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Abstract

We consider the problem of finding the optimal parallel schedule (also called
free schedule) for a Uniform Recurrence Equation(URE) over an arbitrary family
of integral polyhedra. Many computation structures such as nested loops with
constant dependence vectors and systolic algorithms can be described by UREs.
An optimal schedule is a function which schedules computations as soon as possible.
We show that for a URE over a family of integral polyhedra, the free schedule is
bounded within a constant to a piecewise quasi-linear function for computations
not too “close” to the boundary, provided that the URE has a quasi-linear schedule.
Furthermore, the piecewise quasi-linear function itself is a valid schedule and can
be obtained by a parametric rational linear programming. We also show that it is
always possible to choose a single quasi-linear schedule which is “almost” optimal
with respect to the minimal execution time of the last computation over any domain
in a family of bounded integral polyhedra. Intuitively, the result shows that we
can effectively find a quasi-linear schedule which is “almost” optimal. This justifies
using (quasi)-linear schedules in the parallelization of nested loops with constant
dependence vectors and in the systolic array synthesis. The result is an extension
to a result given in [KMWE67].
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1 Introduction

A Uniform Recurrence Equation(URE) describes a class of regular computation struc-
tures where computations are indexed by integral vectors over a convex polyhedron and
performing a computation at an integral point needs (depends on) computation results
at other integral points which have constant distances from its index. Such regular
computation structures have many applications. Tor example, in the parallelization of
nested loops, it can be used to describe a class of nested loops with constant dependence
vectors [Lam74, Wol89}. In the design and synthesis of systolic arrays {Kun79], it is
used to describe systolic algorithms [Qui84, RK86]. A schedule for a URE is a function
which assigns time steps to computations based on the dependency constraints. This
paper studies the problem of finding the optimal schedule for a URE over a family of
integral polyhedra.

The pioneering work on UREs was done by Karp,Miller and Winograd [KMWG7]
who first studied computability and scheduling problems for such computations. Since
then, their results have been used, modified and extended in many areas, especially in
the two areas mentioned above [Wol89, Kun88). The problem of finding the optimal
schedule (called free schedule in [KMWG67]) for a URE over an arbitrary integral convex
polyhedron, however, is still open even though in [KMW67], it is proved that the free
schedule of an arbitrary URE over a specific index domain (the first orthant of the
infinite multi-dimensional grid region) is bounded within a constant to a rational linear
function for computations not too “close” to the boundary.

In [QuiB7], quasi-linear schedules are studied in systolic array design. In [FPPP84],
linear schedules for 25 common algorithms of nested loops with coustant dependence
vectors are studied and it is found that the difference between the optimal linear sched-
ules and the optimal schedules is equal to one or zero for those nested loops. Exten-
sive work on optimal linear schedules for UREs has been done by Shang and Fortes
[SF89, SF91, Sha90]. Efficient algorithms are designed to find optimal linear schedules
for both the total completion time and the completion time of a specific computation.
The problem of finding the optimal schedule for a URE, however, is still open. This
paper gives an answer to the problem.

2 Notations and Problem Definition

Throughout the paper, Z denotes the integer set and @ the rational number set. The
integral grid is Z". Vectors are column vectors and are denoted as [. For a vector
I= (i1y...yin), (laaly - - -, lia])t and |[|leo = max{|i1l,...,|ix}}. Enis an nxn
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identity matrix. T = (1,...,1)%. A sequence of integers ai,...,a; is called semiposilive



if they are nonnegative but not all of them are zeros. For a rational polyhedron P, its
integer hull P; is defined as the convex hull of the integral vectors in P. P is called an
integral polyhedron (IP) if Pt = P ([Sch88]). Throughout this paper, we assume that
P is an IP.

Definition 1 Let A be an m x n integral matrix, 5; be a subset of 2™, a family of
IPs F(A,Sy) is {P|P = {I|Al > b} for any b € S, and P is an TP} .

