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Abstract

Computaticnal economics is a grand challenge in computer science: 1o model
markets accurately, efficiently, and quickly. Likened to the importance of weather
prediction to agriculture, economic predictions are extremely important to busi-
nesses, governments, and both private and group investors. The valuation of capital
investments and financial instruments is the foundation of free market economies,
where debt and equity are traded in great volume. This paper discusses the use
of massively parallel computation to analyze financial investments. We discuss the
advantages and pitfalls of bringing supercomputers to bear on the problem.

This paper was presented in the Workshop on Future Dircclions of Parallel Pro-
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1 Introduction

This paper concerns a grand challenge in massively parallel computation: modeling
financial markets in a free global economy. Such work has been overshadowed by recent
rapid progress in genome mapping in biology and computational chemistry. The hard
sciences have always enjoyed being positioned as the main target of supercomputing
and parallel processing. This is primarily because of government funding, in addition
to the natural mapping of physical models and simulations onto multiprocessors, On
the other hand, the field of computational economics, and specifically market modeling,
is less mature, and more difficult to map onto regular mathemadtical models.

With the collapse of communist Europe, the open market conversion of these coun-
tries is a major undertaking. The return on Hong Kong to the PRC could likely
crystalize a free market movement in China also (which has already slowly begun in
Shenzhen). The globalization of markets increases the importance of efficiently allocat-
ing resources. Furthermore, there is no doubt that financial intermediaries need all the
help they can get concerning long-term investment strategies. Consider the LDC loan
defaults, the U.S. thrift and insurance company failures due to heavy investment in
junk bonds and real estate, the current Japanese bank losses due to stock depreciation,
etc. More astute estimation of risk and return should increase the efficiency of markets,
lowering the cost of money and thereby fostering economic growth.

Computational economics is becoming one of the more sophisticated uses of su-
percomputers [17]. This report may differ somewhat from the suggested topics of the
workshop because instead of focusing on the details of what accomplishments and tech-
nology we have witnessed over the past decade of growth in parallel processing, I will
concentrate on introducing the potentially explosive field of computational market mod-
eling. Furthermore, I will not discuss progress in traditional economic medeling and
optimization of commodities markets, because this field is relatively well established
(for instance using techniques of linear and integer programming). Instead, I wish to
emphasize applications to real markets in debt, equity, and currency. In addition, I will
focus on applications that require GFLOPS (10? floating-point operations per second),
as opposed to qualitative macroeconomic modeling that is also an emerging area (e.g.,
[9]), which requires less raw power, but provides less exact results.

By “computational market modeling,” I mean exploiting supercomputer power to
solve a generally diverse collection of problems in financial analysis and market making.
These problems include, but are no means limited to:

¢ Creating secondary market instruments and pricing them. Most popular are cer-

tificates of deposit (CDs) in the money market and mortgage backed securities



(MBSs) in real estate. However other securities include include CMOs (collater-
alized mortgage obligations), STRIPS (Separate Trading of Registered Interest
and Principle of Securities), CDs indexed on college tuitions, CARs (automo-
bile debt), and CARDs (credit card debt). Valuating these is complex because
of fluctuating interest rates and the “maturity matching problem:” borrowers
can prepay their debt at any time. Furthermore, as the instruments get more
complex, the number of adjustable parameters explodes the space.

Pricing stocks and rating bonds. The most exercised class of secondary market

instruments are stocks and bonds. These markets are enormous because they are
heavily traded “over the counter.” Furthermore the national debt is financed with
Treasury instruments. Because margins narrow as market competition increases,
it becomes increasingly important to accurately price the instruments. With
bonds the objective is to better estimate the yield vs. maturity, and *ride the yield
curve.” Rating bonds, to assess risk (e.g., junk vs. junque), has been undertaken
by neural networks [8, 21, 4]. Neural nets have also been used extensively to
price stocks [15, 14, 24]. Usually these algorithms involve “learning” by back
propagation, which requires extensive computational power.

portfolio optimization. Pricing single instruments is of limited use — to reduce

risk, sets of investments, called portfolios, are needed. Examples are MBS pools
and groups of stocks and options. Valuation of portfolio risk and return is an em-
barrassingly parallel application because of the number of constituent instruments
that need valuation.

