms

(i




o ¥ paths of the form {<=,1 >}5 for some suflix s (from §2)
assert opposife({<=,1>}.5{<=,2>])-5)

Figure 3: Unification Analysis Algorithm

2. Assert that all paths on opposite sides of a unification operator have opposite
modes (Section 4.2).

3. Proceed sequentially through the variables derivable from interesting paths. as-

serting all binary relations between paths (Section 4.3).

4. Repeatedly consider multiway relations asserted by the clauses (Section -1.41).

4.1 Syntactic Analysis

During the first step in mode analysis a single syntactic pass is made over the program,
noting paths which lead to constants, variables, and guard arguments. We record all
occurrences ol each variable in 1he module being analyzed which are derivable frot
each interesting path; information which will be used by all succeeding steps of the
algorithm. Whether the variable occurrence was in the head, guard, or bhady of its
clause is also recorded. Constants in interesting path positions are noted and the
partition table is updated according to §l.1 of Figure 2. This will generally be a rich
source of information about in paths. In Quicksort, this fixes the modes of paths such
as {< q,1 >} as in. The modes of paths leading to non-unification guard arguments in
the partition table are then asserted according to §1.3 of Figure 2. In Quicksort. this
fixes the modes of paths such as {<*>',1 >} as in.

4.2 Body Unification Analysis

This step simply asserts that corresponding paths on opposite sides of a bhody unifica-
tion goal have opposite modes. This relationship corresponds to §2 of Figure 2, and is
implemented according to the algorithm shown in Figure 3. It is generally cfficient to as-
sert these relationships early, since it allows greater propagation ol information asserted
by later steps. For example, in Quicksort clause #0 opposite({<=.1 >}.{<=,.2>})
is asserted.

Note the universal quantifiers in the algorithms of Figures 3, 4. and 5. Qur imple-
mentation of these depends on the fact that a finite (and indeed a small) ser ol paths
are generated for the target program, as contrasted with the work described in Section
5.



+ V variables v occurring more thau once in a head position (from §1.2)
¥ paths p deriving v
assert in(p)

* ¥ variables v
if v oceurs exactly twice in a clause al paths p and p’
{counting all head occurrences as one) then {
il both occurrences are in the body then { (from §3.1})
assert opposile(pp’)
¥ sullixes s s, p-sisinteresting and p’ - s is interesting
asserl opposite(p - s.p' - s)
} else { (from 43.2)
assert same(p,p')
¥ sullixes s s.t. p-sis interesting and p’ - s is interesting

asserl same(p-s,p' - s)

Figure 4: Binary Analysis Algorithm

4.3 Binary Analysis

This step derives the modes of paths which have binary relations. These relationships
correspond to §1 and §3 of Figure 2. These rules are implemented according 1o the
algorithm shown in Figure 4. Note that the ordering of operations of this algoritlin is
somewhat arbitrary. This particular ordering was chosen both for cfficiency and ease of
implementation, but it is not unlikely that some other order could be laster or simpler.
In particular, each rule is currently applied in turn to all of the applicable ohjects in
the program. Reversing the nesting order so that all possible rules are applied 1o each
syntactic object in turn would not affect the correctness of the algorithm and might
provide some speed increase.

For Quicksort clause #0 in the previous step opposife({<=).1>}.{<=.2 >}) was
asserted.
same({<=1,1 >},{< ¢,2 >}) and same({<=,2 >}.{< 4,3 >}) are now asserted. The
database thus automatically concludes that opposite({< 4.2 >}.{< ¢.3 >}). a fact used
in subsequent analysis.



4.4 Multiway Analysis

Once all the consequences of binary relationships between paths in the program have
been established, if there are still interesting paths in the partition table whose modes
are ambiguous, they may be resolved by applying the multiway rule §1. It would be
possible in principle to do this analysis in the same way as for the previous rules,
establishing constraints between partitions. However, several factors mitigate against
this. First, at this point in the analysis, it is expected that there will be few partitions
to consider in a typical program, so the efficiency gain of the database-driven approach
is relatively unnecessary. Secondly, the non-binary constraints of the multiway rule
make database constraint maintenance and propagation muelh more difficult. Finally.
it is difficult to obtain any better output representation in ultitmately ambiguous cases
than an enumeration or summary of possibilities. Thus there is no strong motivation
at this point for clever analysis.