Intuitively, the “shape” of an IP is determined by its coeflicient matrix A and F(.A, 5)
is a collection of IPs which are of the same "shape”. S is the range of the parameters.
P = {I|AT > b} can be decomposed as P = V + € where V is a polytope and C =
{#1A7 > 0} is the characteristic cone of P (cf. [Sch88]). Notice that € is independent
of b,

Property 1 {I € P,I is integral} = {e1T)+...+e,Ty+ fiT1+. . .+ fpTp|ei, f; nonnegative and e+
...+ep = 1} for some integral vectors ¥y,...,7, and 7, ..., T, where 7;s are independent

of b.
Sketch of Proof: See [Sch88], page 234, formula (19). I

Since P is an IP, it is easy to see that P = {e1 1 +...+ ¢, 0, + it + ...+ fpiplen, f; =
0 and e; 4 ...+ e, = 1}, Thus, any two P;,P; € F(A,S5;) have the same 7

S,
Throughout this paper, we assume P has such a representation P = {Vé&+ Ifie, f >
0&er+...+e =1} where V = (5...5,),R = (f1...7,).

Definition 2 Let ¢ be a function (computation) on Z™, A be a m x n integral matrix,
a Uniform Recurrence Equation (URE) U over 2 domain P in a family of F(A, ;) is

o) = fle(T~dy),....e(F = dp))

where I € P, dy,. .., d; are n-dimensional inlegral vectors and f is an arbitrary function.
d;s are called dependency vectors and D = (dy,...,d}) is called dependency matriz.

Thus, a URE U, together with an IP P, defines a computation structure. f and a family
of IPs F(A,Ss), define a class of computation structures. A matrix multiplication
example is given in Example 1 in the Appendix.

We say that I € P depends on J = I — d; € P and denote it as I — J. Intuitively,
I — J means that c(J) needs ¢(J) as one of its arguments. Furthermore, if [; —
L,...,I, —» f;.H and fl,...,an € P, we denote [; [';,.H. A schedule § is
a function which maps an integral vector I € P to a positive integer such that if
I'— J, then S(I) > §(J). Intuitively, a schedule is a function over P which schedules
computation ¢(J) at time S(I}). A URE is said to be computable in F(A, 5p) if there



exists a schedule for any P € F(A,S;). The maximum parallelism is achieved when
the free schedule [KMWG67] f is used to schedule the computations. The free schedule
f is a schedule defined as

0, if no J € P such that T —p J

h = m - o
u<l { max{m|l =p J,J € P} + 1,otherwise

The free schedule is the fastest schedule for every computation point in domain P.
If a schedule § is of form §(1) = |3 + af, it is called a quasi-linear schedule.

3 Computability of a URE

Definition 3 A family of IPs is said to be eztendible to the dependency vectors
dy,...,di of URE U iff for any semipositive integers /y,...,[, there exists an IP P
of the family such that it i El-'p I - Z§=1 I;d; for some integral point I, € P and some
N > 0 (Note, N is not necessarily 35, I;).

For example, the family of IPs for matrix multiplication in Example 1 in Appendix is
extendible to the dependencies. In the sequel, we assume F is extendible to all the
dependency vectors of URE U.

Intuitively, a URE is computable iff there is no an infinite dependency chain.

Lemma 1 URE I is computable for a family F iff there are no semipositive integer
sequence af,...,a} such that Y5, aid; = — 3%, f/7; for some nonnegative integer f’s.

Sketch of Proof: Suppose if is not computable over P, then, there exists an infi-
nite sequence of mtegral vector Io( I ) Il, ,I . in P such that I —p I,+1
(hence, form < n, I, — I, = .5, a;d; for some sem1p051t1ve integers a;'s). Based
on the representation of P, for any m > 0, I, = S em v, + 50, [ for some
nonnegative integers e/’s and f™’s and = 37_, e =1 . Smce there are only

finitely many (27) different values of e™’s, there e)usts an infinite subsequence
of fl,...,I-;,... such that their ef*’s are repetitive. Among this subsequence,
we can further choose an infinite subsequence whose f are nondecreasing for
each i = 1,...,p. Let I, and I, are two from this subsequence (m < n) we
have I, — In = Y5 ald; = =7, f! for some semipositive integers a’ and
nonnegative integers fI.