options and futures. Options are a contract to buy or sell an instrument at or

before a future date at a guaranteed price. These can be used to “insure” gains
to some minimum loss in an investment, called hedging. Pricing of combina-
tions of options and shares is significantly more complex than pricing the instru-
ments themselves. For example, pricing with the Black-Scholes algorithm was
demonstrated in CLP(R) [11]. This tool illustrates the maxim that as investment
strategies get more complex, simple number crunching alone is not sufficient —
symbolic analysis is also needed.

foreign currency trading. Calculating exchange rates (i.e., the price of currencies

with respect to a baseline) and is critical to currency arbitrage. Neural networks
have been demonstrated for this purpose [18, 23]. With multistep prediction
(feedback of daily predictions into the network’s input), a 20% profit was achieved
compared to standard strategies which profit 2-5% [18].



o databases, Financial markets are data intensive and the manipulation of market
databases requires great computational power. In 1988 Dow Jones Inc. an-
nounced the purchase of a Connection Machine for its database service, and

discussed also moving its stock forcasting service to a supercomputer [3, 17].

In the following section I will summarize the results of three of these areas: pricing
mortgage-backed securities under uncertain market conditions, pricing stock options,
and pricing stocks.

2 Mortage-Backed Security Pricing

A mortgage-backed security (MBS) is a secondary-market instrument created by pool-
ing together many real estate mortgages. The security is a pay-through stake in the
pool, and the investors receive cashflows from the payments to the pool by the bor-
rowers, via a lending institution who issues the MBS. By buffering cashflows in this
manner, the lending institutions and the investors reduce risk and increase the liquid-
ity of the market. Furthermore, maturity matching is somewhat better accomodated
because of the mortgage mix in the pool. Nevertheless, when interest rates drop, as
they did in the winter of 1992, overall rates of refinancing increase, and prepayments
can still plague the investors.

MBSs are important because they represent a class of complex securities that are
increasing in world money markets. The ability of the borrower to prepay the loan is
a form of a call option, since the principle is fixed. As Zenios [25] points out, once a
single market player can value these securities accurately, all players must do so or lose
their shirts. The key point is to value the instrument in real time, because otherwise
the opportunity to buy/sell the instrument at the market price is gone. In this case,
real time may be on the order of minutes.

Zenios has done extensive work in parallelizing compute-intensive algorithms to
accurately price MBSs [10, 25, 16, 5, 6, 26, 27]. The underlying foundation of his work
is how to relate possible interest rate fluctuations (over the life of the security, which
can be about 360 periods), to cashflows. The algorithms follow three basic phases:

1. Interest rate paths are generated, a massively data-parallel computation because
of the number of periods involved. Effectively a tree is formed, where each branch
represents a different rate history.

2. Cashflows are generated among the paths, by modeling prepayment rates. By
clever manipulation of the recurrence equations, a scan multiply data-parallel

instruction can be used to evaluate the flows.



3. Net present values (NPVs) are computed from cashflows. (Actually, option ad-
justed spreads with respect to Treasury yields are calculated, but abstractly the
NPVs are sufficient). Again, scan operations can used to exploit data parallelism.

Zenios has demonstrated that a 16,000-processor CM-2a implementation of his tools
can analyze 3,000 MBS benchmarks in 40 minutes. Extrapolating, he claims to be able
to do the analysis in 5 minutes on a 64,000 processor CM-2.

3 Stock-Option Pricing

The Options Trading Analysis System (OTAS) [11] is an software tool which computes
options strategies, such as spreads. Written in CLP(R), a constraint logic programming
language on the reals [12, 13], the system can produce symbolic solutions to queries,
greatly increasing the flexibility of its use. Its backtracking capability facilitates queries
over large data spaces, allowing simple specification of complex searches.

Constraint systems have proved effective in a wide range of areas, ranging from man-
power scheduling to circuit testing. Financial analyses are natural applications because
they are primarily specified as mathematical models. Classical methods of solution
mostly involve mathematical programming, such as linear programming. Constraint
systems show two primary advantages over these methods. First, problem specifica-
tion is easier because a high-level language is used. Second, problem specifications can
be extended with heuristics when mathematical models break down. Other notable
constraint languages have been implemented, e.g., CHIP [22] and CAL [19).