Therefore the multiway rule is implemented according to the recursive generate-and-
test algorithm of Figure 5. Starting with the partition table output by binary analysis,
the algorithm examines all possible values for each set of mutually constrained paths
generated by occurrences of a variable meeting the conditions of §4 of IMigure 2. Fach
of these possibilities is tested by applying the multiway algorithm recursively to the
remaining constraints, and the resulting collections of partition tables are merged and
returned. Thus, the overall structure of the call graph of the test algorithm is a tree
whose leaves are each cither a partition table or a failure indication the output of
the test algorithm is simply the collection of partition table leaves of the tree. Note
that the shape of the tree is determined only by the output of the iterative generate
algorithm: thus, the recursive test function could easily be made iterative via standard
transformations. Note also that since our implementation of this algorithm is in FGIC,
subtrees will naturally be evaluated concurrently in a parallel implementation of the
language.

In Quicksort only clause #1 meets the multiway criteria. where X, occurs once in
the head and twice in the body. The three possibilities to he checked are summarized
in Table 2. By this point in the analysis. however. we have alrcady derived that
{<q,1>,<.,1>}is inand that {< 8.2 >} is in, so we find that {< 4.3 >, < .. 1 >}
is in. This example is nice because it is completely determinate — the multiway rule
derives only one set of possible modes for the program. In general, this may not he the

case and several possible final modings for the program will be emitted.

9



multiway( V, 1) { — V is set of variables, { is partition table
test( generate{ V ), 1)
}
generate( V ) {
R=0 — R is set of tuples (v,@2): v is variable, Q is set of paths
Vv € V s.t. v occurs > 3 times in a clause
let pg...p, be the paths deriving v
¥ suffixes s s.t. a proper subset @ of {po - s...py - s} is interesting and Q] > 2
R=RuU{(r,Q))
return{ /)
}
test( R, 1) {
if £ =1 then
return{ {¢} )
select some (v,@) from R}
/= R\ {(v,Q)}

if Ip € @ s.t. some prelix of p kv in a head position {

T = test( R, update( {, input{ Q) )) — T issel of partition tables
V' € @\ {p}
T=TU test{R', update( ¢, outpur{ {p, /] ), mput{ @\ {11’} ) ) )
} else {
T=40
Vpe@

T=TuU test{ &, update{ {, omput{ {p'} ), input( Q\{p'} 1))
}

return{ 1)
}
Figure 5: Multiway Analysis Algorithm
path
{<q,1><., 1>} |{<s2>) | {<q.3>.<..1>)}

1 in in in

out in out

out oul in

Table 2: Possible Modes For X

10




4.5 Complexity

The complexity of the algorithm can best be understood by examining its component
pieces. Everything up to the beginning of binary analysis is fundamentally linear on
the length of the program — a small fixed number of passes are made over the program
to derive facts about it. The binary analysis is also close to linear on the number of
variables in the program meeting the constraints of Figure 4. A significant quadratic
component derives from the lact that inner loops of the analysis iterate over a set of
suffixes of paths — the size of this set is approximately linearly proportional to some
measure of the “complexity” of the program.

The multiway analysis is diflicult 1o analyze. Il it were performed lirst. it would he
exponential in the number of variables meeting the constraints of Figure 5, but by the
time it is actually performed, most aliernatives contradict the known modes, and thus
are not explored further. In practice. as shown by the timings in Section 6. the time

spent in this analysis seems to be reasonably short.

4.6 Consistency, Completeness, and Safety

Some important practical and theoretical issues are raised by these algorithins. Some of
these issues include the consistency. completeness. and safety of the mode analysis. 1t s
not difficult to prove that the mode analysis algorithm is consistent, in the sense that if
at some point in the analysis, path pis shown to have mode ni, and if some subset of the
interesting paths implies that p does not have mode m, then the algorithm will derive
and report this contradiction. llowever. this consistency property is less useflul than is
desired, for several reasons. The first is quite simple — il the algorithm does report a
contradiction, there is no obvious way to automalically correct. it, or even 1o determine
the minimal subset of paths involved in the contradiction. It becomes entirely the user’s
responsibility to correct the program so that it is consistently moded.