Conversely, if there are semipositive integer sequence a,, ..., a; such that Zf;] a;d; =
— ¥-F_, fi7; for some nonnegative integer fi’s. Since F is extendible to d}’s, there
exists a P € F and an integral I € P such that Ig(- I)—va]—-p fN(

j 21—1 a;d;). But L +5F_, fifi € P (smce I; € P and recall P’s leplesultatlon)

we have an infinite dependency chain fp—pli—p ... Iy —=ph + D R
Thus, 4 is not computable over P. I



The above result is a generalization to a result given in [KMWG67] where a similar
condition is given for a URE over a specific domain (the first orthant of the gird).

Theorem 1 U is computable iff there exists an n-dimensional vector s such that
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Sketch of Proof: From Lemma 1, I/ is computable iff linear programming (LP)
ma.x{Zf‘:l a; Zf=1 a;d; + Y 5, fifi = 0,a;, f; > 0} has a finite optimal value 0,
iff its dual problem min{0|§"tf;- > 1, 8% > 0} has a feasible solution.

Corollary 1 U is computable iff there exists a quasi-linear schedule for each P.

Sketch of Proof: For a § which satisfying condition (1), we can always find a
constant « such that 3%; + o > 0 for all ; in an IP P. It is easy to prove that
L(I:) = LE‘E+ o] is a_valid schedule for & on P (simply check L{I} > 0 and
L(I]) > L(Iz) if Iy — Ig). |

Condition 1 is similar to a result given by Quinton {([Qui87]). When the lamily
consists of only bounded (finite) IPs (i.e., p = 0), this is called “separating hyperplane”
([KMWG67, Qui87]): & can be thought of as the norm of a hyperplane which separates
dependency vectors from the first orthant.

4 The Free Schedule

We first consider the following two rational linear programming problems for an integral
vector T € P.

my(I) = max ¥, ; mao(I) = min (AT - D)
subject to subject to

. (I : (11)
DNu;20,i=1,...,k DA 20,i=1,...,k
NI-F jud;eP ) NMAd > 1,i=1,...,k

Lemma 2 If URE U/ is computable, then both (I) and (II) have a common, finite
optimal value m(]) for an integral vector J € P.

Proof: Based on the representation of P, the feasible region of (I) can be rewritten
as follows _
my(f) = max E u;
subject to
1)4,6f20
NI-Di-Ve-—Rf=10
)te=1



Its dual problem is

min{(&* a)(‘l')l(s* a)(‘g o ) > (T4 040} (111)

&

where « is a scalar variable and T} (6p+q) is a k-dimensional ((p+ ¢)-dimensional}

vector with all 1 (0) components. Based on Corollary 1, the feasible region of (111)
is nonempty if I is computable (we can always choose a to satisfy §'7; + a > 0
for all ¢ = 1...,q). Hence (III) has a feasible solution. But the feasible region
of (I) is not empty since @ = 0 is a feasible solution. Hence, by duality theorem,
(I) has a finite maximum. Therefore, its dual problem (II) must have a finite
minimum too. Thus, my(F) = my(J) and they are denoted as m(J). 1

Notice that the feasible region of (II) is independent of b. The objective lunction of
(II) is a linear function of I and b. Based on a property in parametric linear program-
ming(see, for example, page 15 in [Nau77]), we can show that m(J) is a piece-wise lincar
function of I and b. Furthermore, for a fixed P (i.e., b is fixed), we know that m([) is
also a piece-wise linear function of [ (a projection of a piecewise linear function is still
a piecewise linear function).

Lemma 3 Integer function m/(f) = |m(J)] is a valid schedule for URE % in P.

Proof: Let [;,/> € P and I ﬁ’p I for some N = Zf-"zl u; > 0 where u, i =
1,...,k are nonnegative integers. L=1-~ Zf-;l w;d;. Denote Dr = {#' =
(uhsee e uL)Lﬁz—EE‘:l uld; € P}. Forany @ € Dy, , we have H=-T5 (wi+ul)d; €
P. Thus, m(f) 2 maxpeny, T + ) = maxzen;, Tia(w) + N. But
m(lp) = maXyep, Y5, u! and since N > 0, we conclude [m(f})| > |m(f3) +
N| > |m(f2)]. 1

We call m/(]) a piecewise quasi-linear schedule. One may attempt to conjecture that
m/(I) is the free schedule for the URE. However, this is not correct. The main reason is
that for [, T, € D such that [ = [ —EL] u;d;, it is not necessarily true that [ —N'p i
for N = 2{5:1 u;. This is because the dependencies from 7 to /3 may first go out of 7
and then go back to P later. Example 2 in Appendix shows this.