A constraint system, however, is only as strong as its solver. OTAS, built on a
CLP(R) system without the capability to solve nonlinear equations, requires meta-level
procedures to approximate these by breaking down more complex constraints. This
frustrates the elegance of the paradigm and indicates the necessity to supply powerful
engines across a range of domains. Sophisticated systems will require supercomputer
speeds to do practical financial analysis. For example, OTAS could solve a query
involving nine stocks among 100 choices, producing 45 option positions in 5 minutes
on an IBM RTPC. More complex searches over full exchanges (thousands of stocks)
will require significantly higher speeds. Concurrent constraint languages (CCLs) [20]
promise to supply the framework needed.

4 Stock Pricing

Predicting stock prices has been a popular application for neural networks [15, 14, 24].
Back-propagation teaching techniques require significant computational power. Tor



example, Derr [7] trained a two-hidden-layer feedforward completely-connected network
on 625 days of IBM stock prices. To achieve low error, 10,000 epochs (teaching paths
through the network) required 4.5 hours on five 80386 Sequent Symmetry processors.

Supercomputer speeds are needed to allow more extensive teaching sets, more com-
plex networks, and more sophisticated teaching algorithms (e.g., [23]). Note that after
a network is taught by back-propagation, incremental teaching is not practical. Thus
increased supercomputer speeds can permit more frequent reteaching. Because neural
network maodels are inherently concurrent, massively parallel computers can be ex-
ploited — parallel architectures and organizations for networks are generating great
interest in the research community.

5 Advantages

The value added by supercomputing as opposed to desktop computing, is significant
increases in accurate information in a timely manner. The supercomputing required in-
cludes both massive parallelism, for data crunching, as well as fast scalar performance,
for qualitative analysis. Neural networks, data-parallel algorithms, and constraint sys-
tems are a few of the technologies emerging for these applications. These paradigms
are only possible because of increased computational power. Moreover it is becoming
clear that both number crunching and qualitative reasoning tools are both required, as
market complexities outrun analytical models [9].

Interestingly, this exploitation of supercomputing in finance, in contrast to the
hard sciences, is inherently a real-time problem, since markets can change rapidly.
Information derived from large data flows describing the markets is needed on a daily
basis. Also in contrast to the hard sciences, these applications are not experimentally
decoupled from their analysis. More accurate modeling will drive the markets in new
directions, a result of decreasing margins. Complexity (e.g., of offered securities) will
increase, feeding back to require more computational power.

These applications represent a new generation of financial intermediation wherein
the expertise of the intermediary is greatly enhanced by computational power. In a free
and open market, assuming equal access to such analysis, information bandwidth will
increase. In other words, margins will become smaller: pricing will more accurately
account for cost. Intermediaries will be driven to offer more sophisticated products with
increased utility for their customers. Individuals in the market, seeking to profit from
an information imbalance from these tools, will in conjunction create more eflicient
markets. In particular, better modeling of the affects of currency prices on debt and
equity investments will create more efficient global markets.



6 Disadvantages

There are also potential problems with the “computerization” of markets, just as there
are concerns with detrimental mutations in genetics. A curious example in the spring
of 1992 was an accidental sell order by a New York Stock Exchange (NYSE) clerk of
X shares instead of $X worth of a portfolio in the closing minutes of the day [1]. Such
a large transaction was possible because of computer technology that had no safety
checks. The single transaction actually depressed the Dow Jones temporarily. A more
damning example is the October 1987 NYSE crash, attributed by some to “programmed
trading” run amok. Programmed trading is the software controlled transaction of a
significant number of options and shares of different stocks at one time. In an attempt
to regulate this, the SEC limits program trades to fall within certain constraints, such
as volume and depth. However, not all world exchanges have such constraints, and as
the trend of 24-hour trading begins to evolve [2], it will become increasingly difficult
to monitor the markets. The emergence of supercomputers instead of desktops driving

trades may have additional detrimental aflects.

7 Summary

In summary, computational economics is an expanding field joining computer science
and economics with the goal of realizing real-time analyses of economic models and mar-
kets. In the area of financial markets, current opportunities exist for further developing
neural networks, databases, data-parallel risk/return algorithms, and constraint sys-
tems. These technologies require supercomputer performance, and moreover promise
to exploit massively parallel multiprocessors, to achieve the real-time advantage desired.

Acknowledgements

E. Tick was supported by an NSF Presidential Young Investigator award, with matching
funds generously provided by Sequent Computer Corporation.

References

(1] Clerk’s Error Spurs Action From Street. Wall Street Journal. March 26, 1992,

[2] Tiny Finex Takes Big Step in Round-the-Clock Trading. Wall Street Journal.
March 20, 1992.