The current implementation will report any contradiction. ignore the contradictory
assertion, and proceed with the derivation. This allows the user to examine the fi-
nal modes produced by the analysis and determine which might be incorrect. In our
experience, this is usually sufficient to correct the problem. In the absence of user
intervention, this also in practice allows the modes of most of the remaining paths to
be determined. For example, when using the mode information for sequentialization
[5}, we may sequentialize all calls not involving a conflicting path, and then =safely™
compile calls involving the conilicting path.

The second weakness in this form of consistency is more subtle: the non-modedness
of a program may not be detectable if the analysis uses the wrong set ol paths! T'his

leads directly to a reasonable definition of a complete set of paths:



Definition: A set of paths generated for a program is complete il the
existence of a consistent inoding for the set of paths implies that the program
is fully moded. Q

Thus, the infinite set of all possible paths is a complete set; however, we are really
interested in finite complete sets and in particular in a minimal complete set of paths
for the program. As an example of the incompleteness of our path gencration algorithm,

consider

g(X):=true |Y =[1], avaf( Y, X }.
WY = true | g(Y'), auzi(Y,2).
auzl{ [X| -], Y ) = true | Y = X,

With the path generation as described, the path {< ¢, t >, < ., 1 >} will never be
considered. But without noticing that this path is out, it is impossible to discover tha
the path {< auzl,2 >} is out and thus derive the non-moded call in /1.

It is difficult to extend path generation in such a way as to obtain a finite complete
set of paths, much less a minimal one. Our current plan for doing so involves imple-
menting an abstract interpreter over the domain of paths of maximum length k. where
k is the length of the longest path generated by the naive algorithin described above,
Certainly a naive depth-£ bound must be avoided since it has exponential complexity.

Note that the path generation algorithin previously described is nnsafe. 1t is also a
consequence of the incomplete set of generated paths that even if the program contains
information about the mode of a path. that information may not be derived by the
mode analysis algorithm. Nonetheless, most. generated paths in typical progratns are
moded by this analysis, and il the program being analyzed is known 10 be moded, all
modes derived are correct.

One may thus use the mode information derived by the algorithin as advisory in-
formation; alternatively, one may insist that the input program be moded correctly,
If incomplete mode information is derived. the user may explicitly supply the missing
information by inspection. This is the approach currently taken in our benchmark
analysis. Finally, in some cases the modes ol same paths simply cannot be determined
because they depend on the modes of the query itsell. In these cases. the programmer

may explicitly supply query modes to the analyzer by preloading the partition table.

5 Comparison With Other Work

The original mode analysis scheme is due 1o Ueda and Morita [8]. Instead of limiting

the domain of analysis to a finite set of paths, they define the rules over the closure of

12



all possible paths. The unique [eature of the path generation is that it uses a graph-
based representation of paths, where the directed graph represents a set of prelixes
of possible paths. No algorithm is given, however, for deriving the directed graph of
the target program. An examination ol their sample directed graphs indicates that
any automated technique would have to solve the same difficulties in path generation
discussed in Sections 2 and 4.6. T'he modes are then propagated over the directed graph
according to the mode-analysis rules. This propagation is analogous 1o the propagation
via partition tables described in Section 4. We believe our algorithm is no worse in
performance than the graph scheme, and is easier to implement. In fact, our initial
attempts to utilize graphs led us to our current algorithm.

The mode analysis rules were simplified 1o their present form by Korsloot and Tick
[5], who also gave a set of simple inference rules for deriving paths and their modes,
However, no selection algorithin is given {or application of the inference rules. That
work still deals with an infinite set of possible paths, but considers only those paths with
a finite known prefix. As testament to the inherent difficulty of dealing with inlerence
rules, they failed to consider certain “interesting” paths and thus incompletely moded
the Quicksort example!

The algorithm described in this paper is the logical extension of the previous works
to a finite domain of paths. We represent the relationships ol a finite set of paths in
such a way that all mode information directly available about this set of paths in a

program may be efficiently derived.