However, we are able to prove that for computations which are not too “close” to
the boundary, the difference between m'(F) and f(I) (f, the free schedule} is bounded
within a constant which is independent of 5. The method used is similar to that in
[KMWG7). We first define another polyhedron P, for computation points which are
not too “close” to the boundary of P as P, = {I|AT > b + 7} where

k
T = Z |Ad;).
=1



Since ¥ > 0, P, C P. We assume that P, is not empty. We first prove the following
lemma.

Lemma 4 If j,h=1 - ):,_1 wd; € P, for some semipositive integers w,...,ug,
then I —i-'p I where N = 5

Proof: We prove the following claims successively.
Claim 1: f § € P, and 6; € {0,1},i=1,...,k, then 7= § + S5, 6;d; € P.
Proof of Claim 1: Simply check

k k
AF = A4 Y 0iAd; = AF -7+ (D 6:Ad; + 7)
=1 i=
R k - k B . k . _
= AF-F+(D_0iAdi+ ) |Adi]) = A6 — & + D (B Ad: + |AdY)
i=1 =1 1=1

> Ab-T72b

Claim 2: Let 7 be the one deﬁned in Claim 1 and it is integral, =5, ayd; = #

where o; € {0,1}, then ¥ 5% # where M = Y5

Proof of Claim 2: Without loss of generality, we assume that a; = 1,d
wLand a; =0,i=L+1,...,kforsome L < k. Let 7 =7 - 57, di,j

0,1,...,L (hence, ¥ = 7y and # = 7} ), we have

i

AT = Ar—ZAd— (6+20d)—ZAd;

=1 i=1
&
= Af+ Zs,-Ad‘.- - ZAJ; = A + Z(a,— —DAd; + > 8,Ad,

i=1 1=1 =1 i=j+1

[
=)

2 k

= A7+ ) (|Ad]| +(8; = 1)(Ad)) + 3 (|Ad) + 8;Ad;) > A
i=1 i=j+1

> b

Hence, 7 € P. Therefore, 7 = 7y —p 7 —p 75... —p ), = , we prove the
claim.

Proof of Lemma 4: Let
L U
[ — —|di,e=0,1,...,N.
gLNJ

fo = I,y = I5. Rewrite 7, as follows

k k
=R S+ DG - 15

[=>}



Since P, is a convex polyhedron,

11-—21“1 _(1——)11+FI26'P

l-.l

Based on Claim 1, 7, € P,¢=0,1,...,N. Furthermore, notice that

(e+ 1)u,

cu;

ot = 7= (LRI iy
i=1
and .
(et ) ¢ go,1).

. . Le .
Based on Claim 2, 7, = 741 Where

(c+ 1)u, cu;
o=yt L5

i=1

But Y N5! L. = N, hence we prove the lemma. |

Theorem 2 For a family of CPDs F(A, 5;), there exists a constant C such that for

every P € F(A,S,), m'(I) — f(I) < C for any integer vector J € P,.

Proof: Consider the following rational linear programmings for any integral vector
Tep,.

My(D) = max T8 | w; My(D) = min M(AT = (B + 7))
subject to () subject to
u;€Qand u; >0,i=1,...,k DA 20,i=1,...,k

2) I - Tk, wid; € P, 9) MAd; > 1,i=1,...,k

M;(I) is finite since u; = 0 is a feasible solution and M5y € m(]) (since
P, € P). Thus, both (I') and (II') have a common optimal value M(I) =
My(F) = My(I). Let the optimal solution of the integer linear programming
by restricting u;s to be integers in (I') be M’(]), based on a result in integer
linear programming(see, page 239- 240, theorem 17.2, in [Scl188] there exists a
constant C; which is independent of § such that 0 < M(I) -M(D) < Cy. Now,
consider the difference between the free schedule f(I) of /in P, and M (r )- Since
M (D) = N = TFu; for some integer u; > 0 such that /' = [ — ¥ ud; € P,.