[3] Supercomputers Break Through. Datemation, May 1988.



[4] E. Collins, S. Ghosh, and C. Scofield. An Application of a Multiple Neural Net-
work Learing System to Emulation of Mortgage Underwriting Judgements. In
International Joint Conference on Neural Networks, volume II, pages 459-466.
IEEE Computer Society, July 1988.

(5] H. Dahl, A. Meeraus, and S. A. Zenios. Some financial optimization Models: I
Risk Management. Financial Optimization, 1992.

[6] H. Dahl, A. Meeraus, and S. A. Zenios. Some financial optimization Models: II.
Financial Engineering. Financial Optimization, 1992.

[7] C. Derr. personal communication, University of Oregon, May 1992,

[8] S. Dutta and S. Shekhar. Bond Rating: A Non-Conservative Application of Neural
Networks. In International Joint Conference on Neural Networks, volume II, pages
443-450. IEEE Computer Society, July 1988,

[9] A. M. Farley and K.-P. Lin. Qualitative Reasoning in Economics. Journal of
Economic Dynamics and Control, 14:465-490, 1990.

(10] J. M. Hutchinson and S. A. Zenios. Financial Simulations on a Massively Parallel
Connection Machine. The International Journal of Supercomputer Applications,
5(2):27-45, 1991.

[11) T. Huynh and C. Lassez. An Expert Decision-Support System for Option-
Based Investment Strategies. Computers Mathematical Applications, 20(9/10):1-
14, 1990.

[12] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In SIGPLAN Sympo-
sium on Principles of Programming Languages, Munich, 1987. ACM Press.

[13] J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System.
In International Conference on Logic Programming, pages 196-219. University of
Melbourne, MIT Press, May 1987.

[14] K. Kamijo and T. Tanigawa. Stock Price Pattern Recognition — A Recurrent
Neural Network Approach. In International Joint Conference on Neural Networks.
IEEE Computer Society, 1990.

[15] T. Kimoto and K. Asakawa. Stock Market Prediction System with Modular Neural
Networks. In International Joint Conference on Neural Networks. IEEE Computer
Society, 1990.

=]



[16] S. S. Nielsen and S. A. Zenios. A Massively Parallel Algorithm for Nonlinear
Stochastic Network Problems. Technical Report 90-09-08, The Wharton School,
University of Pennsylvania, September 1991.

[17] P. Penczer. Supercomputers Era Dawns on Wall Street. Wall Street Computer
Review, November 1989.

(18] A. N. Refenes, M. Azema-Barac, and S. A. Karoussos. Currency Exchange Rate
Forecasting by Error Backpropagation. In Hawaii International Conference on
System Sciences, volume 4, pages 504-515. Kauai, IEEE Computer Society, Jan-
unary 1992.

[19] K. Sakai and A. Aiba. CAL: A Theoretical Background of Constraint Logic Pro-
gramming and Its Applications. Journal of Symbolic Computation, 8:589-603,
1989.

[20] V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge
MA, 1990.

[21] A. J. Surkan and J. C. Singleton. Neural Networks as Bond Rating Tools. In
Hawaii International Conference on System Sciences, volume 4, pages 499-503.
Kauai, IEEE Computer Society, January 1992.

[22] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge MA, 1989.

[23] A.S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by Weight-
Elimination with Application to Forecasting. In Advances in Neural Information
Processing Systems 3, pages 875-882. Morgan Kaufmann Publishers Inc., 1991.

[24] H. White. Economic Prediction Using Neural Networks: The Case of IBM Daily
Stock Returns. In International Joint Conference on Neural Nefworks, volume II,
pages 451-458. IEEE Computer Society, July 1988.

[25) S. A. Zenios. Massively Parallel Computations for Financial Planning Under Un-
certainty. In J. P. Mesirov, editor, Very Large Scale Computation in the 21*
Century. Society for Industrial and Applied Mathematics, Philadelphia PA, 1991.

[26] S. A. Zenios and P. Kang. Mean-Absolute Deviation Portfolio Optimization for
Mortgage-Backed Securities. Technical Report 92-03-04, The Wharton School,
University of Pennsylvania, February 1992.



[27] S. A. Zenios and R. A. McKendall. Pricing and Re-Pricing Mortgage-Backed
Securitiess using Massively Parallel Computing. Technical Report 91-12-01, The
Wharton School, University of Pennsylvania, December 1991.