6 Empirical Results

Our experimental implementation of the path generation and mode analysis algorithims
consists of approximately 4,000 lines of code comprising 23 modules 1otaling abont
500 clauses, written in FGHC running under the PDSS system [2]. We examined
the moding and execution characteristics of the analysis ol a group ol seven FGH(
programs listed in Table 3, including one module {msort) from the implementation
itself. The table shows the number and percentage of derived {input and outpar) paths.
as well as the number of paths that could not be derived. The beachmarks averaged
3.3% of non-derivable paths, with some variance. As mentioned in Section 4.6, there
are two approaches which appear viable for reducing the percentage of non-derivable
paths. One method is to generate a richer set of paths to drive the mode analysis.
Currently, we generate only “simple” paths, which are local to each clause. This can be
extended to more elaborate generation. cffectively abstract interpretation on a domain

of “important” paths.



paths explicit

benchmark | # procs | # clauses input output | not derived | modes needed
qsort 3 6 23 (59.0) { 16 (41.0) 0{0.0) 0
msort 4 11 40 (52.6) § 32 (42.1) 4(5.3) 1
prime 7 12 37 (D7.8) | 27 (42.2) 0(0.0) ]
cubes 9 16 79 (h6.0) | 62 (44.0) 0(0.0) 0
pascal 11 22 68 (60.2) { 45 (39.8) 6 ( 5.3) 2

waltz 21 54 138 (G1.1) | 88 (38.9) 28 (12.4) 7
triangle 42 80 645 (88.4) { 85 (11.6) 0(0.0) 0
average (62.2) (37.1) {31.3)

Table 3: FGHC Benchmarks: Path Analysis with No Explicit Information

A second method, illustrated in these measurements, is to have the progranmer
give explicit mode declarations to help the analysis. The final column of Table 3 gives
the number of explicit path modes needed 1o permit the derivation of all paths, Note
that only a fraction of the unknown paths are needed to fully coustrain those retaining.
Waltz has the largest requirement because its data structure manipnlation is far more
complex than that of the other prograims. Local path generation does not sulfice because
deeply nested subterms are decomposed through chains of procedure invocations. Five
declarations for Waltz state the seven explicit paths needed 1o uncover all 28 unknown

paths:

== mode spawn(., 7, _, ., ).

i~ mode fromLStoListi(. [ ?|-]. - -).
mode group([ ?|-], ?, - - -, -).

- mode genfdges([ ?]-], -, 7. - - - -).

= mode group(-, -, = - = - - [edge(.. .. )= ]).

These were easily introduced by band, although as noted we are actively pursuing
a more complete method of path generation 1o avoid any nced flor declarations.

Table 4 categorizes the paths by type. User paths are paths deflining variables in
user-defined procedures (c.f. =/2 paths. which are less interesting, except for assign-
ment and for propagating modes within the analysis). User input paths are Turther
split into 1-paths (top-level formal parameters of procedures) and k-paths for b > .
Assignments are =/2 output l-paths.

By type, user paths constitute the largest portion with 52%. 15.9% arc user output
paths, and the user input paths split almost evenly between paths of length one and

greater. The length of the k-paths is highly program dependent, although usually the



user input user builtin

benchmark I-paths k-paths outpui assign others | 1otal
gsort 4(10.3) G{15.4}| 7(17.9) | 5(12.8) | I7 (43.6) 39
msort 6(8.0)| 11{14.5)] 11 (14.5) | 12 {15.8) | 36 (47.3) 76
prime 10(156) | 5(7.8) [ 13(203) | 6(9.3) |30 (16.9) | 64
cubes 22 (16.7) | 25 (17.7) | 32(22.7) | 7 (5.0) | 55 (39.0) [ 141
pascal 19 (16.0) | 13(10.9) | 17 (14.3) | 16 (13.4) | 54 (45.4) | 119y
waltz 52 (20.5) | 35 (13.8) | 39 (15.4) } 20 (11.4) | 99 (30.0) [ 254
triangle 155 (21.2) | 449 (61.5) | 44 (G.0) | 37 (H.1) § 45 (6.2) | T30
average (15.5) (20.2) (15.9) (10.4) (18.2)