from Lemma 4, we have [ p J'. Thus, f(D) > N(= M'(I)). Hence,
m'(D) - f(H < m' (D) - M' (D < mD) - M'(D < m(D - MDD+

Notice that (II) and (II') have optimal solutions and both of their feasible regions
are the same (denoted as A = {}MAd; > 1,i=1,...,k X > 0)). There exists

(117)



M € A such that - .
M(f) = MN(AT - (b + 7).

But . o
m() < XA - D),
we have
m(l) = M(J) < X7 < max M7
Jea
Hence, letting C = C; + Maxge 5 A%, we prove the theorem. |

In [KMWG67], Karp et al. show an example where for some points “close” to the
boundary, the difference between m(J/} and f(J) are not bounded to a constant for the
first orthant of n-dimensional grid. By slightly modifying their example, we can also
show that even for a family of bounded IPs, difference between m(7) and f(I) may still
be unbounded. This is given in Example 2 in the Appendix.

5 The Optimal Schedule for The Last Computation

In many applications, it is often desired to find a schedule to minimize the completion
time of the whole computation. This problem is meaningful only if the domain P
is bounded (i.e., a polytope). Thus, in this section, P is assumed to be an integral
polytope. A computation ¢([) is called a last computation in domain P if there is no
other point I' € P such that [’ —Ii'vp I for some N > 0. It is possible that there are
more than one last computations. A schedule which minimizes the completion time of
the whole computation is the one which schedules all the last computations at the time
given by the free schedule. In this section, we show that if URE ¥/ has only a single
last computation e(}), then there exists a single quasi-linear schedule which minimizes
the completion time of the whole computation (i.e., the time for 7).

Since the last computation point [} usually lies close to the boundary (or in the
boundary), Thm. 2 is not directly applicable for computation at f;. In the following,
however, we prove that m'(f}) is still bounded to f(J) within a constant independent
of b.

Lemma 5 For any I € P,, f(I}) > JM’(I) where M'(1) is defined in the proofl of
Thm. 2.

Proof: Since I is the only last computation point in P and P is a finite polytope,
for any I € P,, I —I>'p I for some integer L > 0. This implies f(I_}) > f(f).
Let ul, . #; > 0 be the optimum solution for A'(I). Based on Lemma 4,

rpr- 2,_1 u;d; where N = M'(I) = 5, w;. It follows that f(1) > M'(]).
Hence, f(I;) > M'(]). i



Lemma 6 For any I € P,, there exists a constant K such that m(l) — M'(D) < k7.

Proof: We prove that m({I) — M(I} < K’ for some constant K& first.
AD AT b = - f AD \ .
it i ¥ — ax 3 <
Since m(J) = max{1q| ( _EB, ) i< ( 0 )} and M () = max{1lu| ( _E, ) 7 <
AF-b-#
0
ear programming (see, Thm.10.5, page 126 in [Sch88}), for the optimum solution

' of m([) and the optimum solution " of M(]), ||& —&||cc < 24| ( AI()_ ’ ) B

}, based on a well known result on the sensitivity analysis in lin-

( Al _Ob - ) |loo Where B is a constant chosen such that all of the entries in

B! for each nonsingular submatrix B of ( ) is at most 4. Hence, there ex-

-Ej
ists a constant K which is independent of b such that m(J)—M(F) = (@ —a") <
K.
Since M(I)— M'(D) < C, m(D) - M'(D) < m{I} = M)+ C, < K" 4+ Cy. Let
K, = K' 4+ Cy. We prove the lemma. i

Lemma 7 There exists an E € P, such that m(l}) — m(fp) < K for some constant
K> which is independent of b.