Table 4: Breakdown of Pathis by Type: Raw Counts and (Percentages)

path creation + mode analysis

benchmark |syntactic analysis| unification binary| multiway| 1otal | paths | paths/see
qsort 0.62(41.9)] 011 ( 74)] 0.72(48.6)| 0.03( 2.0)] 1.48 3G 2064
msort 2.09 (44.8)] 0.27 ( 5.8)| 2.12(45.5)| 0.18( 3.9)] 4.66 6 16.3
prime 1.39 (43.4)| 0.22({ 6.9)| 1.45(45.3)| 014 ( 4.4} 3.20 G4 204
cubes 5.59(37.3)| 0.98 ( 6.5)| 537 (35.8) 3.05(20.3)| 14.09] 11} el
pascal 5.06 {39.7)] 0.64 ( 5.0)| 6.12(48.0)| 0.92(7.2)| 1271 119] 93
waltz 27.23 (40.5){ 2.69( 4.0)| 26.79(39.9)[10.46 (15.6)| 67.17| 254 3.8
triangle 175.00 (32.1)| 19.48 ( 3.6)(290.20 (53.1)|61.37 (11.2)[546.14| T30 1.3
average {40.0) ( 5.6) (15.2) {0.2)

Table 5: Execution Time for Analvsis: Raw Seconds and (Percentages)

average length is close to two. Assignments constitute 10.4% of all paths, Surprisingly. a
large percentage (38%) of the paths are builtin paths needed only for mode propagation
during analysis.

Table 5 gives the execution times of the analysis on a Sparcstation H under PDSS.
Unfortunately, this preliminary implementation suffers because the path-table access
functions are linear in the number of generated paths. This in turn worsens the perfor-
mance of most of the algorithms from linear to quadratic. We expect the implementa-
tion to be approximately linear on the number of paths alter the re-implementation of
our path table e.g., as a hash table. Furthermore, PDSS is an emulation-hased system,
and the timings include the full impact of frequent garbage collections.

However, these measurements do indicate the approximate refafive weiglht of cach
phase of the analysis. We see that the multiway rule, although potentially esponential.
is in practice quite cheap. Almost all of the computation (83%} arises Mo path
generation and binary mode analysis. Complex programs show signilicant (11-20%)

multiway analysis. The last column of the table estimates program complexity by the

15



metric of paths analyzed per second. As explained above, the current performance is
quadratic (i.e., paths?/second is linear in Table 5), which in fact confirms that we can

linearize the implementation.

7 Conclusions and Future Research

This paper describes an implementation of an innovative compile-time path generation
and mode analysis technique for committed-choice langnages. We have shown that the
analysis can be implemented efficiently by first generating a small set of “interesting”
paths, and then moding the paths according to the rules suggested by Ueda and Morita.
By acting on multiway relations last, we avoid exponential problems. Most of the
computation occurs in path gencration aud binary mode analysis. Characteristios of
FGHC benchmarks show that the algorithm behaves efficiently. moding all bhut 3.3%
of interesting paths. We give the static frequency of path type occurrences. which is
useful information for language implementors.

Future research includes two major targets. irst, we will explore methods of path
generation that further increase the ratio of derivable paths. Second. we plan to im-
plement sequentialization analysis [5] on top of these algorithms in the context of the

Monaco shared-memory multiprocessor 'GHC system.

Acknowledgements

This research was supported by an NSI' Presidential Young Investigator award, with

matching funds generously provided by Sequent Computer Sysiems Inc.

References

[1] M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation Integrating
Type and Mode Inference. In fnternational Confercnce and Symposium on Logic

Programming, pages 669-683. University of Washington, MIT Press. August 1988,

[2] T. Chikayama et el. Overview of the Parallel Inference Machine Operating System
PIMOS. In International Conference on Fifth Generation Compulcr Systems, pages
230-251, Tokyo, November 1988, 1COT.

[3] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.
ACM Transactions on Progrannuning Languages and Systems, TH3 1181500 July
1989.

1



[4] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs.
Journal of Logic Programming, pages 207-229, September 1988,

[5] M. Korsloot and E. Tick. Sequentializing Parallel Programs. In Phoeniz Scminar
and Workshop on Declaralive Programming, Sasbachwalden, FGR, November 1991,

[6] C. S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic
Programming, 2(1):43-66, April 1985.

[7] E. Y. Shapiro, editor. Concurrent Prolog: Collected Papers, volume 1.2. MI'T Press,
Cambridge MA, 1987.

[8] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In

International Conference on Logic Programming, pages 3-17. Jernsalen. MIT Press.
June 1990.

17