Proof: Consider two linear programming problems, max{0/][(-A){ < -0} and
max{0*/|(—A) < —(§ + %)}. I} is a feasible and optimum solution to the first
problem. Based on similar argument in the proof of Lemma 6, there exists an
optimum (feasible) solution Jy to the second problem such that 1= Tolleo <K'=
nB||7||co where 3 is a constant independent of b. For I, there exists a X € _\
where A is the feasible region of (II') such that m(Jp) = X(Al, — b — 7). But
m(l;) < N( AL 1), we have m(I})—m(lo) < M(A(J];- fg)+u) But ||I, Tolles <
I(', we easily know that there is a constant K such that m([}) - m(fp) < K. 8

Theorem 3 If I is the only last computation point in P for URE I, then there exists
a constant K independent of & such that m'(J;)) — f(I;) < K.

Proof: From Lemma 5 and Lemma 6, we have

mi(By~ F(F) < m(F) - max{M(D} = min m(F}) - M'())
fer, fer,

f

min (m(F) = m(7) + m(I) = M'(1)} < min {m(7) = m(D}} +

Based on Lemma 7, there exists an Iy € P, such that minp o, {m'(I) = m(D)} <
m(Ig) - m(Io) < Ky, letting K = K + K5, we prove the theorem.



Therefore, we can first find an optimum solution X and a for i in linear programming
(I1) which minimizes m(J;). Based on Corollary 1, quasi-linear function L(F) = [ X7 +
a) is also a schedule. Since L(J}) = m/(J}), L(J) minimizes the execution time of

computation at I; and thus minimizes the completion time of the whole computation.

6 Remarks

We make the following remarks on the results presented above.

e In this paper, we consider UREs over a parameterized domain (or a family of do-
mains). This is important as the domains (iteration spaces) of many applications
(nested loops, systolic algorithms) belong to a family, not a single instance. In
fact, for a single finite polyhedron, the problems considered here become trivial.
Our results can be used in a parallel compiler as at compile time, the parametric
m/(I) can be solved, which will help the compiler in scheduling and partitioning
of the nested loops.

¢ In this paper, we only consider UREs over a family of integral polyhedra. This,
however, is still applicable to most of applications. For example, the loop bounds
of many nested loops are integers and hence the vertices of their iteration spaces
are integral, which implies that the iteration spaces are 1Ps (as long as all the
vertices of a finite polyhedron are integral, then it is an IP).

¢ In Sec. 3, we derived an iff condition for the computability of a URE based on
domain extendible condition. Again, we believe that this condition is not too
strict. A typical family of domains which is extendible to any dependency vector
is a hypercube. Moreover, the rest of our results can be easily derived from the
existence of a quasi-linear schedule for each domain in the family (i.e., condition
(1) in Sec. 3, instead of the computability condition we derived).

o The constants we derived to bound the schedule m/(J) in fact are exponential to

the dimension of the domain (i.e., n). However, In most applications, n is usually
rather small (3,4 or 5).

An important open problem is to extend our resuits for finding a single schedule
which minimizes the whole computation for the case where there are more than one
last computation points.

Appendix
THIS SECTION SERVES AS REFERENCE. TWO EXAMPLES ARE GIVEN [IERE
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Example 1: Matrix multiplication Z = X x ¥ can be described by a URE over a
family of domains F(A4, §p) with A = (—E3, E3)'and S, = {{~N,-N,-N, 1,1, 1)}, N >
1}. The URE, over a domain P = {(i,5, k)|l <i < N,1<j< N,1< k< N}is

for all (i,5,k)t e P

2(i, i, k) = z(i,j—1,k)
y(t'rjik) = y(t_ 17.71”7)
Z(i,j,k) z(i,j,k—1)+:c(i,j—1,k)xy(i— ]-:jak)

and the boundary conditions are

z(1,0,k) = Xu

y(0,5,k) = Yy
z(i, 7, 0) = 0
Zi; = z(¢,5,N)

Example 2: Consider a URE with three dependency vectors dj = (-1,1, 1)‘,(?2 =
(1,-1,1)* and d3 = (0,0,2) over a family F(A4, Sp) of 2N x 2N x 2N cubes (for N > 1).
For [ = (1,1,2N),, T — (N —= 1)d; — (N - 1)dz = (1,1,2).. m(]) = 2N — 2. But
f(I) = N - 1. Thus m(I) - f(J} = N — 1 which can not be bounded to a constant
independent of the size of the cube.
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